Нормированный r квадрат стандартная ошибка наблюдения


В статистике регрессия — это метод, который можно использовать для анализа взаимосвязи между переменными-предикторами и переменной-откликом.

Когда вы используете программное обеспечение (например, R, SAS, SPSS и т. д.) для выполнения регрессионного анализа, вы получите в качестве выходных данных таблицу регрессии, в которой суммируются результаты регрессии. Важно уметь читать эту таблицу, чтобы понимать результаты регрессионного анализа.

В этом руководстве рассматривается пример регрессионного анализа и дается подробное объяснение того, как читать и интерпретировать выходные данные таблицы регрессии.

Пример регрессии

Предположим, у нас есть следующий набор данных, который показывает общее количество часов обучения, общее количество сданных подготовительных экзаменов и итоговый балл за экзамен, полученный для 12 разных студентов:

Пример данных регрессионного анализа

Чтобы проанализировать взаимосвязь между учебными часами и сданными подготовительными экзаменами и окончательным экзаменационным баллом, который получает студент, мы запускаем множественную линейную регрессию, используя отработанные часы и подготовительные экзамены, взятые в качестве переменных-предикторов, и итоговый экзаменационный балл в качестве переменной ответа.

Мы получаем следующий вывод:

Вывод таблицы регрессии

Проверка соответствия модели

В первом разделе показано несколько различных чисел, которые измеряют соответствие регрессионной модели, т. е. насколько хорошо регрессионная модель способна «соответствовать» набору данных.

Вот как интерпретировать каждое из чисел в этом разделе:

Несколько R

Это коэффициент корреляции.Он измеряет силу линейной зависимости между переменными-предикторами и переменной отклика. R, кратный 1, указывает на идеальную линейную зависимость, тогда как R, кратный 0, указывает на отсутствие какой-либо линейной зависимости. Кратный R — это квадратный корень из R-квадрата (см. ниже).

В этом примере множитель R равен 0,72855 , что указывает на довольно сильную линейную зависимость между предикторами часов обучения и подготовительных экзаменов и итоговой оценкой экзаменационной переменной ответа.

R-квадрат

Его часто записывают как r 2 , а также называют коэффициентом детерминации.Это доля дисперсии переменной отклика, которая может быть объяснена предикторной переменной.

Значение для R-квадрата может варьироваться от 0 до 1. Значение 0 указывает, что переменная отклика вообще не может быть объяснена предикторной переменной. Значение 1 указывает, что переменная отклика может быть полностью объяснена без ошибок с помощью переменной-предиктора.

В этом примере R-квадрат равен 0,5307 , что указывает на то, что 53,07% дисперсии итоговых экзаменационных баллов можно объяснить количеством часов обучения и количеством сданных подготовительных экзаменов.

Связанный: Что такое хорошее значение R-квадрата?

Скорректированный R-квадрат

Это модифицированная версия R-квадрата, которая была скорректирована с учетом количества предикторов в модели. Он всегда ниже R-квадрата. Скорректированный R-квадрат может быть полезен для сравнения соответствия различных моделей регрессии друг другу.

В этом примере скорректированный R-квадрат равен 0,4265.

Стандартная ошибка регрессии

Стандартная ошибка регрессии — это среднее расстояние, на которое наблюдаемые значения отклоняются от линии регрессии. В этом примере наблюдаемые значения отклоняются от линии регрессии в среднем на 7,3267 единиц.

Связанный: Понимание стандартной ошибки регрессии

Наблюдения

Это просто количество наблюдений в нашем наборе данных. В этом примере общее количество наблюдений равно 12 .

Тестирование общей значимости регрессионной модели

В следующем разделе показаны степени свободы, сумма квадратов, средние квадраты, F-статистика и общая значимость регрессионной модели.

F-тест в выходной таблице регрессионного анализа

Вот как интерпретировать каждое из чисел в этом разделе:

Степени свободы регрессии

Это число равно: количеству коэффициентов регрессии — 1. В этом примере у нас есть член пересечения и две переменные-предикторы, поэтому у нас всего три коэффициента регрессии, что означает, что степени свободы регрессии равны 3 — 1 = 2 .

Всего степеней свободы

Это число равно: количество наблюдений – 1. В данном примере у нас 12 наблюдений, поэтому общее количество степеней свободы 12 – 1 = 11 .

Остаточные степени свободы

Это число равно: общая df – регрессионная df.В этом примере остаточные степени свободы 11 – 2 = 9 .

Средние квадраты

Средние квадраты регрессии рассчитываются как регрессия SS / регрессия df.В этом примере регрессия MS = 546,53308/2 = 273,2665 .

Остаточные средние квадраты вычисляются как остаточный SS / остаточный df.В этом примере остаточная MS = 483,1335/9 = 53,68151 .

F Статистика

Статистика f рассчитывается как регрессия MS/остаточная MS. Эта статистика показывает, обеспечивает ли регрессионная модель лучшее соответствие данным, чем модель, которая не содержит независимых переменных.

По сути, он проверяет, полезна ли регрессионная модель в целом. Как правило, если ни одна из переменных-предикторов в модели не является статистически значимой, общая F-статистика также не является статистически значимой.

В этом примере статистика F равна 273,2665/53,68151 = 5,09 .

Значение F (P-значение)

Последнее значение в таблице — это p-значение, связанное со статистикой F. Чтобы увидеть, значима ли общая модель регрессии, вы можете сравнить p-значение с уровнем значимости; распространенные варианты: 0,01, 0,05 и 0,10.

Если p-значение меньше уровня значимости, имеется достаточно доказательств, чтобы сделать вывод о том, что регрессионная модель лучше соответствует данным, чем модель без переменных-предикторов. Этот вывод хорош, потому что он означает, что переменные-предикторы в модели действительно улучшают соответствие модели.

