Ошибка первого рода в статистическом исследовании это вероятность

При
проверке гипотезы экспериментальные
данные могут противоречить
гипотезе
,
тогда эта гипотезаотклоняется.

В
противном случае, если экспериментальные
данные согласуются
с
гипотезой
,
то онане
отклоняется
.

Значит,
статистическая проверка гипотез,
основанная на экспериментальных данных,
неизбежно связанно с риском
принять ложное решение
.

Тогда
в терминах правильности или ошибочности
принятия H0
и
 можно
указать четыре потенциально возможных
результата применения критерия к
выборке. При
этом возможны ошибки двух родов.

Ошибкой первого
рода

называется
ошибка отклонения правильной гипотезы
.
Вероятность
ошибки первого рода равна
уровню значимости
,
т.е.

.

Эта
формула означает, что гипотеза
отклоняется с вероятностью,
хотя эта гипотеза верна. Название
«уровень значимости» в терминах «сходства
и различия» — это вероятность того, что
мы сочли различия существенными (приняли),
а они на самом деле случайны (верна
гипотеза).

Для того чтобы
проверяемая гипотеза была достаточно
обоснованно отвергнута, уровень
значимости выбирают достаточно малым,
в практике: 0,01; 0,001.

Ошибкой второго
рода

называется ошибка принятия неверной
гипотезы.
Вероятность
ошибки второго рода обозначается
:

.

Эта
формула означает, что гипотеза
принимается с вероятностью,
хотя верна альтернативная гипотеза.

Чем
меньше уровень значимости, тем меньше
вероятность забраковать верную гипотезу,
т.е. совершить ошибку первого рода, но
при этом увеличивается вероятность
принятия неверной гипотезы, т.е. совершения
ошибки второго рода.

Принята гипотеза

H0

H1

Верна

гипотеза

H0


вероятность правильно принять H0,
когда верна H0


вероятность ошибочно принять H1,
когда верна H0
(ошибка
1-го рода, уровень значимости
)

H1


вероятность ошибочно принять H0,
когда верна H1
(ошибка
2-го рода
)


вероятность правильно принять H1,
когда верна H
(мощность
критерия
)

Возможны
два
статистических правильных решения

по выборочным данным:

1) Принять верную гипотезу . Вероятность этого решения называетсяуровнем доверия;

2)
принять
верную гипотезу
.
Вероятностьтакого решения называетсямощностью
критерия
.
Мощность критерия в терминах
«сходство-различие» — это его способность
выявлять различия, если они есть
.

4.
Односторонний и двусторонний критерии

По
виду альтернативной (конкурирующей)
гипотезы
определяется вид критической области,
в которой результаты выборочного
наблюдения выглядят менее правдоподобными
в отношении нулевой гипотезы.

Если
конкурирующая гипотеза имеет вид
:,
то критическая область— правосторонняя и соответствующийкритерий
называется правосторонним,
а в случае
:критерий
называется левосторонним.

Область
допустимых

Правосторонняя

значений
критическая
область

(принятия
гипотезы
)
(отклоненияи принятия)

Если конкурирующая гипотеза имеет вид
:,
т.е.,
то критическая областьявляется объединением полубесконечных
промежутков: — двусторонняя.

Область

Критическая допустимых
Критическая

область значений область

Важное замечание.В психологии часто
эмпирическое значениесравнивается одновременно с двумя
критическими(0,05)
и(0,01),
которые соответствуют уровням значимости
в 5% и 1% и находятся по соответствующим
таблицам. Все три числа,(0,05),(0,01)
располагают на «оси значимости». Числоможет попасть в одну из трех областей:
незначимости различий, значимости
различий, неопределенности.

Область Область
Область

незначимости неопределенности
значимости

различий различий

К

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Ошибки, встроенные в систему: их роль в статистике

В прошлой статье я указал, как распространена проблема неправильного использования t-критерия в научных публикациях (и это возможно сделать только благодаря их открытости, а какой трэш творится при его использовании во всяких курсовых, отчетах, обучающих задачах и т.д. — неизвестно). Чтобы обсудить это, я рассказал об основах дисперсионного анализа и задаваемом самим исследователем уровне значимости α. Но для полного понимания всей картины статистического анализа необходимо подчеркнуть ряд важных вещей. И самая основная из них — понятие ошибки.

Ошибка и некорректное применение: в чем разница?

В любой физической системе содержится какая-либо ошибка, неточность. В самой разнообразной форме: так называемый допуск — отличие в размерах разных однотипных изделий; нелинейная характеристика — когда прибор или метод измеряют что-то по строго известному закону в определенных пределах, а дальше становятся неприменимыми; дискретность — когда мы чисто технически не можем обеспечить плавность выходной характеристики.

И в то же время существует чисто человеческая ошибка — некорректное использование устройств, приборов, математических законов. Между ошибкой, присущей системе, и ошибкой применения этой системы есть принципиальная разница. Важно различать и не путать между собой эти два понятия, называемые одним и тем же словом «ошибка». Я в данной статье предпочитаю использовать слово «ошибка» для обозначения свойства системы, а «некорректное применение» — для ошибочного ее использования.

То есть, ошибка линейки равна допуску оборудования, наносящего штрихи на ее полотно. А ошибкой в смысле некорректного применения было бы использовать ее при измерении деталей наручных часов. Ошибка безмена написана на нем и составляет что-то около 50 граммов, а неправильным использованием безмена было бы взвешивание на нем мешка в 25 кг, который растягивает пружину из области закона Гука в область пластических деформаций. Ошибка атомно-силового микроскопа происходит из его дискретности — нельзя «пощупать» его зондом предметы мельче, чем диаметром в один атом. Но способов неправильно использовать его или неправильно интерпретировать данные существует множество. И так далее.

