Измерение
— экспериментальное сравнение, данной
величины с другой, такого же рода
величиной, принятой за единицу меры.
Задачей
измерения является:
1)
получение приблизительного значения
измеряемой величины;
2)
оценка величины погрешности.
Измерения
могут быть прямыми
и косвенными.
Прямое
измерение
непосредственное сравнение измеряемой
величины с единицей измерения с помощью
приборов и устройств, проградуированных
в соответствующих единицах (измерение
линейных размеров линейкой, штангенциркулем;
измерение времени секундомером;
взвешивание и т.п.)
Косвенно
измеряемая величина
рассчитывается с помощью некоторой
зависимости (формулы) от других величин,
полученных прямыми измерениями
(определение скорости v=s / t по пути и
времени, плотности ρ= m / v по массе и
объему и т.д.).
Любое
измерение не дает абсолютно точного
значения измеряемой величины – неточность
приборов, влияние внешних факторов,
трение и т.д., –поэтому измеренные
значения всегда отклоняются от истинного.
Эти отклонения называются ошибками
или погрешностями
измерений.
Источниками
погрешности являются: несовершенство
применяемых методов и средств измерений,
непостоянство влияющих на результат
измерения физических величин, а также
индивидуальные особенности экспериментатора.
Кроме того, на точность измерений влияют
внешние и внутренние помехи, климатические
условия и порог чувствительности
измерительного прибора.
Истинное
значение физической величины —
это значение, идеальным образом отражающее
свойство данного объекта, как в
качественном, так и в количественном
отношении. Оно не зависит от средств
нашего познания и является той абсолютной
истиной, к которой мы стремимся, пытаясь
выразить ее в виде числовых значений.
На
практике это абстрактное понятие
приходится заменять понятием
«действительное значение».
Действительное
значение физической величины
— значение, найденное экспериментально
и настолько приближающееся к истинному,
что для данной цели может быть использовано
вместо него.
Результат
измерения представляет
собой приближенную оценку истинного
значения величины, найденную путем
измерения.
Точность
измерений
отражает меру близости результатов
измерений к истинному значению измеряемой
физической величины. Высокой точности
измерений соответствует малая погрешность.
Так,
например, измерение силы тока в 10А и
100А может быть выполнено с идентичной
абсолютной погрешностью Δ = +1А.
Погрешность
результата измерения —
это разница между результатом измерения
и истинным (действительным) значением
измеряемой величины.
Погрешность
средства измерения —
разность между показаниями средства
измерения и истинным (действительным)
значением измеряемой физической
величины. Она характеризует точность
результатов измерений, проводимых
данным средством.
Эти
два понятия во многом близки друг к
другу и классифицируются по одинаковым
признакам.
Классификация
погрешностей
-
В
зависимости от формы выражения
различают абсолютную, относительную
и приведенную погрешности.
Абсолютной
погрешностью Δ,
выражаемой в единицах измеряемой
величины, называется отклонение
результата измерения х от истинного
значения хи:
Δ
= х — хи
Абсолютная
погрешность характеризует величину и
знак полученной погрешности, но не
определяет качество самого проведенного
измерения.
Понятие
погрешности характеризует как бы
несовершенство измерения. Качество
(точность) первого измерения ниже
второго. Поэтому, чтобы иметь возможность
сравнивать качество измерений, введено
понятие относительной погрешности.
Относительной
погрешностью δ
называется отношение абсолютной
погрешности измерения к истинному
значению измеряемой величины:
Мерой
точности измерений служит показатель,
обратный модулю относительной погрешности:
Относительную
погрешность δ часто выражают в процентах:
Приведенная
погрешность γ
— это отношение абсолютной погрешности
Δ к некоторому нормирующему значению
XN
(например, к конечному значению шкалы
прибора или сумме значений шкал при
двусторонней шкале):
где
Xn —
нормирующее значение, которое зависит
от типа шкалы измерительного прибора
и определяется по его градуировке:
— если
шкала прибора односторонняя, то есть
нижний предел измерений равен нулю, то
Xn
определяется равным верхнему пределу
измерений;
— если
шкала прибора двухсторонняя, то
нормирующее значение равно ширине
диапазона измерений прибора.