В этом примере p-значение равно 0,033 , что меньше обычного уровня значимости 0,05. Это указывает на то, что регрессионная модель в целом статистически значима, т. е. модель лучше соответствует данным, чем модель без переменных-предикторов.

Тестирование общей значимости регрессионной модели

В последнем разделе показаны оценки коэффициентов, стандартная ошибка оценок, t-stat, p-значения и доверительные интервалы для каждого термина в регрессионной модели.

Как интерпретировать коэффициенты вывода таблицы регрессии

Вот как интерпретировать каждое из чисел в этом разделе:

Коэффициенты

Коэффициенты дают нам числа, необходимые для записи оценочного уравнения регрессии:

у шляпа знак равно б 0 + б 1 Икс 1 + б 2 Икс 2 .

В этом примере расчетное уравнение регрессии имеет вид:

итоговый балл за экзамен = 66,99 + 1,299 (часы обучения) + 1,117 (подготовительные экзамены)

Каждый отдельный коэффициент интерпретируется как среднее увеличение переменной отклика на каждую единицу увеличения данной переменной-предиктора при условии, что все остальные переменные-предикторы остаются постоянными. Например, для каждого дополнительного часа обучения среднее ожидаемое увеличение итогового экзаменационного балла составляет 1,299 балла при условии, что количество сданных подготовительных экзаменов остается постоянным.

Перехват интерпретируется как ожидаемый средний итоговый балл за экзамен для студента, который учится ноль часов и не сдает подготовительных экзаменов. В этом примере ожидается, что учащийся наберет 66,99 балла, если он будет заниматься ноль часов и не сдавать подготовительных экзаменов. Однако будьте осторожны при интерпретации перехвата выходных данных регрессии, потому что это не всегда имеет смысл.

Например, в некоторых случаях точка пересечения может оказаться отрицательным числом, что часто не имеет очевидной интерпретации. Это не означает, что модель неверна, это просто означает, что перехват сам по себе не должен интерпретироваться как означающий что-либо.

Стандартная ошибка, t-статистика и p-значения

Стандартная ошибка — это мера неопределенности оценки коэффициента для каждой переменной.

t-stat — это просто коэффициент, деленный на стандартную ошибку. Например, t-stat для часов обучения составляет 1,299 / 0,417 = 3,117.

В следующем столбце показано значение p, связанное с t-stat. Это число говорит нам, является ли данная переменная отклика значимой в модели. В этом примере мы видим, что значение p для часов обучения равно 0,012, а значение p для подготовительных экзаменов равно 0,304. Это указывает на то, что количество учебных часов является важным предиктором итогового экзаменационного балла, а количество подготовительных экзаменов — нет.

Доверительный интервал для оценок коэффициентов

В последних двух столбцах таблицы представлены нижняя и верхняя границы 95% доверительного интервала для оценок коэффициентов.

Например, оценка коэффициента для часов обучения составляет 1,299, но вокруг этой оценки есть некоторая неопределенность. Мы никогда не можем знать наверняка, является ли это точным коэффициентом. Таким образом, 95-процентный доверительный интервал дает нам диапазон вероятных значений истинного коэффициента.

В этом случае 95% доверительный интервал для часов обучения составляет (0,356, 2,24). Обратите внимание, что этот доверительный интервал не содержит числа «0», что означает, что мы вполне уверены, что истинное значение коэффициента часов обучения не равно нулю, т. е. является положительным числом.

Напротив, 95% доверительный интервал для Prep Exams составляет (-1,201, 3,436). Обратите внимание, что этот доверительный интервал действительно содержит число «0», что означает, что истинное значение коэффициента подготовительных экзаменов может быть равно нулю, т. е. несущественно для прогнозирования результатов итоговых экзаменов.

Дополнительные ресурсы

Понимание нулевой гипотезы для линейной регрессии
Понимание F-теста общей значимости в регрессии
Как сообщить о результатах регрессии

Подготовка к
выполнению лабораторной работы.

1. По учебнику изучить темы:

«Статистические
методы анализа связи»

2.
Уметь рассчитывать параметры уравнения
регрессии и линейного уравнения тренда,
находить табличные значения t-статистики
и F-критерия,
делать декомпозицию ряда динамики.

3.
Подготовить выборку по 5 признакам,
объемом не менее 50 единиц (например,
информация о деятельности по 50 предприятий
по 5 показателям: объем производства,
численность занятых, стоимость основных
средств, кредиторская задолженность и
балансовая прибыль). Такую информацию
можно найти в статистических сборниках,
internet,
экономической периодике. Можно
использовать данные из лабораторной
работы 1.

Задание 1.

  1. Построить
    уравнение парной линейной регрессии.

  2. Измерить
    тесноту связи.

  3. Проверить
    на значимость коэффициенты регрессии
    и регрессионную модель.

Задание 2.

  1. Построить
    уравнение множественной регрессии.

  2. Измерить
    тесноту связи.

  3. Проверить
    на значимость коэффициенты множественной
    регрессии и регрессионную модель.

  4. Улучшить
    регрессионную модель путем удаления
    из модели факторов, не имеющих значимого
    влияния на результат.

Задание
3.

  1. Построить
    уравнение парной регрессии нелинейной
    формы.

Выполнение
задания 1 в

ППП MS
Excel
2007.

Ход
работы:

Определите
фактор, оказывающий влияние (x)
и результативный признак (y).
Для построения уравнения регрессии
воспользуемся Пакетом анализа:
Данные – Анализ данных – Регрессия.

В
окне Регрессия:

Входной
интервал Х
– это столбец данных,
определенных вами как фактор (причина);
Входной интервал Y
– это столбец данных, определенных вами
как результат. Выходной интервал
несколько чистых ячеек на том же листе,
где находятся исходные данные, или на
отдельном листе. В результате получаем
таблицу расчетов (см. пример в таблице
2).