Так, а что же за ошибка имеет место в статистических методах? А этой ошибкой как раз и является пресловутый уровень значимости α.

Ошибки первого и второго рода

Ошибкой в математическом аппарате статистики является сама ее Байесовская вероятностная сущность. В прошлой статье я уже упоминал, на чем стоят статистические методы: определение уровня значимости α как наибольшей допустимой вероятности неправомерно отвергнуть нулевую гипотезу, и самостоятельное задание исследователем этой величины перед исследователем.
Вы уже видите эту условность? На самом деле, в критериальных методах нету привычной математической строгости. Математика здесь оперирует вероятностными характеристиками.
И тут наступает еще один момент, где возможна неправильная трактовка одного слова в разном контексте. Необходимо различать само понятие вероятности и фактическую реализацию события, выражающуюся в распределении вероятности. Например, перед началом любого нашего эксперимента мы не знаем, какую именно величину мы получим в результате. Есть два возможных исхода: загадав некоторое значение результата, мы либо действительно его получим, либо не получим. Логично, что вероятность и того, и другого события равна 1/2. Но показанная в предыдущей статье Гауссова кривая показывает распределение вероятности того, что мы правильно угадаем совпадение.

Наглядно можно проиллюстрировать это примером. Пусть мы 600 раз бросаем два игральных кубика — обычный и шулерский. Получим следующие результаты:

До эксперимента для обоих кубиков выпадение любой грани будет равновероятно — 1/6. Однако после эксперимента проявляется сущность шулерского кубика, и мы можем сказать, что плотность вероятности выпадения на нем шестерки — 90%.

Другой пример, который знают химики, физики и все, кто интересуется квантовыми эффектами — атомные орбитали. Теоретически электрон может быть «размазан» в пространстве и находиться практически где угодно. Но на практике есть области, где он будет находиться в 90 и более процентах случаев. Эти области пространства, образованные поверхностью с плотностью вероятности нахождения там электрона 90%, и есть классические атомные орбитали, в виде сфер, гантелей и т.д.

Так вот, самостоятельно задавая уровень значимости, мы заведомо соглашаемся на описанную в его названии ошибку. Из-за этого ни один результат нельзя считать «стопроцентно достоверным» — всегда наши статистические выводы будут содержать некоторую вероятность сбоя.

Ошибка, формулируемая определением уровня значимости α, называется ошибкой первого рода. Ее можно определить, как «ложная тревога», или, более корректно, ложноположительный результат. В самом деле, что означают слова «ошибочно отвергнуть нулевую гипотезу»? Это значит, по ошибке принять наблюдаемые данные за значимые различия двух групп. Поставить ложный диагноз о наличии болезни, поспешить явить миру новое открытие, которого на самом деле нет — вот примеры ошибок первого рода.

Но ведь тогда должны быть и ложноотрицательные результаты? Совершенно верно, и они называются ошибками второго рода. Примеры — не поставленный вовремя диагноз или же разочарование в результате исследования, хотя на самом деле в нем есть важные данные. Ошибки второго рода обозначаются буквой, как ни странно, β. Но само это понятие не так важно для статистики, как число 1-β. Число 1-β называется мощностью критерия, и как нетрудно догадаться, оно характеризует способность критерия не упустить значимое событие.
Однако содержание в статистических методах ошибок первого и второго рода не является только лишь их ограничением. Само понятие этих ошибок может использоваться непосредственным образом в статистическом анализе. Как?

ROC-анализ

ROC-анализ (от receiver operating characteristic, рабочая характеристика приёмника) — это метод количественного определения применимости некоторого признака к бинарной классификации объектов. Говоря проще, мы можем придумать некоторый способ, как отличить больных людей от здоровых, кошек от собак, черное от белого, а затем проверить правомерность такого способа. Давайте снова обратимся к примеру.

Пусть вы — подающий надежды криминалист, и разрабатываете новый способ скрытно и однозначно определять, является ли человек преступником. Вы придумали количественный признак: оценивать преступные наклонности людей по частоте прослушивания ими Михаила Круга. Но будет ли давать адекватные результаты ваш признак? Давайте разбираться.
Вам понадобится две группы людей для валидации вашего критерия: обычные граждане и преступники. Положим, действительно, среднегодовое время прослушивания ими Михаила Круга различается (см. рисунок):

Здесь мы видим, что по количественному признаку времени прослушивания наши выборки пересекаются. Кто-то слушает Круга спонтанно по радио, не совершая преступлений, а кто-то нарушает закон, слушая другую музыку или даже будучи глухим. Какие у нас есть граничные условия? ROC-анализ вводит понятия селективности (чувствительности) и специфичности. Чувствительность определяется как способность выявлять все-все интересующие нас точки (в данном примере — преступников), а специфичность — не захватывать ничего ложноположительного (не ставить под подозрение простых обывателей). Мы можем задать некоторую критическую количественную черту, отделяющую одних от других (оранжевая), в пределах от максимальной чувствительности (зеленая) до максимальной специфичности (красная).
Посмотрим на следующую схему:

Смещая значение нашего признака, мы меняем соотношения ложноположительного и ложноотрицательного результатов (площади под кривыми). Точно так же мы можем дать определения Чувствительность = Полож. рез-т/(Полож. рез-т + ложноотриц. рез-т) и Специфичность = Отриц. рез-т/(Отриц. рез-т + ложноположит. рез-т).

