Все о теории ошибок в геодезии

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

145

Добавлен:

04.06.2015

Размер:

1.84 Mб

Скачать

ЭЛЕМЕНТЫ ТЕОРИИ ОШИБОК ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ

Ошибки и их виды

Измерения в геодезии рассматриваются с двух точек зрения: количественной, выражающей числовое значение измеренной величины, и качественной, характеризующей ее точность.

Из практики известно, что даже при самой тщательной и аккуратной работе многократные (повторные) измерения не дают одинаковых результатов. Это указывает на то, что получаемые результаты не являются точным значением измеряемой величины, а несколько отклоняются от него. Значение отклонения характеризует точность измерений.

На практике не следует производить достижимой точностью, так как повышение удорожанию измерительных работ, поэтому соответствовать поставленной задаче.

измерения с наибольшей точности измерений ведет к точность измерений должна

2

Изучением основных свойств и закономерностей действия погрешностей измерений, разработкой методов получения наиболее точного

значения измеряемой величины и характеристик ее точности занимается теория ошибок измерений. Излагаемые в ней методы решения задач

позволяют рассчитать необходимую точность предстоящих измерений и на основании этого расчета выбрать соответствующие приборы и технологию измерений, а после производства измерений получить наилучшие их

результаты и оценить их точность. Математической основой теории погрешностей измерений являются теория вероятностей и математическая статистика.

В зависимости от условий измерения могут быть равноточными и

неравноточными.

Измерения называются равноточными, если в процессе измерений сохраняются неизменными следующие факторы:

1.объект измерения; 2.субъект измерения (наблюдатель); 3.мерный прибор; 4.метод измерения; 5.внешняя среда.

Если изменяется хотя бы одно из 5 условий, то производимые наблюдения будут неравноточными.

3

Каждый из перечисленных факторов порождает целый ряд элементарных ошибок. Суммарное действие элементарных ошибок образует ошибку результата измерений.

Различают тир основных вида ошибок:

1.грубые;

2.систематические;

3.случайные.

Грубые ошибки резко отклоняют результаты измерений от истинного значения измеряемой величины. Это в основном промахи и просчеты исполнителя. Грубые погрешности обнаруживают путем повторения измерения и сравнения их результатов. Если расхождения между результатами превосходят заданный допуск, то эти измерения выбраковывают и производят заново.

Систематические ошибки входят в каждый результат измерений по определенному закону, однообразно повторяются в многократных измерениях. Систематические погрешности удается исключить или свести их до минимума тщательной проверкой измерительных приборов, применением соответствующей методики измерений , а также введением поправок в результаты измерений.

4

Случайные ошибки – это ошибки, размер и влияние которых на каждый отдельный результат измерения остается неизвестным. Закономерности случайных ошибок проявляются в массе, то есть, при большом количестве измерений; такие закономерности называют статистическими. Случайные ошибки подчинены определенным вероятностным закономерностям, изучение которых дает возможность получить наиболее надежный результат и оценить его точность. Теория ошибок занимается в основном изучением случайных ошибок.

В дальнейшем будем считать, что результаты измерений свободны от

влияния грубых и систематических ошибок (они исключены из результатов измерений или ослаблены до минимума) и содержат только случайные ошибки.

Случайной (истинной) ошибкой называют разность между измеренным значением величины l и её истинным значением Х:

= l — Х

5

Свойства случайных ошибок

1. При определенных условиях измерений случайные ошибки по

абсолютной величине не могут превышать известного предела, называемого предельной ошибкой. Это свойство позволяет обнаруживать и исключать из

результатов измерений грубые погрешности.

2. Положительные и отрицательные случайные погрешности примерно одинаково часто встречаются в ряду измерений, что помогает выявлению систематических погрешностей.

3. Чем больше абсолютная величина погрешности, тем реже она встречается в ряду измерений.