Таблица
2. «Вывод итогов»

Регрессионная
статистика

Множественный
R

0,502621

R-квадрат

0,252628

Нормированный
R-квадрат

0,159206

Стандартная
ошибка

25,16016

Наблюдения

50

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

1

1711,83

1711,83

2,704169

0,138707

Остаток

48

5064,27

633,0337

Итого

49

6776,1

Коэффициенты

Стандартная
ошибка

t-статистика

P-Значение

Y-пересечение

18,37277

19,30663

0,95163

0,369146

Переменная
x1

0,533713

0,324557

1,644436

0,138707

1.
Из таблицы берем значения коэффициентов
регрессии и получаем уравнение : у =
18,37277 + 0,533713х1 (коэффициенты при y
– пересечении и переменной x1).

2.
Проверка на значимость заключается в
проверке гипотезы Н0:а0=0,т.е.
проверке гипотезы о статистической
незначимости проверяемого параметра
а0, другими словами, проверки
вывода о том, что проверяемый параметр
сформировался под влиянием случайных
причин, а не в результате достаточно
сильного влияния, т.е. закономерности.
В таблице уровень значимости (Р-значение
t-статистики при
Y-пересечении) равен
0,369146, что значительно превышает уровень
0,05 или 5%. Делаем вывод о том, что гипотезу
о незначимости коэффициента регрессии
а0 принимаем. Аналогично проверяем
гипотезу о незначимости параметра b1
(при переменной x1)
и гипотезу о незначимости всей
регрессионной модели (по уровню значимости
F).

Проверку
значимости коэффициентов уравнения
можно сделать по значению t-статистики,
которое сравнивается с пороговым
значением, зафиксированным в таблице
t-статистики. Для коэффициента
а0 значение t-статистики
равно 0,951653, для коэффициента b1
значение tстатистики
равно 1,644436. Сравниваем каждое из этих
значений с пороговым значением. Если
пороговое значение t-статистики
меньше, чем в данной модели, проверяемый
коэффициент уравнения значим и наоборот.
Пороговое значение найдете в таблице
значений t-статистики.
Пороговое значение находим в таблице
в зависимости от выбранного уровня
значимости и числа степеней свободы,
рассчитанного по формуле:

k
= n – 3

k
— число степеней свободы:

n
— число наблюдений.

Выбранный
уровень значимости указывает вероятность
ошибки, т.е. при уровне значимости 0,05
проверяемый коэффициент уравнения
регрессии считается значимым с
вероятностью (1 – 0,05) или 95%; при уровне
значимости 0,01 проверяемый коэффициент
уравнения регрессии считается значимым
с вероятностью (1 – 0,01) или 99%.

Возможен
и другой способ проверки. В таблице 2,
кроме значений t-статистики,
дан уровень значимости t-статистики
( графа «Р – Значение»). Если уровень
значимости, приведенный в таблице, не
превышает 0,05 (5%), делаем вывод, то
проверяемый коэффициент значим и
наоборот. Кроме того, уровень значимости
может быть указан более точно, чем больше
или меньше 0,05. Так, «Р – Значение»
равное 0,369146 говорит о том, уровень ошибки
при проверке гипотезы о незначимости
коэффициента а0 уравнения регрессии
равен 0,369146 (36,92%), а для коэффициента b1
– 0,138707 (13,87%). Поскольку оба значения
ошибки гораздо больше 5%, гипотеза о
незначимости коэффициентов уравнения,
следовательно и самого уравнения
регрессии, принимается. Коэффициент a0
может быть принят лишь с вероятностью
(1–0,369146) или 63%, коэффициент b1
– с вероятностью (1-0,138707) или 88%.

3.Оценку
тесноты связи делаем по R
– квадрат
.

R
– квадрат
измеряет тесноту связи
через отношение дисперсий результативного
признака. Чем ближе R
–квадрат
к 0, тем слабее связь между
x и y, чем
ближе R –квадрат
с 1, тем сильнее связь.

4.
Проверка на значимость всей регрессионной
модели, т.е. уравнения регрессии и
коэффициента тесноты связи, проводим
по F-критерию.
Берем F-критерий из
таблицы 2 и сравниваем с пороговым
значением из таблицы «Значения
F-критерия». Если
пороговое значение F-критерия
меньше, чем в данном примере (2,704169),
проверяемая регрессионная модель
значима и наоборот. Пороговое значение
определяется в зависимости от выбранного
уровня значимости и числа степеней
свободы (k1 и k2),
рассчитанных по формулам:

k1
= n– 3

k2
= n-m

где
k1 и k2
число степеней свободы;

n
— число наблюдений;

m
– число параметров уравнения регрессии,
для парной регрессии равно 2.

Второй
вариант проверки – это определение
вероятности принятия гипотезы о
незначимости регрессионной модели по
уровню “Значимость F”,
равное в этом примере 0,138707 или 13,87%.
Данное значение, говорит о том, что
модель незначима.

Выполнение
задания 2 в
ППП MS
Excel 2007.

Определите
факторы, оказывающие влияние и обозначьте
их (x1,x2,…..xk).
Определите результативный признак (y).
Для построения уравнения регрессии
воспользуемся Пакетом анализа ППП
Ехсеl: Данные – Анализ
данных – Регрессия
.

В
окне Регрессия:

Входной
интервал Х
– это столбцы данных,
определенных вами как факторы (выделяются
единым массивом); Входной интервал Y
– это столбец данных, определенных вами
как результат. Выходной интервал
несколько чистых ячеек на том же листе,
где находятся исходные данные, или на
отдельном листе. В результате получаем
таблицу расчетов (см. пример в таблице
3).