Приведённая
погрешность является безразмерной
величиной, либо измеряется в процентах.
-
По
характеру (закономерности) проявления
погрешности
делятся на систематические, случайные
и грубые (промахи).
Систематическая
погрешность
Δс
— составляющая погрешности измерения,
остающаяся постоянной или закономерно
меняющаяся при повторных измерениях
одной и той же физической величины.
Величина
систематической погрешности Δс
характеризует один из показателей
качества измерений — правильность
полученного результата, чем меньше
величина Δс,
тем правильнее полученный результат.
Систематическая
ошибка может быть обусловлена
неисправностью прибора, несовершенством
методики измерений (например неучетом
сил трения) и т.д
Такие
погрешности могут быть выявлены путем
детального анализа возможных их
источников и уменьшены введением
соответствующей поправки, применением
более точных приборов, калибровкой
приборов с помощью рабочих мер и пр.
Однако полностью их устранить нельзя.
Случайная
погрешность
— изменяющаяся случайным
образом по знаку и значению при повторных
измерениях одной и той же величины в
одних и тех же условиях.
Случайные
погрешности могут быть связаны с
несовершенством приборов (трение в
механических приборах и т. п.),
тряской в городских условиях, с
несовершенством объекта измерений
(например, при измерении диаметра тонкой
проволоки, которая может иметь не совсем
круглое сечение в результате несовершенства
процесса изготовления), с особенностями
самой измеряемой величины (например
при измерении количества элементарных
частиц, проходящих в минуту через счётчик
Гейгера).
Величина
случайной погрешности
характеризует другой
показатель качества измерений — сходимость
результатов при повторных измерениях
одного и того же значения измеряемой
физической величины.
В
отличие от систематических погрешностей
случайные погрешности нельзя исключить
из результатов измерений путем введения
поправки, однако, их можно существенно
уменьшить путем многократного измерения
этой величины и последующей статистической
обработкой полученных результатов.
Грубая
погрешность (промах)
— это случайная погрешность результата
отдельного наблюдения, входящего в ряд
измерений, которая для данных условий
резко отличается от остальных результатов
этого ряда.
Данные
погрешности возникают из-за ошибок
оператора или неучтенных внешних
воздействий.
-
По
причинам возникновения (по виду
источника)
1
Инструментальные
погрешности
возникают
из-за несовершенства средств измерения,
т.е. от погрешностей средств измерений.
Иногда эту погрешность называют
аппаратурной.
Источниками
инструментальных погрешностей могут
быть, например, неточная градуировка
прибора и смещение нуля, вариация
показаний прибора в процессе эксплуатации
и т.д. Уменьшают инструментальные
погрешности применением более точного
прибора.
2
Внешняя погрешность —
важная составляющая погрешности
измерения, связанная с отклонением
одной или нескольких влияющих величин
от нормальных значений или выходом их
за пределы нормальной области (например,
влияние влажности, температуры, внешних
электрических и магнитных полей,
нестабильности источников питания,
механических воздействий и т.д.).
В
большинстве случаев внешние погрешности
являются систематическими и определяются
дополнительными погрешностями применяемых
средств измерений.
3
Методическая погрешность
обусловлена несовершенством метода
измерений, влиянием выбранного средства
измерений на измеряемые параметры
сигналов, некорректностью алгоритмов
или расчетных формул, по которым
производят вычисления, округления
результатов, отличием принятой модели
объекта измерений от той, которая
правильно описывает его свойство,
определяемое путем измерения.
Отличительной
особенностью методических погрешностей
является то, что они не могут быть указаны
в нормативно-технической документации
на используемое средство измерений,
поскольку от него не зависят, а должны
определяться оператором в каждом
конкретном случае. В связи с этим оператор
должен четко различать фактически
измеренную им величину и величину,
подлежащую измерению.
Если,
например, вольтметр имеет недостаточно
высокое входное сопротивление, то его
подключение к схеме способно изменить
в ней распределение токов и напряжений.
При этом результат измерения будет
отличаться от действительного.
Пример
1
Рассмотрим
появление методической погрешности
при измерении сопротивления методом
вольтметра-амперметра (рисунок 8).