4. Среднее арифметическое из случайных погрешностей измерений одной и той же величины, выполненных при одинаковых условиях, при

неограниченном возрастании числа измерений стремится к нулю. Это свойство, называемое свойством компенсации, можно математически

записать так:

где [ ] — знак суммы, т.е.

n — число измерений.

6

Последнее свойство случайных ошибок позволяет установить принцип получения из ряда измерений одной и той же величины результата наиболее близкого к её истинному значению. Таким результатом является среднее арифметическое из измеренных значений данной величины.

Арифметическая середина. Пусть имеется n измерений одной величины X, то есть,

(1)

Сложим эти равенства, суммарное уравнение разделим на n и получим:

(2)

Величина (3)

называется средним арифметическим или простой арифметической

серединой. Запишем (2) в виде

(4)

7

по четвертому свойству ошибок можно написать:

(5)

что означает, что при неограниченном возрастании количества измерений простая арифметическая середина стремится к истинному значению

измеряемой величины.

А при ограниченном количестве измерений арифметическая середина является наиболее надежным и достоверным значением измеряемой величины. Это позволяет при любом числе измерений, если n>1, принимать арифметическую средину за окончательное значение измеренной величины. Точность окончательного результата тем выше, чем больше n.

Средняя квадратическая , предельная и относительная ошибки

Средняя квадратическая ошибка m введена в теорию ошибок для характеристики точности отдельного измерения

(1)

где n — число измерений данной величины.

8

Формула (1), которую называют формулой Гаусса, применима для случаев, когда известно истинное значение измеряемой величины Х. Такие случаи в практике встречаются редко. В то же время из измерений можно получить результат, наиболее близкий к истинному значению, — арифметическую середину. Для этого случая средняя квадратическая погрешность одного измерения подсчитывается по формуле Бесселя:

(2)

где i= li – Xo

— отклонения отдельных значений измеренной величины от арифметической средины, называемые вероятнейшими ошибками,

причем [ ] = 0.

Точность арифметической средины, естественно, будет выше точности отдельного измерения. Средняя квадратическая ошибка арифметической середины определяется по формуле

(3)

где т средняя квадратическая погрешность одного измерения, вычисляемая по формулам (1) или (2).

9

Предельная ошибка

В соответствии с первым свойством случайных ошибок для абсолютной величины случайной погрешности при данных условиях измерений существует допустимый предел, называемый предельной ошибкой. В строительных нормах предельная погрешность называется допускаемым

отклонением.

В качестве предельной ошибки пр

для данного вида измерений принимается утроенная средняя квадратическая ошибка

пр=3m.

При более ответственных измерениях для повышения требований точности измерений принимают

пр=2m.

Ошибки измерений величины которых превосходят пр считают грубыми.

10

Двойные измерения

Часто в практике для контроля и повышения точности определяемую величину измеряют дважды — в прямом и обратном направлениях, например, длину линий, превышения между точкам. Из двух полученных значений за окончательное принимается среднее из них. В этом случае средняя квадратическая погрешность одного измерения:

(4)

а среднего результата из двух измерений:

(5)

где d разность двукратно измеренных величин; n число разностей (двойных измерений).

11

Соседние файлы в папке геодезия. все лекции

  • #
  • #
  • #
  • #
  • #
  • #
  • #

На чтение 9 мин Просмотров 1.6к. Опубликовано 03.10.2021

Теория ошибок измерений изучает свойства ошибок и законы их распределения, методы обработки измерений с учетом их ошибок, а также способы вычисления числовых характеристик точности измерений. При многократных измерениях одной и той же величины результаты измерений получаются неодинаковыми. Этот очевидный факт говорит о том, что измерения сопровождаются разными по величине и по знаку ошибками. Задача теории ошибок – нахождение наиболее надежного значения измеренной величины, оценка точности результатов измерений и их функций и установление допусков, ограничивающих использование результатов обработки измерений.

По своей природе ошибки бывают грубые, систематические и случайные.