Но главное, мы можем оценить соотношение положительных результатов к ложноположительным на всем отрезке значений нашего количественного признака, что и есть наша искомая ROC-кривая (см. рисунок):

А как нам понять из этого графика, насколько хорош наш признак? Очень просто, посчитать площадь под кривой (AUC, area under curve). Пунктирная линия (0,0; 1,1) означает полное совпадение двух выборок и совершенно бессмысленный критерий (площадь под кривой равна 0,5 от всего квадрата). А вот выпуклость ROC кривой как раз и говорит о совершенстве критерия. Если же нам удастся найти такой критерий, что выборки вообще не будут пересекаться, то площадь под кривой займет весь график. В целом же признак считается хорошим, позволяющим надежно отделить одну выборку от другой, если AUC > 0,75-0,8.

С помощью такого анализа вы можете решать самые разные задачи. Решив, что слишком много домохозяек оказались под подозрением из-за Михаила Круга, а кроме того упущены опасные рецидивисты, слушающие Ноггано, вы можете отвергнуть этот критерий и разработать другой.

Возникнув, как способ обработки радиосигналов и идентификации «свой-чужой» после атаки на Перл-Харбор (отсюда и пошло такое странное название про характеристику приемника), ROC-анализ нашел широкое применение в биомедицинской статистике для анализа, валидации, создания и характеристики панелей биомаркеров и т.д. Он гибок в использовании, если оно основано на грамотной логике. Например, вы можете разработать показания для медицинской диспансеризации пенсионеров-сердечников, применив высокоспецифичный критерий, повысив эффективность выявления болезней сердца и не перегружая врачей лишними пациентами. А во время опасной эпидемии ранее неизвестного вируса вы наоборот, можете придумать высокоселективный критерий, чтобы от вакцинации в прямом смысле не ускользнул ни один чих.

С ошибками обоих родов и их наглядностью в описании валидируемых критериев мы познакомились. Теперь же, двигаясь от этих логических основ, можно разрушить ряд ложных стереотипных описаний результатов. Некоторые неправильные формулировки захватывают наши умы, часто путаясь своими схожими словами и понятиями, а также из-за очень малого внимания, уделяемого неверной интерпретации. Об этом, пожалуй, нужно будет написать отдельно.

При
проверке гипотезы экспериментальные
данные могут противоречить
гипотезе
,
тогда эта гипотезаотклоняется.

В
противном случае, если экспериментальные
данные согласуются
с
гипотезой
,
то онане
отклоняется
.

Значит,
статистическая проверка гипотез,
основанная на экспериментальных данных,
неизбежно связанно с риском
принять ложное решение
.

Тогда
в терминах правильности или ошибочности
принятия H0
и
 можно
указать четыре потенциально возможных
результата применения критерия к
выборке. При
этом возможны ошибки двух родов.

Ошибкой первого
рода

называется
ошибка отклонения правильной гипотезы
.
Вероятность
ошибки первого рода равна
уровню значимости
,
т.е.

.

Эта
формула означает, что гипотеза
отклоняется с вероятностью,
хотя эта гипотеза верна. Название
«уровень значимости» в терминах «сходства
и различия» — это вероятность того, что
мы сочли различия существенными (приняли),
а они на самом деле случайны (верна
гипотеза).

Для того чтобы
проверяемая гипотеза была достаточно
обоснованно отвергнута, уровень
значимости выбирают достаточно малым,
в практике: 0,01; 0,001.

Ошибкой второго
рода

называется ошибка принятия неверной
гипотезы.
Вероятность
ошибки второго рода обозначается
:

.

Эта
формула означает, что гипотеза
принимается с вероятностью,
хотя верна альтернативная гипотеза.

Чем
меньше уровень значимости, тем меньше
вероятность забраковать верную гипотезу,
т.е. совершить ошибку первого рода, но
при этом увеличивается вероятность
принятия неверной гипотезы, т.е. совершения
ошибки второго рода.

Принята гипотеза

H0

H1

Верна

гипотеза

H0


вероятность правильно принять H0,
когда верна H0


вероятность ошибочно принять H1,
когда верна H0
(ошибка
1-го рода, уровень значимости
)

H1


вероятность ошибочно принять H0,
когда верна H1
(ошибка
2-го рода
)


вероятность правильно принять H1,
когда верна H
(мощность
критерия
)

Возможны
два
статистических правильных решения

по выборочным данным:

1) Принять верную гипотезу . Вероятность этого решения называетсяуровнем доверия;

2)
принять
верную гипотезу
.
Вероятностьтакого решения называетсямощностью
критерия
.
Мощность критерия в терминах
«сходство-различие» — это его способность
выявлять различия, если они есть
.

4.
Односторонний и двусторонний критерии

По
виду альтернативной (конкурирующей)
гипотезы
определяется вид критической области,
в которой результаты выборочного
наблюдения выглядят менее правдоподобными
в отношении нулевой гипотезы.

Если
конкурирующая гипотеза имеет вид
:,
то критическая область— правосторонняя и соответствующийкритерий
называется правосторонним,
а в случае
:критерий
называется левосторонним.

Область
допустимых

Правосторонняя

значений
критическая
область

(принятия
гипотезы
)
(отклоненияи принятия)

Если конкурирующая гипотеза имеет вид
:,
т.е.,
то критическая областьявляется объединением полубесконечных
промежутков: — двусторонняя.