Рисунок
8- К появлению методической погрешности
Для
определения значения сопротивления Rx
резистора необходимо измерить ток IR,
протекающий через резистор и падение
напряжения на нем UR.
В приведенной схеме, реализующей этот
метод, падение напряжения на резисторе
измеряется вольтметром непосредственно,
в то время как амперметр измеряет
суммарный ток, часть которого протекает
через резистор, часть через вольтметр.
В результате измеренное значение
сопротивления будет не Rx
= UR
/ IR,
а R’ = UR
/ (IR
+ Iv)
и появляется методическая погрешность
измерения ΔR = R’ — Rx
. Методическая погрешность уменьшается
и стремится к нулю при токе Iv
→ 0, т.е. при внутреннем сопротивлении
вольтметра Rv
→ ∞.
Методическую
погрешность можно уменьшить путем
применения более точного метода
измерения.
4
Субъективные (личные) погрешности
вызываются ошибками оператора при
отсчете показаний средств измерения
(погрешности от небрежности и невнимания
оператора, от параллакса, т.е. от
неправильного направления взгляда при
отсчете показаний стрелочного прибора
и пр.).
Подобные
погрешности устраняются применением
современных цифровых приборов или
автоматических методов измерения.
-
В
зависимости от влияния характера
изменения измеряемых величин
погрешности
средств измерений делят на статические
и динамические.
Статическая
погрешность
— это погрешность средств измерений
применяемого для измерения физической
величины, принимаемой за неизменную.
Динамической
называют
погрешность средств измерений, возникающая
дополнительно при измерении переменной
физической величины и обусловленная
несоответствием его реакции на скорость
(частоту) изменения измеряемого сигнала.
-
По
условиям, в которых используются
средства измерения,
различают основную и дополнительную
погрешности.
Основная
погрешность
измерений — та погрешность, которая
имеет место при нормальных условиях
его эксплуатации, оговоренных в
регламентирующих документах (паспорте,
технических условиях и пр.)
Дополнительная
погрешность
средства измерения возникает вследствие
выхода какой-либо из влияющих величин
(температуры, влажности и др.) за пределы
нормальной области значений.
Пример
3
Вольтметр
предназначен для измерения переменного
тока с номинальным значением частоты
(50 ± 5)Гц. Отклонение частоты за эти
пределы приведет к дополнительной
погрешности измерения.
-
По
зависимости абсолютной погрешности
от значений измеряемой величины
различают
погрешности (рисунок 9):
-
аддитивные
Δа
, не зависящие от измеряемой величины; -
мультипликативные
Δм
, которые прямо пропорциональны
измеряемой величине; -
нелинейные
Δн
, имеющие нелинейную зависимость от
измеряемой величины.
Рисунок
9 — Аддитивная (а), мультипликативная
(б), нелинейная (в) погрешности
Эти
погрешности применяют в основном для
описания метрологических характеристик
средств измерений.
Примеры
аддитивных погрешностей — от постоянного
груза на чашке весов, от неточной
установки на нуль стрелки прибора перед
измерением, от термо-ЭДС в цепях
постоянного тока.
Причинами
возникновения мультипликативных
погрешностей могут быть: изменение
коэффициента усиления усилителя,
изменение жесткости мембраны или пружины
прибора, изменение опорного напряжения
в цифровом вольтметре.
Заканчивая
анализ классификации погрешностей
измерений, необходимo отметить, что она
(как и любая другая классификация) носит
досрочно условный (относительный)
характер.
Ответы
на вопросы, об отнесении погрешности
конкретного измерения к тем или иным
классам и о делении их на случайные и
систематические, могут бытъ даны лишь
при наличии полной информации о свойствах
параметров характеристик измеряемого
объекта, измерительных устройств,
условий, в которых проводились измерения,
а также, как правило, только после
проведения многочисленных повторных
измерений.
Наглядным
примером может служить климатическая
погрешность измерительного прибора.
Если возможен контроль температуры,
при которой проводятся измерения, и
имеется поправочная таблица, то такую
погрешность следует рассматривать как
систематическую. Однако при отсутствии
контроля температур эта же погрешность
учитывается как случайная.