Начальные сведения из теории ошибок

Грубые ошибки являются результатом промахов и просчетов. Их можно избежать при внимательном и аккуратном отношении к работе и организации надежного полевого контроля измерений. В теории ошибок грубые ошибки не изучаются.

Систематические ошибки имеют определенный источник, направление и величину. Если источник систематической ошибки обнаружен и изучен, то можно получить формулу влияния этой ошибки на результат измерения и затем ввести в него поправку; это исключит влияние систематической ошибки. Пока источник какой-либо систематической ошибки не найден, приходится считать ее случайной ошибкой, ухудшающей качество измерений.

Случайные ошибки измерений обусловлены точностью способа измерений (строгостью теории), точностью измерительного прибора, квалификацией исполнителя и влиянием внешних условий. Закономерности случайных ошибок проявляются в массе, то-есть, при большом количестве измерений; такие закономерности называют статистическими. Освободить результат единичного измерения от случайных ошибок невозможно; невозможно также предсказать случайную ошибку единичного измерения. Теория ошибок занимается в основном изучением случайных ошибок.

Случайная истинная ошибка измерения Δ – это разность между измеренным значением величины l и ее истинным значением X:
Начальные сведения из теории ошибок(1.25)

Свойства случайных ошибок. Случайные ошибки подчиняются некоторым закономерностям:

1. при данных условиях измерений абсолютные значения случайных ошибок не превосходят некоторого предела; если какая-либо ошибка выходит за этот предел, она считается грубой,
2. положительные и отрицательные случайные ошибки равновозможны,
3. среднее арифметическое случайных ошибок стремится к нулю при неограниченном возрастании числа измерений. Третье свойство случайных ошибок записывается так:
Начальные сведения из теории ошибок(1.26)
4. малые по абсолютной величине случайные ошибки встречаются чаще, чем большие.

Кроме того, во всей массе случайных ошибок не должно быть явных закономерностей ни по знаку, ни по величине. Если закономерность обнаруживается, значит здесь сказывается влияние какой-то систематической ошибки.

Средняя квадратическая ошибка одного измерения. Для оценки точности измерений можно применять разные критерии; в геодезии таким критерием является средняя квадратическая ошибка. Это понятие было введено Гауссом; он же разработал основные положения теории ошибок. Средняя квадратическая ошибка одного измерения обозначается буквой m и вычисляется по формуле Гаусса:
Начальные сведения из теории ошибок(1.27)

где: Начальные сведения из теории ошибок;
n – количество измерений одной величины.

Средняя квадратическая ошибка очень чувствительна к большим по абсолютной величине ошибкам, так как каждая ошибка возводится в квадрат. В то же время она является устойчивым критерием для оценки точности даже при небольшом количество измерений; начиная с некоторого n дальнейшее увеличение числа измерений почти не изменяет значения m; доказано, что уже при n = 8 значение m получается достаточно надежным.

Предельная ошибка ряда измерений обозначается Δпред; она обычно принимается равной 3*m при теоретических исследованиях и 2*m или 2.5*m при практических измерениях. Считается, что из тысячи измерений только три ошибки могут достигать или немного превосходить значение Δпред = 3*m.

Начальные сведения из теории ошибок

Отношение mx/X называется средней квадратической относительной ошибкой; для некоторых видов измерений относительная ошибка более наглядна, чем m. Относительная ошибка выражается дробью с числителем, равным 1, например, mx/X = 1/10 000.

Средняя квадратическая ошибка функции измеренных величин. Выведем формулу средней квадратической ошибки функции нескольких аргументов произвольного вида:

F = f( X, Y, Z … ),                        (1.28)

здесь: X, Y, Z … – истинные значения аргументов,
F – истинное значение функции.

В результате измерений получены измеренные значения аргументов lX, lY, lZ, при этом:
Начальные сведения из теории ошибок(1.29)

где ΔX, ΔY, ΔZ – случайные истинные ошибки измерения аргументов.