Область

Критическая допустимых
Критическая

область значений область

Важное замечание.В психологии часто
эмпирическое значениесравнивается одновременно с двумя
критическими(0,05)
и(0,01),
которые соответствуют уровням значимости
в 5% и 1% и находятся по соответствующим
таблицам. Все три числа,(0,05),(0,01)
располагают на «оси значимости». Числоможет попасть в одну из трех областей:
незначимости различий, значимости
различий, неопределенности.

Область Область
Область

незначимости неопределенности
значимости

различий различий

К

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Статистические гипотезы

Определение статистической гипотезы. Нулевая и альтернативная, простая и сложная гипотезы. Ошибки первого и второго рода. Статистический критерий, наблюдаемое значение критерия. Критическая область. Область принятия нулевой гипотезы; критическая точка. Общая методика построения право-, лево- и двухсторонней критических областей

Понятие и определение статистической гипотезы

Проверка статистических гипотез тесно связана с теорией оценивания параметров. В естествознании, технике, экономике для выяснения того или иного случайного факта часто прибегают к высказыванию гипотез, которые можно проверить статистически, т. е. опираясь на результаты наблюдений в случайной выборке. Под статистическими подразумеваются такие гипотезы, которые относятся или к виду, или к отдельным параметрам распределения случайной величины. Например, статистической является гипотеза о том, что распределение производительности труда рабочих, выполняющих одинаковую работу в одинаковых условиях, имеет нормальный закон распределения. Статистической будет также гипотеза о том, что средние размеры деталей, производимые на однотипных, параллельно работающих станках, не различаются.

Статистическая гипотеза называется простой, если она однозначно определяет распределение случайной величины , в противном случае гипотеза называется сложной. Например, простой гипотезой является предположение о том, что случайная величина распределена по нормальному закону с математическим ожиданием, равным нулю, и дисперсией, равной единице. Если высказывается предположение, что случайная величина имеет нормальное распределение с дисперсией, равной единице, а математическое ожидание — число из отрезка , то это сложная гипотеза. Другим примером сложной гипотезы является предположение о том, что непрерывная случайная величина с вероятностью принимает значение из интервала , в этом случае распределение случайной величины может быть любым из класса непрерывных распределений.

Часто распределение величины известно, и по выборке наблюдений необходимо проверить предположения о значении параметров этого распределения. Такие гипотезы называются параметрическими.

Проверяемая гипотеза называется нулевой и обозначается . Наряду с гипотезой рассматривают одну из альтернативных (конкурирующих) гипотез . Например, если проверяется гипотеза о равенстве параметра некоторому заданному значению , то есть , то в качестве альтернативной гипотезы можно рассмотреть одну из следующих гипотез: где — заданное значение, . Выбор альтернативной гипотезы определяется конкретной формулировкой задачи.

Правило, по которому принимается решение принять или отклонить гипотезу , называется критерием . Так как решение принимается на основе выборки наблюдений случайной величины , необходимо выбрать подходящую статистику, называемую в этом случае статистикой критерия . При проверке простой параметрической гипотезы в качестве статистики критерия выбирают ту же статистику, что и для оценки параметра .

Проверка статистической гипотезы основывается на принципе, в соответствии с которым маловероятные события считаются невозможными, а события, имеющие большую вероятность, — достоверными; Этот принцип можно реализовать следующим образом. Перед анализом выборки фиксируется некоторая малая вероятность , называемая уровнем значимости. Пусть — множество значений статистики , а — такое подмножество, что при условии истинности гипотезы вероятность попадания статистики критерия в равна , то есть .

Обозначим выборочное значение статистики , вычисленное по выборке наблюдений. Критерий формулируется так: отклонить гипотезу , если ; принять гипотезу , если . Критерий, основанный на использовании заранее заданного уровня значимости, называют критерием значимости. Множество всех значений статистики критерия , при которых принимается решение отклонить гипотезу , называется критической областью; область называется областью принятия гипотезы .

Уровень значимости определяет размер критической области . Положение критической области на множестве значений статистики зависит от формулировки альтернативной гипотезы . Например, если проверяется гипотеза , а альтернативная гипотеза формулируется как , то критическая область размещается на правом (левом) «хвосте» распределения статистики , т. е. имеет вид неравенства , где — значения статистики , которые принимаются с вероятностями соответственно и при условии, что верна гипотеза . В этом случае критерий называется односторонним (соответственно правосторонним и левосторонним). Если альтернативная гипотеза формулируется как , то критическая область размещается на обоих «хвостах» распределения , то есть определяется совокупностью неравенств и в этом случае критерий называется двухсторонним.

Расположение критической области для различных альтернативных гипотез показано на рис. 30, где — плотность распределения статистики критерия при условии, что верна гипотеза , — область принятия гипотезы, .

Проверку параметрической статистической гипотезы с помощью критерия значимости можно разбить на этапы:

1) сформулировать проверяемую и альтернативную гипотезы;

2) назначить уровень значимости ;

3) выбрать статистику критерия для проверки гипотезы ;

4) определить выборочное распределение статистики при условии, что верна гипотеза ;

5) в зависимости от формулировки альтернативной гипотезы определить критическую область одним из неравенств или совокупностью неравенств и ;

6) получить выборку наблюдений и вычислить выборочные значения статистики критерия;

7) принять статистическое решение: если , то отклонить гипотезу как не согласующуюся с результатами наблюдений; если , то принять гипотезу , т. е. считать, что гипотеза не противоречит результатам наблюдений.

Обычно при выполнении пп. 4-7 используют статистику с нормальным распределением, статистику Стьюдента, Фишера.