Обобщённой
характеристикой средств измерения
является класс точности, определяемый
предельными значениями допускаемых
основной и дополнительной погрешностей,
а также другими параметрами, влияющими
на точность средств измерения; значение
параметров установлено стандартами на
отдельные виды средств измерений. Класс
точности средств измерений характеризует
их точностные свойства, но не является
непосредственным показателем точности
измерений, выполняемых с помощью этих
средств, так как точность зависит также
от метода измерений и условий их
выполнения. Измерительным приборам,
пределы допускаемой основной погрешности
которых заданы в виде приведённых
основных (относительных) погрешностей,
присваивают классы точности, выбираемые
из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0;
4,0; 5,0; 6,0)*10n,
где показатель степени n = 1; 0; −1; −2
и т. д.
Диапазон
измерений
— это
та часть диапазона показаний прибора,
для которой усыновлены погрешности
прибора (если известны погрешности
прибора, то диапазон измерений и показаний
прибора совпадает).
Разность
между
максимальным и минимальным показаниями
прибора называют
размахом.
Другой
характеристикой прибора является его
чувствительность,
т.
е. способность отсчитывающего устройства
реагировать на изменения измеряемой
величины. Под порогом чувствительности
прибора понимают наименьшее значение
измеряемой величины, вызывающее изменение
показания прибора, которое можно
зафиксировать.
Основной
характеристикой прибора является его
точность.
Она
характеризуется суммарной погрешностью.
Средства
измерения делятся на классы точности.
Класс
точности —
это
обобщенная характеристика, определяемая
пределами основной и дополнительных
допускаемых погрешностей, влияющих на
точность.
Стабильность
(воспроизводимость
прибора) — это свойство отсчетного
устройства
обеспечивать
постоянство показаний одной и той же
величины.
Все
средства измерения (приборы, используемые
для измерения в научных исследованиях)
проходят
периодическую
поверку
на
точность. Такая поверка предусматривает
определение и по возможности уменьшение
погрешностей приборов. Поверка позволяет
установить соответствие данного прибора
регламентированной степени точности
и определяет возможность его применения
для данных измерений, т. е. определяются
погрешности и устанавливается, не
выхолят ли они за пределы допускаемых
значении. Поверку средств измерений
производят на различных уровнях.
Государственные
метрологические институты и лаборатории
по надзору за стандартами и измерительной
техникой производят государственный
контроль за
обеспечением в стране единства мер.
В
периоды между государственными поверками
осуществляется ведомственная
поверка средств
измерений, которая по объему работ мало
чем отличается от государственных
поверок. Такие поверки более оперативны
и проводятся по специальному графику,
разработанному для данной организации.
Рабочая
поверка средств
измерений проводится в низовых звеньях
каждым экспериментатором непосредственно
в организациях перед началом измерений
и наблюдений.
Под
регулировкой
прибора понимают
операции, направленные на снижение
систематических ошибок до величины,
меньшей допустимой погрешности.
В зависимости от обстоятельств, при которых проводились измерения, а также в зависимости от целей измерения, выбирается та или иная классификация погрешностей. Иногда используют одновременно несколько взаимно пересекающихся классификаций, желая по нескольким признакам точно охарактеризовать влияющие на результат измерения физические величины. В таком случае рассматривают, например, инструментальную составляющую неисключённой систематической погрешности. При выборе классификаций важно учитывать наиболее весомые или динамично меняющиеся или поддающиеся регулировке влияющие величины. Ниже приведены общепринятые классификации согласно типовым признакам и влияющим величинам.
По виду представления, различают абсолютную, относительную и приведённую погрешности.
Абсолютная погрешность это разница между результатом измерения X и истинным значением Q измеряемой величины. Абсолютная погрешность находится как D = X — Q и выражается в единицах измеряемой величины.
Относительная погрешность это отношение абсолютной погрешности измерения к истинному значению измеряемой величины: d = D / Q = (X – Q) / Q .
Приведённая погрешность это относительная погрешность, в которой абсолютная погрешность средства измерения отнесена к условно принятому нормирующему значению QN , постоянному во всём диапазоне измерений или его части. Относительная и приведённая погрешности – безразмерные величины.
В зависимости от источника возникновения, различают субъективную, инструментальную и методическую погрешности.