Функцию F можно выразить через измеренные значения аргуметов и их истинные ошибки:
Начальные сведения из теории ошибок
Разложим функцию F в ряд Тейлора, ограничившись первой степенью малых приращений ΔX, ΔY, ΔZ:
Начальные сведения из теории ошибок(1.30)

Разность является случайной истинной ошибкой функции с противоположным знаком, поэтому:
Начальные сведения из теории ошибок(1.31)

Если выполнить n измерений аргументов X, Y, Z, то можно записать n уравнений вида (1.31). Возведем все эти уравнения в квадрат и сложим их; суммарное уравнение разделим на n и получим
Начальные сведения из теории ошибокНачальные сведения из теории ошибок
В силу третьего свойства случайных ошибок члены, содержащие произведения случайных ошибок, будут незначительными по величине, и их можно не учитывать; таким образом,
Начальные сведения из теории ошибок(1.32)

Как частные случаи формулы (1.32) можно написать выражения для средней квадратической ошибки некоторых функций:
Начальные сведения из теории ошибок
Если функция имеет вид произведения нескольких аргументов,

F = x * y * z,

то для нее можно записать выражение относительной ошибки функции:
Начальные сведения из теории ошибок(1.33)

которое в некоторых случаях оказывается более удобным, чем формула (1.32).

Принцип равных влияний. В геодезии часто приходится определять средние квадратические ошибки аргументов по заданной средней квадратической ошибке функции. Если аргумент всего один, то решение задачи не представляет трудности. Если число аргументов t больше одного, то возникает задача нахождения t неизвестных из одного уравнения, которую можно решить, применяя принцип равных влияний. Согласно этому принципу все слагаемые правой части формулы (1.32) или (1.33) считаются равными между собой.

Арифметическая середина. Пусть имеется n измерений одной величины X, то-есть,
Начальные сведения из теории ошибок(1.34)

Сложим эти равенства, суммарное уравнение разделим на n и получим:
Начальные сведения из теории ошибок(1.35)

Величина  Начальные сведения из теории ошибок (1.36)

называется средним арифметическим или простой арифметической серединой. Запишем (1.35) в виде
Начальные сведения из теории ошибок
по третьему свойству ошибок (1.26) можно написать:
Начальные сведения из теории ошибок
что означает, что при неограниченном возрастании количества измерений простая арифметическая середина стремится к истинному значению измеряемой величины. При ограниченном количестве измерений арифметическая середина является наиболее надежным и достоверным значением измеряемой величины.

Запишем формулу (1.36) в виде
Начальные сведения из теории ошибок
и подсчитаем среднюю квадратическую ошибку арифметической середины, которая обозначается буквой M. Согласно формуле (1.32) напишем:
Начальные сведения из теории ошибок
или
Начальные сведения из теории ошибок
Но ml1 = ml2 = … = mln= m по условию задачи, так как величина X измеряется при одних и тех же условиях. Тогда в квадратных скобках будет n * m2, одно n сократится и в итоге получим:

M2 = m2/n

или
Начальные сведения из теории ошибок(1.37)

то-есть, средняя квадратическая ошибка арифметической середины в корень из n раз меньше ошибки одного измерения.

Вычисление средней квадратической ошибки по уклонениям от арифметической середины. Формулу Гаусса (1.27) применяют лишь в теоретических выкладках и при исследованиях приборов и методов измерений, когда известно истинное значение измеряемой величины. На практике оно, как правило, неизвестно, и оценку точности выполняют по уклонениям от арифметической середины.

Пусть имеется ряд равноточных измерений величины X:

l1, l2 , …, ln .