Таблица
3. «Вывод итогов»

Регрессионная
статистика

Множественный
R

0,502621

R-квадрат

0,252628

Нормированный
R-квадрат

0,159206

Стандартная
ошибка

25,16016

Наблюдения

50

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

1

1711,83

1711,83

0,455188

0,769029

Остаток

48

5064,27

633,0337

Итого

49

6776,1

Коэффициенты

Стандартная
ошибка

t-статистика

P-Значение

Y-пересечение

22,80765

19,30663

0,351022

0,739878

Переменная
x1

0,469454

0,324557

0,812186

0,453601

Переменная
x2

0,119464

36,14581

0,226852

0,829522

Переменная
x3

19,47716

0,023568

2,692154

0,017188

Переменная
x4

10,17820

0,014578

2,811450

0,005123

1.
Из таблицы берем значения коэффициентов
регрессии и получаем уравнение:

y=22,80765+0,469454x1+0,119464x2+19,47716x3-10,1782x4
(коэффициенты при y –
пересечении и переменных x1,
x2, x3,
x4.

2.
Проверка на значимость заключается в
проверке гипотезы о статистической
незначимости проверяемых параметров,
или проверки вывода о том, что проверяемый
параметр сформировался под влиянием
случайных причин, а не в результате
достаточно сильного влияния, т.е.
закономерности. При этом уровень
значимости представляет собой вероятность
ошибки отклонения правильной гипотезы.
Договоримся, что допустимый уровень
значимости при выполнении лабораторной
работы примем равным 0,05 или 5%.

Проверку
значимости коэффициентов уравнения
можно сделать по значению t-статистики,
которое сравнивается с табличным
значением. Для коэффициента a0
значение t-статистики
равно 0,351022; для коэффициента b1
значение t-статистики
равно 0,812186; для b2
0,226852 и т.д. Сравниваем каждое из этих
значений с пороговым. Если пороговое
значение t-статистики
меньше, чем в данной модели, проверяемый
коэффициент уравнения значим и наоборот.
Пороговое значение найдете в таблице
t-статистики. Пороговое
значение определяется в зависимости
от выбранного уровня значимости и числа
степеней свободы, рассчитанного по
формуле:

k
= n – m -1

k
— число степеней свободы:

n
— число наблюдений.

m
— число факторов.

Выбранный
уровень значимости указывает вероятность
ошибки, т.е. при уровне значимости 0,05
проверяемый коэффициент уравнения
регрессии считается значимым с
вероятностью (1 – 0,05) или 95%; при уровне
значимости 0,01 проверяемый коэффициент
уравнения регрессии считается значимым
с вероятностью (1 – 0,01) или 99%.

Возможен
и другой способ проверки. В таблице 1,
кроме значений t-статистики,
дан уровень значимости t-статистики
( графа «Р – Значение»). Если уровень
значимости, приведенный в таблице 2, не
превышает 0,05 (5%), делаем вывод, что
проверяемый коэффициент значим и
наоборот. Кроме того, уровень значимости
может быть указан более точно, чем просто
больше или меньше 0,05. Так, «Р – Значение»
равное 0,739878 говорит о том, коэффициент
a0 уравнения регрессии
можно считать значимым с вероятностью
0,739878 (73,99%), а коэффициент b1
– 0,453601 (45,36%), коэффициент b2
– 0,829522 (82,95%) и т.д. Поскольку все значения
вероятности гораздо меньше 95%, гипотеза
о незначимости коэффициентов уравнения
принимается, а уравнение регрессии
признается незначимым. Коэффициент a0
может быть принят лишь с вероятностью
(1–0,739878) или 26%, коэффициент b1
– с вероятностью (1-0,453601) или 55% и т.д.
Следовательно, перечисленные коэффициенты
незначимы.

3.
Оценку тесноты связи делаем по R
– квадрат
.

R
– квадрат
измеряет тесноту связи
через отношение дисперсий результативного
признака. Чем ближе R
–квадрат
к 0, тем слабее связь между
Х и Y, чем ближе R
–квадрат
с 1, тем сильнее связь.
Нормированный R
-квадрат
дает скорректированную
оценку коэффициента детерминации, т.е.
долю вариации результата за счет
включенных в уравнение регресии факторов
в общей вариации результата с учетом
степеней свободы общей и остаточной
дисперсии. R – квадрат
представляет собой нескорректированную
оценку тесноты связи (без учета числа
степеней свободы). Различия между
скорректированной и нескорректированной
оценкой становятся важными, если мы
должны сравнивать между собой модели
с различным числом факторов. Сопоставлять
уравнения регрессии с различным числом
факторных признаков можно только по
скорректированным значениям (Нормированный
R — квадрат).

4.
Проверка на значимость всей регрессионной
модели, т.е. уравнения регрессии и
коэффициента тесноты связи, проводим
по F-критерию.
Берем F-критерию из
таблицы 2 и сравниваем с пороговым
значением из таблицы «Значения F-критерия»
Приложения 2. Если пороговое значение
F-критерия меньше,
чем в данном примере (0,4552188), проверяемая
регрессионная модель значима и наоборот.
Пороговое значение определяется в
зависимости от выбранного уровня
значимости и числа степеней свободы
(k1 и k2),
рассчитанных по формулам:

k1
= n – 3

k2
= n-m

где
k1 и k2
число степеней свободы;

n
— число наблюдений;

m
— число параметров уравнения регрессии,
для парной регрессии равно 2.

Второй
вариант проверки – это определение
вероятности принятия гипотезы о
незначимости регрессионной модели по
значению «Значимость F»,
равное в этом примере 0,769029 или 76,9%. Данное
значение ошибки при принятии гипотезы
означает, что F-критерий
незначим.