Пример 3. По паспортным данным автомобильного двигателя расход топлива на 100 км пробега составляет 10 л. В результате изменения конструкции двигателя ожидается, что расход топлива уменьшится. Для проверки проводятся испытания 25 случайно отобранных автомобилей с модернизированным двигателем, причем выборочное среднее расходов топлива на 100 км пробега по результатам испытаний составило 9,3 л. Предположим, что выборка расходов топлива получена из нормально распределенной генеральной совокупности со средним и дисперсией л². Используя критерий значимости, проверить гипотезу, утверждающую, что изменение конструкции двигателя не повлияло на расход топлива.

Решение. Проверим гипотезу о среднем нормально распределенной генеральной совокупности. Проверку проведем по этапам:

1) проверяемая гипотеза ; альтернативная гипотеза ;

2) уровень значимости ;

3) в качестве статистики критерия используем статистику математического ожидания — выборочное среднее;

4) так как выборка получена из нормально распределенной генеральной совокупности, выборочное среднее также имеет нормальное распределение с дисперсией . При условии, что верна гипотеза , математическое ожидание этого распределения равно 10. Нормированная статистика имеет нормальное распределение;

5) альтернативная гипотеза предполагает уменьшение расхода топлива, следовательно, нужно использовать односторонний критерий. Критическая область определяется неравенством . По прил. 5 находим ;

б) выборочное значение нормированной статистики критерия

7) статистическое решение: так как выборочное значение статистики критерия принадлежит критической области, гипотеза отклоняется: следует считать, что изменение конструкции двигателя привело к уменьшению расхода топлива. Границу критической области для исходной статистики критерия можно получить из соотношения , откуда , т. е. критическая область для статистики определяется неравенством .

Ошибки первого и второго рода

Решение, принимаемое на основе критерия значимости, может быть ошибочным. Пусть выборочное значение статистики критерия попадает в критическую область, и гипотеза , отклоняется в соответствии с критерием. Если, тем не менее, гипотеза верна, то принимаемое решение неверно. Ошибка, совершаемая при отклонении правильной гипотезы if о, называется ошибкой первого рода. Вероятность ошибки первого рода равна вероятности попадания статистики критерия в критическую область при условии, что верна гипотеза , т. е. равна уровню значимости

Ошибка второго рода происходит тогда, когда гипотеза принимается, но в действительности верна гипотеза . Вероятность ошибки второго рода вычисляется по формуле


Пример 4. В условиях примера 3 предположим, что наряду с гипотезой л рассматривается альтернативная гипотеза л. В качестве статистики критерия снова возьмем выборочное среднее . Предположим, что критическая область задана неравенством л. Найти вероятности ошибок первого и второго рода для критерия с такой критической областью.

Решение. Найдем вероятность ошибки первого рода. Статистика критерия при условии, что верна гипотеза л, имеет нормальное распределение с математическим ожиданием, равным 10, и дисперсией, равной . Используя прил. 5, по формуле (11.1) находим

Это означает, что принятый критерий классифицирует примерно 8% автомобилей, имеющих расход 10 л на 100 км пробега, как автомобили, имеющие меньший расход топлива. При условии, что верна гипотеза л, статистика имеет нормальное распределение с математическим ожиданием, равным 9, и дисперсией, равной . Вероятность ошибки второго рода найдем по формуле (11.2):

Следовательно, в соответствии с принятым критерием 13,6% автомобилей, имеющих расход топлива 9 л на 100 км пробега, классифицируются как автомобили, имеющие расход топлива 10 л.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Ошибки I и II рода при проверке гипотез, мощность

Общий обзор

Принятие неправильного решения

Мощность и связанные факторы

Проверка множественных гипотез

Общий обзор

Большинство проверяемых гипотез сравнивают между собой группы объектов, которые испытывают влияние различных факторов.

Например, можно сравнить эффективность двух видов лечения, чтобы сократить 5-летнюю смертность от рака молочной железы. Для данного исхода (например, смерть) сравнение, представляющее интерес (напри­мер, различные показатели смертности через 5 лет), называют эффектом или, если уместно, эффектом лечения.

Нулевую гипотезу выражают как отсутствие эффекта (например 5-летняя смертность от рака мо­лочной железы одинаковая в двух группах, получаю­щих разное лечение); двусторонняя альтернативная гипотеза будет означать, что различие эффектов не равно нулю.

Критериальная проверка гипотезы дает возможность определить, достаточно ли аргументов, чтобы отвергнуть нулевую гипотезу. Можно принять только одно из двух решений:

  1. отвергнуть нулевую гипотезу и принять альтер­нативную гипотезу
  2. остаться в рамках нулевой гипотезы

Важно: В литературе достаточно часто встречается понятие «принять нулевую гипотезу». Хотелось бы внести ясность, что со статистической точки зрения принять нулевую гипотезу невозможно, т.к. нулевая гипотеза представляет собой достаточно строгое утверждение (например, средние значения в сравниваемых группах равны ).

Поэтому фразу о принятии нулевой гипотезы следует понимать как то, что мы просто остаемся в рамках гипотезы.

Принятие неправильного решения

Возможно неправильное решение, когда отвергают/не отвергают нулевую гипотезу, потому что есть только выборочная информация.

  Верная гипотеза
H0 H1
Результат

 применения 

критерия

H0 H0 верно принята H0 неверно принята 

(Ошибка второго рода)

H1 H0 неверно отвергнута 

(Ошибка первого рода)

H0 верно отвергнута

Ошибка 1-го рода: нулевую гипотезу отвергают, когда она истинна, и делают вывод, что имеется эффект, когда в действительности его нет. Максимальный шанс (вероятность) допустить ошибку 1-го рода обозначается α (альфа). Это уровень значимости критерия; нулевую гипотезу отвергают, если наше значение p ниже уровня значимости, т. е., если p < α.