Вычислим арифметическую середину X0 = [1]/n и образуем разности:
Начальные сведения из теории ошибок(1.38)

Сложим все разности и получим [l] – n * X0 = [V]. По определению арифметической середины n * X0 = [l], поэтому:

[V] = 0.                   (1.39)

Величины V называют вероятнейшими ошибками измерений; именно по их значениям и вычисляют на практике среднюю квадратическую ошибку одного измерения, используя для этого формулу Бесселя:
Начальные сведения из теории ошибок(1.40)

Приведем вывод этой формулы. Образуем разности случайных истинных ошибок измерений Δ и вероятнейших ошибок V:
Начальные сведения из теории ошибок(1.41)

Разность (X0 – X) равна истинной ошибке арифметической середины; обозначим ее Δ0 и перепишем уравнения (1.41):
Начальные сведения из теории ошибок(1.42)
Возведем все уравнения (1.42) в квадрат, сложим их и получим:
Начальные сведения из теории ошибок.

Второе слагаемое в правой части этого выражения равно нулю по свойству (1.39), следовательно,
Начальные сведения из теории ошибок.

Разделим это уравнение на n и учтя, что [Δ2]/n =m2, получим:
Начальные сведения из теории ошибок(1.43)

Заменим истинную ошибку арифметической середины Δ0 ее средней квадратической ошибкой Начальные сведения из теории ошибок; такая замена практически не изменит правой части формулы (1.43). Итак,

Начальные сведения из теории ошибок,
откуда Начальные сведения из теории ошибок;

после перенесения (n-1) в правую часть и извлечения квадратного корня получается формула Бесселя (1.40).

Для вычисления средней квадратической ошибки арифметической середины на основании (1.37) получается формула:
Начальные сведения из теории ошибок(1.44)

Веса измерений. Измерения бывают равноточные и неравноточные. Например, один и тот же угол можно измерить точным или техническим теодолитом, и результаты таких измерений будут неравноточными. Или один и тот же угол можно измерить разным количеством приемов; результаты тоже будут неравноточными. Понятно, что средние квадратические ошибки неравноточных измерений будут неодинаковы. Из опыта известно, что измерение, выполненное с большей точностью (с меньшей ошибкой), заслуживает большего доверия.

Вес измерения – это условное число, характеризующее надежность измерения, степень его доверия; вес обозначается буквой p. Значение веса измерения получают по формуле:

p = C/m2                  (1.45)

где C – в общем случае произвольное положительное число.

При неравноточных измерениях одной величины наиболее надежное ее значение получают по формуле средневесовой арифметической середины:
Начальные сведения из теории ошибок(1.46)
или              X0 = [l*p] / [p] .

Ошибку измерения, вес которого равен 1, называют средней квадратической ошибкой единицы веса; она обозначается буквой m. Из формулы (1.45) получаем
Начальные сведения из теории ошибок
откуда  Начальные сведения из теории ошибок(1.47)

то-есть, за число C принимают квадрат ошибки единицы веса.

Подсчитаем вес P средневесовой арифметической середины. По определению веса имеем:
Начальные сведения из теории ошибок(1.48)

Согласно (1.46) и (1.32) напишем:
Начальные сведения из теории ошибок
Подставим сюда вместо mli2 их выражения через вес m2 = C/p , тогда:
Начальные сведения из теории ошибок
Подставим это выражение в формулу (1.48) и получим,

P = [p],                 (1.49)

то-есть, вес средневесовой арифметической середины равен сумме весов отдельных измерений.

В случае равноточных измерений, когда веса всех измерений одинаковы и равны единице, формула (1.49) принимает вид:

P = n.                  (1.50)

При обработке больших групп измерений (при уравнивании геодезических построений по МНК) вычисляются значение ошибки единицы веса, веса измерений и других элементов после уравнивания, а ошибка любого уравненного элемента подсчитывается по формуле:
Начальные сведения из теории ошибок(1.51)

где pi – вес i-того элемента.

Насколько разнообразны виды геодезической деятельности, объекты и способы измерений, их количество, качество получаемых результатов, настолько разнообразен теоретический и математический аппарат, позволяющий все это выполнить. Если каждый из бывших студентов геодезическо-маркшейдерских специальностей вспомнит один из предметов под названием «МОМГИ», что означает математическая обработка маркшейдерско-геодезических измерений, то вспоминается ужас от обилия вновь вводимых критериев и понятий, набора новых способов вычислений с применением элементов до конца не доученных разделов высшей математики. 