5.
Для того, что улучшить создаваемую
модель, надо сравнить между собой
несколько вариантов регрессионной
модели с различным числом факторов.
Вспомним, что предпочтительнее та
модель, которая при том же значении
коэффициента детерминации имеет меньшее
количество факторов, включенных в нее.
Например, сравним 2-факторную модель с
факторами х1 и х2 (таблица
4) с 3-факторной моделью, включающей
факторы х1, х2, х3
(таблица 5) и с 4-факторной моделью,
содержащей факторы х1, х2,
х3, х4 (таблица 6).

Таблица
4. Вывод итогов

Регрессионная
статистика

Множественный
R

0,990069

R-квадрат

0,980237

Нормированный
R-квадрат

0,974591

Стандартная
ошибка

0,482617

Наблюдения

50

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

2

1711,83

1711,83

173,6

0,00000109

Остаток

47

5064,27

633,0337

Итого

49

6776,1

Коэффициенты

Стандартная
ошибка

t-статистика

P-Значение

Y-пересечение

23,76087

1,46212

16,25098

8,13Е-07

Переменная
x1

-1,43478

0,311799

-4,60163

0,002479

Переменная
x2

-0,86957

0,450043

-1,93218

0,094618

Таблица
5.Вывод итогов

Регрессионная
статистика

Множественный
R

0,994937

R-квадрат

0,989899

Нормированный
R-квадрат

0,984848

Стандартная
ошибка

0,372678

Наблюдения

50

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

3

1711,83

1711,83

196

2,25Е-06

Остаток

46

5064,27

633,0337

Итого

49

6776,1

Коэффициенты

Стандартная
ошибка

t-статистика

P-Значение

Y-пересечение

16,5

3,234325

5,101528

0,002218

Переменная
x1

-0,83333

0,347853

-2,39565

0,053612

Переменная
x2

-0,83333

0,347853

-2,39565

0,053612

Переменная
x3

0,83333

0,347853

2,39548

0,053612

Таблица
6. Вывод итогов

Регрессионная
статистика

Множественный
R

0,998085

R-квадрат

0,996173

Нормированный
R-квадрат

0,993112

Стандартная
ошибка

0,251271

Наблюдения

50

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

4

1711,83

1711,83

325,4193

3,16Е-06

Остаток

45

5064,27

633,0337

Итого

49

6776,1

Коэффициенты

Стандартная
ошибка

t-статистика

P-Значение

Y-пересечение

10,38235

3,052896

3,400821

0,019234

Переменная
x1

-0,49216

0,263065

-1,87085

0,120281

Переменная
x2

-0,65686

0,242496

-2,70876

0,042339

Переменная
x3

0,75098

0,236290

3,17821

0,024588

Переменная
x4

0,517647

0,180784

2,863347

0,035268

Сравним
модели но нормированным R-квадрат.
Самое большое значение у 3-факторной
модели. Видно, что по мере увеличения
факторов в уравнение регрессии
увеличивается значение нормированного
R-квадрат. Такое
возможно только в том случае, когда в
уравнение добавляются значимые факторы,
оказывающие значительное влияние на
результат. Именно поэтому их включение
в регрессионную модель в той
последовательности, в которой они
включены в модель, целесообразно.

Улучшить
регрессионную модель можно, оценив
целесообразность включения каждого
фактора отдельно, по коэффициентам
парной корреляции: Данные – Анализ
данных – Корреляция. Входной интервал
:
выделяем весь массив данных; Группирование
— по столбцам (ставим метку); Выходной
интервал
– выделяем несколько
свободных ячеек. Также возможен другой
способ – при помощи функции


– Статистические – КОРРЕЛ
, т.е. вводим
я ячейку:

=КОРРЕЛ(массив1;массив2)

где

массив1
– данные по одному признаку,

массив2
– данные по второму признаку.

Пример
расчетов представлен в таблице 7.

Таблица
7. Пример корреляционной матрицы

Y

x1

x2

x3

x4

x1

0,98473

x2

0,9594

0,8094

x3

0,969223

-0,9525

0,6921

x4

0,971908

-0,9513

0,71997

0,7199

В
таблице 7 перечислены коэффициенты,
показывающие тесноту связи между
признаками попарно. Сравним их друг с
другом по абсолютной величине. Особое
внимание обратим на межфакторные связи,
т.е. на связи между различными xk.
Если межфакторная связь сильнее, чем
связь фактора с результативным признаком,
такой фактор следует исключить из
уравнения регрессии. Наличие сильной
межфакторной связи свидетельствует о
сильной коллинеарности (взаимосвязи)
факторов. Для качественной регрессионной
модели недопустим уровень коллинеарности,
превышающий 0,8.

В
рассматриваемом примере самой сильной
является связь y с x1
(0,98473), затем по мере убывания y
с x4 (0,97908), y
с x3 (0,969223), y
с x2 (0,9594), x1
с x3 (0,9525), x1
с Х4 (0,9513), x1 с
x2 (0,8094), x2
с x4 (0,71997), x3
с x4 (0,7199), x2
с x3 (0,6921). Поскольку
межфакторные связи слабее связи
факторного и результативного признаков,
следует оставить в уравнении все
факторные признаки, но требованию
неколлинеарности факторов уравнения
регрессии отвечает лишь связь x2
с x4; x3
с x4 и x2
с x3. Однако для
окончательного вывода о целесообразности
присутствия в уравнении каждого из
факторных признаков, следует проверить
уровни значимости коэффициентов
уравнения по таблицам 3,4 и 5.

Поскольку
4-х факторная модель имеет самый высокий
уровень коэффициента детерминации,
начнем с нее. По Р-Значениям t-критерия
видим, что коэффициент b1
имеет Р-Значениям t-критерия
больше 5% (t-критерий равен
0,120281), следовательно x1
надо исключить из уравнения. (Это
объясняется тем, что несмотря на сильную
связь y и x1
мы исключаем x1 из
уравнения регрессии из-за наличия
сильной коллинеарности x1
с x2, x3,
x4).