Субъективная погрешность обусловлена погрешностью отсчёта оператором показаний средства измерения.
Инструментальная погрешность обусловлена несовершенством применяемого средства измерения. Иногда эту погрешность называют аппаратурной. Метрологические характеристики средств измерений нормируются согласно ГОСТ 8.009 – 84, при этом различают четыре составляющие инструментальной погрешности: основная, дополнительная, динамическая, интегральная. Согласно этой классификации, инструментальная погрешность зависит от условий и режима работы, а также от параметров сигнала и объекта измерения.
Методическая погрешность обусловлена следующими основными причинами:
– отличие принятой модели объекта измерения от модели, адекватно описывающей его метрологические свойства;
– влияние средства измерения на объект измерения;
– неточность применяемых при вычислениях физических констант и математических соотношений.
В зависимости от измеряемой величины, различают погрешность аддитивную и мультипликативную. Аддитивная погрешность не зависит от измеряемой величины. Мультипликативная погрешность меняется пропорционально измеряемой величине.
В зависимости от режима работы средства измерений, различают статическую и динамическую погрешности.
Динамическая погрешность обусловлена реакцией средства измерения на изменение параметров измеряемого сигнала (динамический режим).
Статическая погрешность средства измерения определяется при параметрах измеряемого сигнала, принимаемых за неизменные на протяжении времени измерения (статический режим).
По характеру проявления во времени, различают случайную и систематическую погрешности.
Систематической погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остаётся постоянной или закономерно меняется.
Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом.
Статья обновлена 10.07.2022
Что такое погрешность измерения
Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.
- Математическая погрешность. Она описывается алгебраической формулой и бывает абсолютной, относительной и приведенной. Абсолютная погрешность измерения — это разница между вычисляемым и истинным значением. Относительная погрешность вычисляется в процентном соотношении истинного значения и полученного. Вычисление погрешности приведенной схоже с относительной, указывается она также в процентах, но дает разницу между нормирующей шкалой и полученными данными, то есть между эталонными и полученными значениями.
- Оценочная погрешность. В маркетинге она бывает случайной и систематической. Случайная погрешность возникает из-за любых факторов, которые случайным образом влияют на измерение переменной в выборке. Систематическая погрешность вызывается факторами, которые систематически влияют на измерение переменной в выборке.
Математическая погрешность: формула для каждого типа
Если определение погрешности можно провести точным путем, она считается математической. Зачем нужно вычисление этого значения в маркетинге?
Погрешности возникают настолько часто, что популярной практикой в исследованиях является включение значения погрешности в окончательные результаты. Для этого используются формулы. Математическая погрешность — это значение, которое отражает разницу между выборкой и фактическим результатом. Если при расчетах учитывалась погрешность, в тексте исследования указывается что-то вроде: «Абсолютная погрешность для этих данных составляет 3,25%». Погрешность можно вычислить с любыми цифрами: количество человек, участвующих в опросе, погрешность суммы, затраченной на маркетинговый бюджет, и так далее.
Формулы погрешностей вычисляются следующим образом.
Абсолютная погрешность измерений: формула
Формула дает разницу между измеренным и реальным значением.
Относительная погрешность: формула
Формула использует значение абсолютной погрешности и вычисляется в процентах по отношению к фактическому значению.
Приведенная погрешность: формула
Формула также использует значение абсолютной погрешности. В чем измеряется приведенная погрешность? Тоже в процентах, но в качестве «эталона» используется не реальное значение, а единица измерения любой нормирующей шкалы. Например, для обычной линейки это значение равно 1 мм.
Классификация оценочной погрешности
Определение погрешности в оценках — это всегда методическая погрешность, то есть допустимое значение ошибки, основанное на методах проведения исследования. Погрешность метода вызывает два типа погрешностей — случайные и систематические. Таблица погрешностей в графической форме покажет все возможные типы.
Что такое случайная погрешность
Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.
Типичный пример возникновения случайной погрешности — настроение участников маркетингового опроса. Как известно, эмоциональный настрой человека всегда влияет на его производительность. В ходе тестирования одни люди могут быть в хорошем расположении духа, а другие — в «миноре». Если настроение влияет на их ответы по заданному критерию выборки, это может искусственно завышать или занижать наблюдаемые оценки. Например, в случае с истинным значением 1 случайная погрешность может дать как -0,8, так и +0,5 к этому числу. Очень часто это случается при оценке времени ответа, например.