Сейчас попробуем целостно структурировать основы МОМГИ. После всех полевых наблюдений полученная информация не используется в том виде, в котором зафиксирована в первичной документации. Используя свои теоретические знания и практические умения, специалисты выполняют ее математическую обработку. Под этим понимается целый комплекс преобразований и вычислений, полученной при измерениях числовой информации, представляющей практическую ценность. Почти все вычислительные действия осуществляются в камеральных условиях, за исключением тех, которые предусмотрены методикой и исполняются в момент измерений для оценивания и сравнения полученных значений. Одной из специфических составляющих в математической обработке выступают погрешности, которые возникают изначально в моменты замеров и требующие определенного учета и преобразований. Все они имеют неизбежность находиться в неопределенных пределах искажения. Конечные результаты после их расчетов сопровождаются также неопределенными искажениями. Помимо этого, во многих способах и методах существуют в завершении работ контрольные измерения, приводящие к избыточным измерениям. Они влекут за собой возникновение различных значений одних и тех же величин. Кто из геодезистов и маркшейдеров с этим не сталкивался? Да, все.

Таким образом, можно сделать вывод, что основной задачей математической обработки можно считать нахождение однозначных значений величин наиболее приближенных к истинным. Наряду с этим на практике геодезические и маркшейдерские измерения решают следующие задачи:

  • определение необходимой точности измерений для практических целей;
  • выбор оптимальных средств и методов работ для достижения требуемой точности;
  • установление необходимых допустимых параметров (критериев), которые давали бы возможность судить о достаточной точности выполненных работ;
  • выбор способов и методик обработки проведенных измерений с целью получения оптимальных значений результатов;
  • определение точности выполненных замеров и качественной характеристики полученных результатов. 

Ориентировочный алгоритм вычислений 

Существует определенный общий алгоритм вычислительных операций с целью получения результатов. Независимо от того какие виды работ выполнялись, математическая обработка, включает в себя следующие этапы:

  • предварительную математическую обработку измеренных величин. Она включает проверку первичной документации, информации в ней, выявление грубых ошибок, определение средних измеренных параметров. Далее вычисление их невязок, оценка качества в пределах требуемой точности, введение поправок в измеренные параметры;
  • уравнительные операции, включающие определение поправок в вычисляемые формулы;
  • завершение вычислений, которые сводятся к окончательному получению результатов после выполнения математического определения уравненных значений величин.
  • Окончательный анализ полученных результатов вычислений и оценка точности выполненных работ.

Такой алгоритм действует практически при создании всех геодезических сетей, при предварительном проектировании и по окончании их построения. Рассмотреть весь спектр возможностей математической обработки не возможно в одной статье из-за разных постановочных задач и путей их решения. Но каждый геодезист практически всегда использует в своей работе две основные геодезические задачи (прямую и обратную), которые требуют знаний теории погрешностей и двух различных способов их решения.

Прямая геодезическая задача в теории ошибок

Основной идеей ее является определение искомых координат неизвестных пунктов с использованием измеренных длин сторон и углов, при наличии известных координат на исходном геодезическом пункте. Прямая геодезическая задача решается, например при проложении теодолитного хода. При измерениях в нем линейных и угловых величин им сопутствуют получение целого ряда погрешностей. После вычислений можно записать функции измеренных величин в следующем виде:

yi =Fi (l1, l2, … , ln);

где l1, l2, … , ln – средние измеренные значения длин сторон,

Ряд известных погрешностей будет иметь такой вид: m1, m2, … , mn.

Истинные значения (Li) этой функции возникают при появлении взамен промеренных величин (l1, l2, … , ln).