Аналогичную
проверку сделаем для других значений
хk и для других
моделей. По Р-Значениям t-критерия
видно, что в 3-х факторной модели все
факторы находятся в одинаковом положении,
т.к. уровень Р-Значениям t-критерия
почти равен 5%. Для 2-х факторной модели
удаленным из уравнения должен быть
фактор x2 (Р-Значениям
t-критерия для
b2 = 0,094618, что больше
0,05). С учетом уровня Р-Значениям всей
модели (Р-Значения F-критерия)
можно сделать вывод о высокой надежности
всех трех моделей (0,00000109; 0,00000225; 0,00000316
соответственно).

Выполнение
задания 3 в
ППП MS
Excel 2007.

В
ППП «Excel» регрессионная модель нелинейной
формы может быть выполнена только в
форме экспоненциального приближения:


– Статистические – ЛГРФПРИБЛ
. Между
тем нелинейную форму уравнения можно
привести к линейной, осуществив процедуру
линеаризации. Например, показательная
функция

приводится
к линейной форме логарифмированием
обеих частей уравнения:

lgу
=lga+x lgb

получаем
Y=A
+
Bх,

где
Y=lgy; A=lga; B=lgb.

Теперь
пересчитываем исходные данные х и
у в lgx и lgy:


– Математические –
LOG10.

В
качестве признака X возьмем тот признак,
коэффициент корреляции которого с
признаком Y наибольший.

Таблица
8. Пример расчета для показательной
функции

x

y

Lg x

Lg
y

2

3

1,079181

1,361728

5

4

1,653213

1,146128

8

5

1,892095

1,39794

9

6

1,94939

1,556303

6

7

1,748188

1,672098

3

8

1,361728

1,763428

2

9

1,50515

1,838849

5

1

1,812913

1,612784

8

2

1,991226

1,716003

7

3

1,939519

1,799341

Относительно
новых переменных, lgx
и lgy выводим таблицу
регрессии: Данные – Анализ данных
– Регрессия.
В окне Регрессия в
качестве входного интервала х выделяем
столбец lgx ; в качестве
входного интервала у выделяем
столбец lgy.

Таблица
9.Вывод итогов

Регрессионная
статистика

Множественный
R

0,850621

R-квадрат

0,352628

Нормированный
R-квадрат

0,1905926

Стандартная
ошибка

2,16016

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

1

1711,83

1711,83

29,704177

0,0138707

Остаток

8

5064,27

633,0337

Итого

9

6776,1

Коэффициенты

Стандартная
ошибка

t-статистика

P-Значение

Y-пересечение

1,366991

9,30663

0,95163

0,369146

Переменная
x1

0,129613

0,324557

1,644436

0,138707

Уравнение
регрессии выглядит следующим образом:
У=1,366991+0,129613Х. Вернемся к исходным
переменным, т.е. перейдем от lgx
и lgy к х и у.
Получим уравнение:

Проверка
на значимость полученного уравнения и
измерение тесноты связи проводится
аналогично примерам, рассмотренным
выше. Методом линеаризации можно
достаточно быстро получить уравнения
регрессии различной формы. Выбор лучшей
формы уравнения регрессии зависит от
величины остатков. Остатки – это
расхождения эмпирических и теоретических
(регрессионных) значений результативного
признака. Чем больше сумма расхождений,
тем хуже уравнение регрессии описывает
связь фактора и результата.

Остатки
рассчитываются как сумма квадратов
отклонений исходных значений от
регрессионных значений результативного
признака (см. Таблица 6: Дисперсионный
анализ – Остаток – SS
или MS).
SS
– это сумма квадратов; MS
– это сумма квадратов в расчете на 1
единицу числа степеней свободы (df).
Сравнивать уравнения регрессии надо
по MS.
Чем меньше MS,
тем лучше форма уравнения регрессии.

  • Авторы
  • Резюме
  • Файлы
  • Ключевые слова
  • Литература


Курзаева Л.В.

1


1 ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова»

Аналитическая статистика – одиниз самых сложных разделов анализа данных в плане изучения, при этом регрессионный анализ является одним из самых информативных. Такой анализ производится при решения следующих задач: установление и оценка взаимосвязи признаков; прогнозирование и предсказание; управление процессами. Существует два вида анализа двумерных данных, представленных переменными: корреляционный и регрессионныйанализ, последнийпозволяет определить форму взаимосвязи между признаками. В статье описывается простой способ проведения регрессионного анализа в MicrosoftExcel. Материалы данной статьи представляют методическую и практическую ценность для преподавателей, занимающихся вопросами повышения эффективности обучения в области основ анализа данных с информационных технологий, и осуществляющие реализацию образовательного процесса в вузах и на курсах повышения квалификаций.

Ключевыеслова: анализ данных

электронные таблицы

1. Овчинникова И.Г., Варфоломеева Т.Н., Гусева Е.Н. Учебно-методическое пособие для подготовки к вступительным экзаменам по информатике. -Магнитогорск, 2002. -С. 119

2. Овчинникова И.Г., Варфоломеева Т.Н., Корнещук Н.Г. Учебное пособие для подготовки к централизованному тестированию по информатике. -Магнитогорск, 2002. -С.205

3. Курзаева Л.В. Дистанционный курс «Основы математической обработки информации»: электронный учебно-методический комплекс // Хроники объединенного фонда электронных ресурсов Наука и образование. — 2014. -Т. 1. — № 12 (67). — С. 117

4. Курзаева Л.В. Введение в теорию систем и системный анализ: учеб. пособие/Л.В. Курзаева. -Магнитогорск: МаГУ, 2015. -211 с.