Следует принять решение относительно значения а прежде, чем будут собраны данные; обычно назначают условное значение 0,05, хотя можно выбрать более ограничивающее значение, например 0,01.

Шанс допустить ошибку 1-го рода никогда не превысит выбранного уровня значимости, скажем α = 0,05, так как нулевую гипотезу отвергают только тогда, когда p< 0,05. Если обнаружено, что p > 0,05, то нулевую гипотезу не отвергнут и, следовательно, не допустят ошибки 1-го рода.

Ошибка 2-го рода: не отвергают нулевую гипотезу, когда она ложна, и делают вывод, что нет эффекта, тогда как в действительности он существует. Шанс возникновения ошибки 2-го рода обозначается β (бета); а величина (1-β) называется мощностью критерия.

Следовательно, мощность — это вероятность отклонения нулевой гипотезы, когда она ложна, т.е. это шанс (обычно выраженный в процентах) обнаружить реальный эффект лечения в выборке данного объема как статистически значимый.

В идеале хотелось бы, чтобы мощность критерия составляла 100%; однако это невозможно, так как всегда остается шанс, хотя и незначительный, допустить ошибку 2-го рода.

К счастью, известно, какие факторы влияют на мощность и, таким образом, можно контролировать мощность критерия, рассматривая их.

Мощность и связанные факторы

Планируя исследование, необходимо знать мощность предложенного критерия. Очевидно, можно начинать исследование, если есть «хороший» шанс обнаружить уместный эффект, если таковой существует (под «хорошим» мы подразумеваем, что мощность должна быть по крайней мере 70-80%).

Этически безответственно начинать исследование, у которого, скажем, только 40% вероятности обнаружить реальный эффект лечения; это бесполезная трата времени и денежных средств.

Ряд факторов имеют прямое отношение к мощности критерия.

Объем выборки: мощность критерия увеличивается по мере увеличения объема выборки. Это означает, что у большей выборки больше возможностей, чем у незначительной, обнаружить важный эффект, если он существует.

Когда объем выборки небольшой, у критерия может быть недостаточно мощности, чтобы обнаружить отдельный эффект. Эти методы также можно использовать для оценки мощности критерия для точно установленного объема выборки.

Вариабельность наблюдений: мощность увеличивается по мере того, как вариабельность наблюдений уменьшается.

Интересующий исследователя эффект: мощность критерия больше для более высоких эффектов. Критерий проверки гипотез имеет больше шансов обнаружить значительный реальный эффект, чем незначительный.

Уровень значимости: мощность будет больше, если уровень значимости выше (это эквивалентно увеличению допущения ошибки 1-го рода, α, а допущение ошибки 2-го рода, β, уменьшается).

Таким образом, вероятнее всего, исследователь обнаружит реальный эффект, если на стадии планирования решит, что будет рассматривать значение р как значимое, если оно скорее будет меньше 0,05, чем меньше 0,01.

Обратите внимание, что проверка ДИ для интересующего эффекта указывает на то, была ли мощность адекватной. Большой доверительный интервал следует из небольшой выборки и/или набора данных с существенной вариабельностью и указывает на недостаточную мощность.

Проверка множественных гипотез

Часто нужно выполнить критериальную проверку значимости множественных гипотез на наборе данных с многими переменными или существует более двух видов лечения.

Ошибка 1-го рода драматически увеличивается по мере увеличения числа сравнений, что приводит к ложным выводам относительно гипотез. Следовательно, следует проверить только небольшое число гипотез, выбранных для достижения первоначальной цели исследования и точно установленных априорно.

Можно использовать какую-нибудь форму апостериорного уточнения значения р, принимая во внимание число выполненных проверок гипотез.

Например, при подходе Бонферрони (его часто считают довольно консервативным) умножают каждое значение р на число выполненных проверок; тогда любые решения относительно значимости будут основываться на этом уточненном значении р.

Связанные определения:
p-уровень
Альтернативная гипотеза, альтернатива
Альфа-уровень
Бета-уровень
Гипотеза
Двусторонний критерий
Критерий для проверки гипотезы
Критическая область проверки гипотезы
Мощность
Мощность исследования
Мощность статистического критерия
Нулевая гипотеза
Односторонний критерий
Ошибка I рода
Ошибка II рода
Статистика критерия
Эквивалентные статистические критерии

В начало

Содержание портала



5.3. Ошибки первого и второго рода

Ошибка первого рода состоит в том, что гипотеза  будет отвергнута, хотя на самом деле она правильная. Вероятность

допустить такую ошибку называют уровнем значимости и обозначают буквой  («альфа»).  

Ошибка второго рода состоит в том, что гипотеза  будет принята, но на самом деле она неправильная. Вероятность

совершить эту ошибку обозначают буквой  («бета»). Значение  называют мощностью критерия – это вероятность отвержения неправильной

гипотезы.

В практических задачах, как правило, задают уровень значимости, наиболее часто выбирают значения .

И тут возникает мысль, что чем меньше «альфа», тем вроде бы лучше. Но это только вроде: при уменьшении

вероятности

отвергнуть правильную гипотезу растёт вероятность  — принять неверную гипотезу (при прочих равных условиях).

Поэтому перед исследователем стоит задача грамотно подобрать соотношение вероятностей  и , при этом учитывается тяжесть последствий, которые

повлекут за собой та и другая ошибки.

Понятие ошибок 1-го и 2-го рода используется не только в статистике, и для лучшего понимания я приведу пару

нестатистических примеров.