Yi =F (L1, L1,…, Ln.),

Отсюда следует, что случайные ошибки определяются по формуле:

Е= yiYi,

Тогда СКП оцениваемой функции будет выглядеть:

M y =√[EE]/n

Числовые значения их определяются по формуле:

M2 yi = f21m21 + f22m22 + . . . + f2nm2n = ∑ f2im2i.

Эта формула одна из основополагающих в теории погрешностей и математической обработке в геодезии. Она имеет название формула переноса погрешностей. С ее помощью производится решение задач и оценка точности любых необходимых функций по известным среднеквадратическим отклонениям их независимых аргументов.

При решении прямой задачи стоит вопрос определения допустимых параметров. Для этого принимают истинные или измеренные с высокой точностью, или заранее известные, как верные. В замкнутом теодолитном ходе можно принять за такие условия сумму всех измеренных углов и приращений координат.

nj=1 β=180(n-2),

nj=1 Δ x=0,

nj=1 Δ γ=0.

где β1, β2, … , βn – средние значения измеренных углов;

n — количество углов.

Вследствие получения измерительных ошибок в углах и сторонах теодолитного хода, перечисленные выше три условия, как правило, не выполняются. Возникают угловые невязки (wβ) и невязки приращений (wx ; wy).

Функция измеренных угловых величин имеет общий вид:

yi=Fi1, β2, … , βn);

Тогда равенство измеренных и истинных величин приобретает такой вид:

yi=Fi1, β2, … , βn)=

То есть можно сделать вывод о том, что зная ошибки замеренных углов(mi), можно определить погрешности суммы углов (My). В то же время она считается среднеквадратической погрешностью (CКП) невязки измерений. Допустимое значение к ней устанавливается исходя из формулы.

wβдоп = k My,

где k — коэффициент кратности исходя из таблицы вероятности.

При выборе этого коэффициента, следует понимать следующее. Делая выбор в пользу единичного коэффициента следует, что все измеренные параметры с вероятностью более шестидесяти восьми процентов будут отсекаться. При выборе коэффициента равного двум, вероятность получения правильных замеренных параметров будет равна девяноста пяти процентам. А при выбранном коэффициенте три отсев грубых ошибок в промерах будет равен 0,3%. Вероятность допустимых отклонений возрастает до девяноста девяти процентов. В практике геодезических работ коэффициент кратности принимают от 2,0 до 2,5. В теоретических расчетах его выбирают равным трем (3,0).

Таким образом, обеспечиваются принципы необходимой точности и устанавливаются допуски, которые при контроле измеренных величин.

Обратная задача в теории ошибок 

Основной целью решения этой задачи считается определение длин сторон и их дирекционных углов по известным координатам пунктов сети.

В теории погрешностей дополнительными определяемыми данными будут выступать отклонения конкретных величин, групповые и средние ошибки. При решении обратной геодезической задачи возможно установление средних ошибок отдельных конкретных измерений с целью обеспечения заданной точности какой-то функции замеренных величин. Такая задача обычно возникает при решении соединительных треугольников во время проведения ориентирований шахтных стволов, при выполнении предрасчета общей средней погрешности смыкания капитальных выработок и других работах. В зависимости от требуемой производственной необходимости выполняются проектные и расчетные работы с задаваемой и ожидаемой точностью (Mож). Допустимая погрешность (Mдоп) устанавливается и утверждается как предельная ошибка (Mпред). Среднеквадратическая погрешность (Mxyz) имеет связь с предельной через известный вероятностный коэффициент кратности (k):

Mож = Mдоп = Мпред = kMxyz ;

Коэффициент кратности считается своего рода степенью риска, которая устанавливается в расчетах маркшейдерских работ равным трем. Таким образом, получив общую среднеквадратическую ошибку, определяется требуемая точность выполнения полевых замеров отдельных параметров.

Понравилась статья? Поделить с друзьями:
  • Все о подключении модема ошибки
  • Все о планировке дома ошибки
  • Все о пайке типичные ошибки
  • Все о пайке типичные ошибки
  • Все о ошибки 404 и как избавиться от этого