5. Курзаева Л.В. Введение в методы и средства получения и обработки информации для задач управления социальными и экономическими системами: учеб. пособие/Л.В. Курзаева, И.Г. Овчинникова, Г.Н. Чусавитина. -Магнитогорск:Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2016. -118 с.

Для реализации процедуры Регрессия необходимо: выбрать в меню Сервис команду Анализ данных. В появившемся диалоговом окне Анализ данных в списке Инструменты анализа выбрать строку Регрессия.

Рис.1. Окно «Регрессия»

1_2.png

В появившемся диалоговом окне (рис.1) задать:

Входной интервал Y– диапазон (столбец), содержащий данные со значениями объясняемой переменной;

Входной интервал Х– диапазон (столбцы), содержащий данные с заголовками.

Метки – флажок, который указывает, содержат ли первые элементы отмеченных диапазонов названия переменных (столбцов) или нет;

Константа-ноль– флажок, указывающий на наличие или отсутствие свободного члена в уравнении (а);

Уровень надежности– уровень значимости, (например, 0,05);

Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона, в котором будет сохранен отчет по построению модели;

Новый рабочий лист– поставить значок и задать имя нового листа (Отчет – регрессия), в котором будет сохранен отчет.

Если необходимо получить значения и график остатков, а также график подбора (чтобы визуально проверить отличие экспериментальных точек от предсказанных по регрессионной модели), установите соответствующие флажки в диалоговом окне.

Рассмотрим результаты регрессионного анализа (рис. 2, 3).

2_3.png

Рис. 2. Вывод итогов регрессионного анализа

3_2.png

Рис. 3. Вывод остатков и вероятности по результатам регрессионного анализа

Множественный R – коэффициент корреляции

R-квадрат – это коэффициент линейной детерминации. Коэффициент является одной из наиболее эффективных оценок адекватности регрессионной R2модели, мерой качества уравнения регрессии в целом (или, как говорят, мерой качества подгонки регрессионной модели к наблюденным значениям.

Если R-квадрат > 0,95, говорят о высокой точности аппроксимации (модель хорошо описывает явление). Если R-квадрат лежит в диапазоне от 0,8 до 0,95, говорят об удовлетворительной аппроксимации (модель в целом адекватна описываемому явлению). Если R-квадрат < 0,6, принято считать, что точность аппроксимации недостаточна и модель требует улучшения (введения новых независимых переменных, учета нелинейностей и т. д.).

Нормированный R-квадрат – скорректированный (адаптированный, поправленный) коэффициент детерминации.

Недостатком коэффициента детерминации R-квадратявляется то, что он увеличивается при добавлении новых объясняющих переменных, хотя это и не обязательно означает улучшение качества регрессионной модели. В этом смысле предпочтительнее использовать нормированный, который в отличие от R-квадрат может уменьшаться при введении в модель новых объясняющих переменных, не оказывающих существенное влияние на зависимую переменную.

Наблюдения – число наблюдений (в нашем случае 10 стран).

Df– число степеней свободы связано с числом единиц совокупности и с числом определяемых по ней констант.

F и Значимость F позволяют проверить значимость уравнения регрессии, т.е. установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

SS – Сумма квадратов отклонений значений признака Y.

MS – Дисперсия на одну степень свободы.

F – Наблюдаемое (эмпирическое) значение статистики F, по которой проверяется гипотеза равенства нулю одновременно всех коэффициентов модели. Значимость F – теоретическая вероятность того, что при гипотезе равенства нулю одновременно всех коэффициентов модели F-статистика больше эмпирического значения F.

На уровне значимости α=0,05 гипотеза H0:b1=0отвергается, если Значимость F<0.05, и принимается, если Значимость F

Значения коэффициентов регрессии находятся в столбце Коэффициенты и соответствуют:

У-пересечение – a;

переменная XI – b1;

переменная Х2 – b2 и т. Д.

Таким образом, получена следующая модель регрессии:

Y=1.2247X1+0.00108X2+19.9776

t-статистика соответствующего коэффициента.

P-Значение – вероятность, позволяющая определить значимость коэффициента регрессии. В случаях, когда Р-Значение>0,05, коэффициент может считаться нулевым, что означает, что соответствующая независимая переменная практически не влияет на зависимую переменную.

В нашем случае оба коэффициента оказались «нулевыми», а значит обе независимые переменные не влияют на модель.

Нижние 95% – Верхние 95% – доверительный интервал для параметра , т.е. с надежностью 0.95 этот коэффициент лежит в данном интервале. Поскольку коэффициент регрессии в исследованиях имеют четкую интерпретацию, то границы доверительного интервала для коэффициента регрессии не должны содержать противоречивых результатов. Так, например, «Доля городского населения, в %» не может лежать в интервале -0,25≥b1≥2,7. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Предсказанное Y — теоретические (расчетные) значения результативного признака.

Остатки – остатки по модели регрессии.

На основе данных об остатках модели регрессии был построен график остатков (рис. 4) и график подбора – поле корреляции фактических и теоретических (расчетных) значений результативной переменной (рис.5).

Рис. 4. График остатков по значениям признака «Доля городского населения, %»

Рис. 5. График подбора для признаков «Доля городского населения, %» и «Число мобильных телефонов на 100 жителей»

Рассмотрение графиков подбора позволяет предположить, что, возможно, качество модели можно усовершенствовать, исключив данные по Белоруссии как аномальные значения.


Библиографическая ссылка

Курзаева Л.В. РЕГРЕССИОННЫЙ АНАЛИЗ В ЭЛЕКТРОННЫХ ТАБЛИЦАХ // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 12-7.
– С. 1234-1238;

URL: https://applied-research.ru/ru/article/view?id=11019 (дата обращения: 13.06.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Стандартное
отклонение для оценки обозначается Se
и рассчитывается по формуле
среднеквадратичного отклонения:

.

Величина стандартного
отклонения характеризует точность
прогноза.