Петя зарегистрировался в почтовике. По умолчанию,  – он считается добропорядочным пользователем. Так считает антиспам

фильтр. И вот Петя отправляет письмо. В большинстве случаев всё произойдёт, как должно произойти – нормальное письмо дойдёт до

адресата (правильное принятие нулевой гипотезы), а спамное – попадёт в спам (правильное отвержение). Однако фильтр может

совершить ошибку двух типов:

1) с вероятностью  ошибочно отклонить нулевую гипотезу (счесть нормальное письмо

за спам и Петю за спаммера) или
2) с вероятностью  ошибочно принять нулевую гипотезу (хотя Петя редиска).

Какая ошибка более «тяжелая»? Петино письмо может быть ОЧЕНЬ важным для адресата, и поэтому при настройке фильтра

целесообразно уменьшить уровень значимости , «пожертвовав» вероятностью  (увеличив её). В результате в основной ящик будут попадать все

«подозрительные» письма, в том числе особо талантливых спаммеров. …Такое и почитать даже можно, ведь сделано с любовью :)

Существует примеры, где наоборот – более тяжкие последствия влечёт ошибка 2-го рода, и вероятность  следует увеличить (в пользу уменьшения

вероятности ). Не хотел я

приводить подобные примеры, и даже отшутился на сайте, но по какой-то мистике через пару месяцев сам столкнулся с непростой

дилеммой. Видимо, таки, надо рассказать:

У человека появилась серьёзная болячка. В медицинской практике её принято лечить (основное «нулевое» решение). Лечение

достаточно эффективно, однако не гарантирует результата и более того опасно (иногда приводит к серьёзному пожизненному

увечью). С другой стороны, если не лечить, то возможны осложнения и долговременные функциональные нарушения.

Вопрос: что делать? И ответ не так-то прост – в разных ситуациях разные люди могут принять разные

решения (упаси вас).

Если болезнь не особо «мешает жить», то более тяжёлые последствия повлечёт ошибка 2-го рода – когда человек соглашается

на лечение, но получает фатальный результат (принимает, как оказалось, неверное «нулевое» решение). Если же…, нет, пожалуй,

достаточно, возвращаемся к теме:

5.4. Процесс проверки статистической гипотезы

5.2. Нулевая и альтернативная гипотезы

| Оглавление |



Вероятность ошибки первого рода

Предмет
Теория вероятностей

Разместил

🤓 ikatrepsi1970

👍 Проверено Автор24

вероятность допустить ошибку первого рода.

Научные статьи на тему «Вероятность ошибки первого рода»

Репрезентативность выборки в социологическом исследовании

Применение данной выборки основано на предположении о том, что каждый респондент с одинаковой вероятностью
случайные ошибки)….
Это ошибки другого рода, они могут встречаться не только в выборочных исследованиях….
Это требует, во-первых, логического анализа причин систематических ошибок, а во-вторых, разработки системы…
Вот классический пример ошибки такого рода, взятый из истории исследований общественного мнения в Соединенных

Автор24

Статья от экспертов

Достоверность контроля с учетом стабильности технологического процесса производства

Приведены сведения о влиянии погрешности измерения на вероятность принятия решения о приемки продукции при статистической нестабильности процесса производства. Показано на примере производства кирпича, что вероятность ошибки первого рода возрастает при снижении воспроизводимости процесса производства.

Уровень значимости статистического критерия

Связь будет значительно надежнее при меньшей вероятности….
Возможные статистические ошибки могут быть первого и второго рода….
Под статистической ошибкой понимается неверное отклонение или принятие гипотезы….
Ошибка первого рода состоит в том, что была отклонена нулевая гипотеза, будучи верной….
Ошибка второго рода заключается в том, была принята нулевая гипотеза, оказавшаяся неверной.

Автор24

Статья от экспертов

Применение метода экспертного оценивания при разработке модели надежности системы безопасности объекта информатизации

Предложен алгоритм применения метода экспертных оценок при расчете параметров модели надежности системы безопасности объекта информатизации. Для полученной модели надежности найдено аналитическое выражение вероятности безотказной работы и показаны возможности экспертной оценки параметров предложенной модели.

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных
    карточек

8 июля 2021 г.

При проверке гипотез нулевая гипотеза — это гипотеза по умолчанию, которая утверждает, что между переменными нет статистической значимости. Исследователь проверяет нулевую гипотезу, чтобы увидеть, достаточно ли статистической значимости, чтобы опровергнуть ее, и это иногда приводит к ошибке типа 1 или типа 2. Если вы занимаетесь проверкой гипотез как частью своей работы, важно понимать, как ошибки типа 1 и типа 2 могут повлиять на ваши результаты.

В этой статье мы объясним, что такое ошибки типа 1 и типа 2, рассмотрим, как они могут возникнуть, обсудим их важность в исследованиях и приведем примеры, которые помогут вам понять эти концепции.

Ошибки типа 1 и типа 2 относятся к неправильным определениям нулевой гипотезы, но они различаются тем, что исследователь считает верным или ложным в отношении гипотезы. Ошибка 1-го типа, также называемая ложноположительной, возникает, когда исследователь отвергает нулевую гипотезу, которая является истинной, и решает, что существует статистически значимое различие, которого не существует. Ошибка типа 2 является обратной ошибкой типа 1. Также известная как ложный отрицательный результат, она возникает, когда исследователь не отвергает нулевую гипотезу, когда альтернативная гипотеза верна.