Случайная погрешность добавляет изменчивости данным, но не оказывает постоянного влияния на всю выборку. Вместо этого она произвольно изменяет измеряемые значения в диапазоне. В маркетинговой практике считается, что все случайные погрешности в распределении перекрывают друг друга и практически не влияют на конечный результат. Поэтому случайная погрешность считается «шумом» и в расчет не принимается. Эту погрешность нельзя устранить совсем, но можно уменьшить, просто увеличив размер выборки.
Что такое систематическая погрешность
Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Иными словами, если полученные цифры постоянно выше или ниже расчетных, речь идет о том, что в данных имеется систематическая погрешность.
В маркетинговых исследованиях есть два основных типа систематической погрешности: погрешность выборки и погрешность измерения.
Погрешность выборки
Погрешность выборки возникает, когда выборка, используемая в исследовании, не репрезентативна для всей совокупности данных. Типы такой погрешности включают погрешность структуры, погрешность аудитории и погрешность отбора.
Погрешность структуры
Погрешность структуры возникает из-за использования неполной или неточной основы для выборки. Распространенным источником такой погрешности в рамках маркетинговых исследований является проведение какого-либо опроса по телефону на основе существующего телефонного справочника или базы данных абонентов. Многие данные там указаны неполно или неточно — например, если люди недавно переехали или изменили свой номер телефона. Также такие данные часто указывают неполную или неверную демографию.
Если в качестве основы для исследования взят телефонный справочник, оно подвержено погрешности структуры, так как не учитывает всех возможных респондентов.
Погрешность аудитории
Погрешность аудитории возникает, если исследователь не знает, как определить аудиторию для исследования. Пример — оценка результатов исследования, проведенного среди клиентов крупного банка. Доля ответов на анкету составила чуть менее 1%. Анализ профессий всех опрошенных показал, что процент пенсионеров среди них в 20 раз выше, чем в целом по городу. Если эта группа значительно различается по интересующим переменным, то результаты будут неверными из-за погрешности аудитории.
Погрешность отбора
Даже если маркетологи правильно определили структуру и аудиторию, они не застрахованы от погрешности отбора. Она возникает, когда процедуры отбора являются неполными, неправильными или не соблюдаются должным образом. Например, интервьюеры при полевом исследовании могут избегать людей, которые живут в муниципальных домах. Потому что, по их мнению, жители вряд ли согласятся пройти такой опрос. Если жители муниципальных домов отличаются от тех, кто проживает в домах бизнес-класса, в результаты опроса будет внесена погрешность отбора.
Как минимизировать погрешность выборки
- Знайте свою аудиторию.
Знайте, кто покупает ваш продукт, использует его, работает с вами и так далее. Имея базовую социально-экономическую информацию, можно составить стабильную выборку целевой аудитории. Маркетинговые исследования часто касаются одной конкретной группы населения — например, пользователей Facebook или молодых мам. - Разделите аудиторию на группы.
Вместо случайной выборки разбейте аудиторию на группы в соответствии с их численностью в общей совокупности данных. Например, если люди с определенной демографией составляют 35% населения, убедитесь, что 35% респондентов исследования отвечают этому условию. - Увеличьте размер выборки.
Больший размер выборки приводит к более точному результату.
Погрешность измерения
Погрешность измерения представляет собой серьезную угрозу точности исследования. Она возникает, когда существует разница между искомой информацией — то есть истинным значением, и информацией, фактически полученной в процессе измерения. К таким погрешностям приводят различные недостатки процесса исследования. Погрешность измерения, в основном, вызывается человеческим фактором — например, формулировкой вопросника, ошибками ввода данных и необъективными выводами.
К погрешностям измерения приводят следующие виды ошибок.
Ошибка цели
Ошибка цели возникает, когда существует несоответствие между информацией, фактически необходимой для решения проблемы, и данными , которые собирает исследование. Например, компания Kellogg впустую потратила миллионы на разработку завтраков для снижения уровня холестерина. Реальный вопрос, который нужно было бы задать в исследовании, заключался в том, купят ли люди овсяные хлопья для решения своей проблемы. Ответ «Нет» обошелся бы компании дешевле.
Предвзятость ответов
Некоторые люди склонны отвечать на конкретный вопрос определенным образом. Тогда возникает предвзятость ответа. Предвзятость ответа может быть результатом умышленной фальсификации или неосознанного искажения фактов.
Умышленная фальсификация происходит, когда респонденты целенаправленно дают неверные ответы на вопросы. Есть много причин, по которым люди могут сознательно искажать информацию. Например, они хотят скрыть или хотят казаться лучше, чем есть на самом деле.
Бессознательное искажение информации происходит, когда респондент пытается быть правдивым, но дает неточный ответ. Этот тип предвзятости может возникать из-за формата вопроса, его содержания или по другим причинам.
Предвзятость интервьюера
Интервьюер оказывает влияние на респондента — сознательно или бессознательно. Одежда, возраст, пол, выражение лица, язык тела или тон голоса могут повлиять на ответы некоторых или всех респондентов.
Ошибка обработки
Примеры включают наводящие вопросы или элементы дизайна анкеты, которые затрудняют запись ответов или приводят к ошибкам в них.
Ошибка ввода
Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.
Виды проводимых маркетинговых исследований различны, поэтому универсальных рецептов не существует. Мы дадим несколько общих советов, используемых для минимизации систематических погрешностей разного типа.
Как минимизировать погрешность измерения
- Предварительно протестируйте.
Погрешностей обработки и предвзятости можно избежать, если проводить предварительные тесты вопросника до начала основных интервью. - Проводите выборку случайным образом.
Чтобы устранить предвзятость, при выборке респондентов можно включать каждого четвертого человека из общего списка. - Тренируйте команду интервьюеров и наблюдателей.
Отбор и обучение тех, кто проводит исследования, должен быть тщательным. Особое внимание нужно уделять соблюдению инструкций в ходе каждого исследования. - Всегда выполняйте проверку сделанных записей.
Чтобы исключить ошибки ввода, все данные, вводимые для компьютерного анализа, должны быть перепроверены как минимум дважды.
Мир без ошибок не может существовать. Но понимание факторов, влияющих на маркетинговые исследования и измеряемые погрешности, имеет важное значение для сбора качественных данных.
14. Виды погрешностей
Выделяют следующие виды погрешностей:
1) абсолютная погрешность;
2) относительна погрешность;
3) приведенная погрешность;
4) основная погрешность;
5) дополнительная погрешность;
6) систематическая погрешность;
7) случайная погрешность;
инструментальная погрешность;
9) методическая погрешность;
10) личная погрешность;
11) статическая погрешность;
12) динамическая погрешность.
Погрешности измерений классифицируются по следующим признакам.
По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.
По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.
По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.
Абсолютная погрешность вычисляется по следующей формуле:
?Qn =Qn ?Q0,
где AQn – абсолютная погрешность;
Qn – значение некой величины, полученное в процессе измерения;
Q0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).
Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.
Относительная погрешность – это число, отражающее степень точности измерения.
Относительная погрешность вычисляется по следующей формуле:
где ?Q – абсолютная погрешность;
Q0 – настоящее (действительное) значение измеряемой величины.
Относительная погрешность выражается в процентах.
Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.
Нормирующее значение определяется следующим образом:
1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;
2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;
3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;
4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.
Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.
Инструментальная погрешность – это погрешность, возникающая из—за допущенных в процессе изготовления функциональных частей средств измерения ошибок.
Методическая погрешность – это погрешность, возникающая по следующим причинам:
1) неточность построения модели физического процесса, на котором базируется средство измерения;
2) неверное применение средств измерений.
Субъективная погрешность – это погрешность возникающая из—за низкой степени квалификации оператора средства измерений, а также из—за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.
Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.
Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.
Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).
Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.
Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.
Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).
Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).
Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.
Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.
Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.
Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из—за воздействия влияющих величин на параметрические характеристики элементов прибора.
Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:
1) систематические погрешности;
2) случайные погрешности.
В процессе измерения могут также появиться грубые погрешности и промахи.
Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).
Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.