Например, в судебном деле нулевая гипотеза будет заключаться в том, что обвиняемый невиновен, пока его вина не будет доказана, а альтернативная гипотеза будет состоять в том, что он виновен. Есть четыре возможных исхода в отношении истинного характера дела:

  • Истинно отрицательный: признан невиновным в суде и невиновен на самом деле.

  • Ложное срабатывание: признан виновным в суде, но на самом деле невиновен.

  • Ложноотрицательный: признан невиновным в суде, но на самом деле виновен.

  • Истинно положительный: признан виновным в суде и фактически виновен

В приведенном выше примере второй и третий результаты являются ошибками типа 1 и типа 2 соответственно. В случае ложного срабатывания присяжные ошибочно отвергают нулевую гипотезу, утверждающую, что подсудимый невиновен. В случае ложноотрицательного результата они ошибочно не отвергают нулевую гипотезу.

Почему возникают ошибки первого рода?

Есть два фактора, которые обычно способствуют возникновению ошибок 1-го рода:

Шанс

Проверка гипотез никогда не бывает стопроцентной, поэтому всегда есть возможность сделать неверные выводы на основе имеющихся данных. Как правило, данные поступают из выборочной совокупности, относительно небольшой выборки лиц, предназначенных для обозначения более широкой демографической группы. Иногда данные, генерируемые выборочными совокупностями, искажают выводы, которые не обязательно отражают интересы всего населения. Это переменная, которую исследователи не могут контролировать, но они могут помочь смягчить ее, выбрав более крупные выборки.

Злоупотребление служебным положением

Иногда ошибки 1-го рода возникают из-за неправильной исследовательской практики. Например, исследователи могут неосознанно исказить результаты теста, завершив его слишком рано. Им может показаться, что у них достаточно данных, хотя стандартная практика рекомендует продолжить тест. В качестве альтернативы они могут сделать вывод, несмотря на то, что им не удалось достичь соответствующего уровня статистической значимости. Исследователи могут избежать выводов типа 1, связанных с злоупотреблением служебным положением, если будут следовать протоколам исследований и обеспечивать надежность своей практики.

Почему возникают ошибки второго рода?

Основным фактором, способствующим возникновению ошибок 2-го рода, является размер выборки. Чем больше размер выборки, тем больше вероятность обнаружения различий в статистическом тесте. Например, если вы хотите проверить, относятся ли студенты колледжа положительно или отрицательно к определенному продукту, группа из трех человек может выразить только два к одному разнообразию или вообще ничего не сказать. Для сравнения, выборка из 1000 человек с большей вероятностью вызовет широкий спектр мнений и, таким образом, более точно отразит большую часть населения.

Какова важность ошибок типа 1 по сравнению с ошибками типа 2?

Ошибки типа 1 и типа 2 являются значительными из-за последствий, которые они имеют в реальных приложениях. Ошибки типа 1 обычно приводят к ненужному использованию ресурсов без какой-либо выгоды. Например, если исследователь-медик совершает ошибку 1-го рода в отношении эффективности нового лечения, он может подтвердить ошибочность исследований и методов, что может привести к созданию лекарства, не приносящего облегчения.

Ошибки 2-го типа важны тем, что могут помешать выделению ресурсов и выполнению необходимых действий. Например, при скрининге пациента на наличие заболевания ложноотрицательный результат может свидетельствовать о том, что пациент здоров, хотя на самом деле он нуждается в медицинском вмешательстве.

Примеры ошибок типа 1 и типа 2

Рассмотрим эти примеры ошибок типа 1 и типа 2, чтобы помочь вам понять, что они из себя представляют:

Пример ошибки 1 рода

Медицинский исследователь проверяет эффективность домашнего средства от головной боли. Нулевая гипотеза состоит в том, что домашнее средство не влияет на головную боль, в то время как альтернативная гипотеза состоит в том, что оно лечит головную боль. Исследователь набирает выборку из 20 пациентов с хроническими головными болями и назначает лекарство половине из них в течение одного месяца. Половина, не получающая лекарство, продолжает страдать от хронических головных болей, в то время как у шести человек из оставшейся половины головные боли прекратились.

На основании вышеизложенного исследователь отвергает нулевую гипотезу. Однако, учитывая небольшое количество тех, кто испытал облегчение, могут возникнуть сомнения относительно того, было ли это лекарство или посторонний фактор, который улучшил состояние шести участников. Если эти шесть участников использовали другие средства от головной боли вместе с тестируемым средством, вполне вероятно, что исследователь совершил ошибку 1-го типа.

Пример ошибки 2 рода

Интернет-магазин хочет знать, могут ли изменения дизайна его веб-сайта помочь увеличить продажи. Нулевая гипотеза состоит в том, что изменения дизайна не влияют на продажи, а альтернативная гипотеза говорит об обратном. Продавец проводит A/B-тестирование, в ходе которого сравниваются две версии сайта, существующая версия и обновленная версия. Три дня мониторят продажи на основе существующей версии. Затем в течение следующих трех дней они представляют новую версию и смотрят, как она повлияет на продажи. По истечении шести дней они не видят значительных изменений в показателях продаж.

Однако возможно, что увеличение периодов наблюдения для каждой версии сайта привело бы к статистически значимой разнице. Если бы розничный продавец отслеживал продажи в течение одного месяца каждый и заметил увеличение продаж во втором месяце, он совершил бы ошибку второго рода, ошибочно приняв нулевую гипотезу.

Понравилась статья? Поделить с друзьями:
  • Ошибка первого канала 1 сентября
  • Ошибка первого рода в статистике что это
  • Ошибка первого и второго цилиндра
  • Ошибка первого рода в статистике формула
  • Ошибка первого и второго рода при контроле