Способы исключения систематических погрешностей делятся на четыре вида:
1) ликвидация причин и источников погрешностей до начала проведения измерений;
2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;
3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);
4) определение пределов систематической погрешности в случае, если ее нельзя устранить.
Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).
Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы
Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.
Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.
Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.
Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.
Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.
Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.
Данный текст является ознакомительным фрагментом.
Читайте также
Виды пиломатериалов
Виды пиломатериалов
Чаще всего в магазинах и на лесобазах продается уже высушенная древесина, а сырая встречается довольно редко. В зависимости от того, что вы хотите сделать и на что вам понадобилась древесина, вы можете приобрести кряж (целые стволы дерева или длинные
Виды пиломатериалов
Виды пиломатериалов
В зависимости от назначения элемента конструкции, для которого используется тот или иной пиломатериал, необходимо определять и его размеры:– для стропил, балок цокольных и междуэтажных перекрытий, а также проступей ступеней лестниц и наружных
Виды пиломатериалов
Виды пиломатериалов
В зависимости от назначения элемента конструкции, для которого используется тот или иной пиломатериал, необходимо определять и его размеры:– для стропил, балок цокольных и междуэтажных перекрытий, а также проступей ступеней лестниц и наружных
Виды соединений
Виды соединений
Все соединения, будь то плотничные или столярные, называются посадками, потому что в их основе лежит принцип насаживания детали с шипом на деталь с пазом. В зависимости от того, как плотно соприкасаются детали в креплении, все посадки разделяются на
5.4 Виды проборок
5.4 Виды проборок
Проборки, применяемые в ткачестве очень разнообразны. Их разнообразие определяется соотношением трех величин: Ro переплетения, Rnp. и количеством ремизок К.Рассмотрим пример, когда Ro = К = Rnp. В этом случае нити основы подряд пробираются в каждую ремизку и
14. Виды погрешностей
14. Виды погрешностей
Выделяют следующие виды погрешностей:1) абсолютная погрешность;2) относительна погрешность;3) приведенная погрешность;4) основная погрешность;5) дополнительная погрешность;6) систематическая погрешность;7) случайная
19. Методы определения и учета погрешностей
19. Методы определения и учета погрешностей
Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных
6. Виды стандартов
6. Виды стандартов
Выделяют несколько видов стандартов. Применение в конкретной ситуации того или иного стандарта определяется характерными чертами и спецификой объекта стандартизации.Основополагающие стандарты – нормативные документы, утвержденные для
19. Методы определения и учета погрешностей
19. Методы определения и учета погрешностей
Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных
38. Виды стандартов
38. Виды стандартов
Выделяют несколько видов стандартов.Основополагающие стандарты – нормативные документы, утвержденные для определенных областей науки, техники и производства, содержащие в себе общие положения, принципы, правила и нормы для данных областей. Этот тип
3. виды веревки
3. виды веревки
Основная отличительная черта, определяющая вид данной веревки, ее динамические качества, которые в основном зависят от ее способности удлиняться под нагрузкой. Еще при конструировании веревки в зависимости от желаемых эксплуатационных свойств ее
6.1. Виды иллюстраций
6.1. Виды иллюстраций
ОСТ 29.130—97 «Издания. Термины и определения» так опре–деляет термин «иллюстрация» – изображение, поясняющее или дополняющее основной текст, помещенное на страницах и других элементах материальной конструкции издания.По методу отображения
50. Причины начальных погрешностей
50. Причины начальных погрешностей
Начальные погрешности в измерение могут вноситься по следующим причинам.1.Удельный вес:1) степень однородности среды нарушена вследствие нахождения в ней примесей (в том числе и растворимых газов; такие жидкостные среды в гидравлике
1.5. Виды искусства
1.5. Виды искусства
В процессе исторического развития искусства сложились различные его виды. Эпохи наивысшего расцвета искусства свидетельствуют о том, что полнота отображения мира достигается одновременным расцветом всех искусств. Как известно. Виды искусства можно
Виды ремонта
Виды ремонта
В результате работы автомобиля, детали и узлы постепенно изнашиваются, в результате чего меняются их технические характеристики: увеличиваются зазоры между сопряженными деталями, повышается расход эксплуатационных материалом (топлива, масла, воды и