Вариант
5. Возвращаясь к данным нашего примера,
рассчитаем значение Se:

Предположим,
необходимо оценить значение Y для
конкретного значения независимой
переменной, например, спрогнозировать
объем продаж при затратах на рекламу в
объеме 10 тыс. долл. Обычно при этом также
требуется оценить степень достоверности
результата, одним из показателей которого
является доверительный интервал для
Y.

Граница доверительного
интервала для Y при заданной величине
X рассчитывается следующим образом:

где
Хp
– выбранное значение независимой
переменной, на основе которого выполняется
прогноз. Обратите внимание: t – это
критическое значение текущего уровня
значимости. Например, для уровня
значимости, равного 0,025 (что соответствует
уровню доверительности двухстороннего
критерия, равному 95%) и числа степеней
свободы, равного 10, критическое значение
t равно 2, 228 (см. Приложение II). Как можно
увидеть, доверительный интервал – это
интервал, ограниченный с двух сторон
граничными значениями предсказания
(зависимой переменной).

Вариант
6. Для нашего примера расходов на рекламу
в размере 10 тыс. долл. интервал предсказания
зависимой переменной (объема продаж) с
уровнем доверительности в 95% находится
в пределах [10,5951; 21,8361]. Его границы
определяются следующим образом (обратите
внимание, что в Варианте 2 Y’=16,2156):

Из приведенного
расчета имеем: для заданных расходов
на рекламу в объеме 10 тыс. долл., объем
продаж изменяется в диапазоне от 10,5951
до 21,8361 тыс. долл. При этом:
10,5951=16,2156-5,6205 и 21,8361=16,2156+5,6205.

3. Стандартное отклонение для коэффициента регрессии Sb и t-статистика

Значения
стандартного отклонения для коэффициентов
регрессии Sb
и значение статистики тесно взаимосвязаны.
Sb
рассчитываются как

Или в сокращенной
форме:

Sb
задает интервал, в который попадают.
Все возможные значения коэффициента
регрессии. t-статистика
(или t-значение)
– мера статистической значимости
влияния независимой переменной Х на
зависимую переменную Y
определяется путем деления оценки
коэффициента b
на его стандартное отклонение Sb.
Полученное значение затем сравнивается
с табличным (см. табл. В Приложении II).

Таким
образом, t-статистика
показывает, насколько велики величина
стандартного отклонения для коэффициента
регрессии (насколько оно больше нуля).
Практика показывает, что любое t-значение,
не принадлежащее интервалу [-2;2], является
приемлемым. Чем выше t-значение,
тем выше достоверность коэффициента
(т.е. точнее прогноз на его основе). Низкое
t-значение
свидетельствует о низкой прогнозирующей
силе коэффициента регрессии.

Вариант
7. Sb
для нашего примера равно:

t-статистика
определяется:

Так
как t=3,94>2,
можно заключить,
что
коэффициент
b
является
статистически
значимым.
Как
отмечалось раньше,
табличное
критическое
значение (уровень отсечения)
для 10 степеней свободы равно
2,228
(см.
табл.
в
Приложении
11).

Обратите
внимание:


t-значения
играют большую
роль для коэффициентов
множественной регрессии
(множественная
модель описывается
с помощью
нескольких
коэффициентов
b);


R2
характеризует
общее согласие (всего
«леса»
невязок
на
диаграмме
разброса),
в
то время как
t-значение
характеризует
отдельную
независимую переменную
(отдельное
«дерево»
невязок).

В
общем случае
табличное
t-значение
для
заданных
числа
степеней свободы и уровня
значимости используется,
чтобы:


установить
диапазон
предсказания:
верхнюю
и нижнюю границы
для прогнозируемого
значения при заданном значении
независимой
переменной;

-установить
доверительные
интервалы
для
коэффициентов
регрессии;


определить
уровень
отсечения
для t-теста.

РЕГРЕССИОННЫЙ
АНАЛИЗ С ПРИМЕНЕНИЕМ ЭЛЕКТРОННЫХ ТАБЛИЦ
MS EXCEL

Электронные
таблицы,
такие
как Excel,
имеют
встроенную
процедуру
регрессионного
анализа,
легкую
в
применении.

Регрессионный
анализ
с помощью
MS Ехсеl
требует
выполнения
следующих
действий:


выберите
пункт
меню
«Сервис
— Надстройки»;


в
появившемся
окне отметьте
галочкой
надстройку
Analysis
ToolPak

VBA нажмите
кнопку
ОК.

Если
в списке Analysis
ToolPak

VВА
отсутствует,
выйдите
из MS Ехсеl
и добавьте эту надстройку,
воспользовавшись
программой
установки Мiсrosоft
Office.
Затем
запустите Ехсеl
снова
и повторите
эти действия.
Убедившись,
что
надстройка
Analysis
ToolPak

VВА
доступна,
запустите
инструмент
регрессионного
анализа,
выполнив
следующие
действия:


выберите
пункт меню «Сервис

Анализ»
данных;


в появившемся окне выберите
пункт
«Регрессия»
и
нажмите
кнопку
ОК.
На
рисунке 16.3
показано окно ввода данных для
регрессионного
анализа.

Рисунок 16.3 – Окно
ввода данных для регрессионного анализа

Таблица
16.2
показывает
выходной
результат
регрессии,
содержащий
описанные
выше статистические
данные.

Примечание:
для
того чтобы получить
поточечный
график
(ХY график),
используйте
«Мастер
Диаграмм»
MS
Excel.

Получаем:
Y’
= 10,5386
+ 0,563197
Х (d
виде
Y’
=
а
+
bХ)
с R2=0,608373=60,84%.

Все
полученные
данные
ответствуют
данным,
рассчитанным
вручную.

Таблица 16.2 –
Результаты регрессионного анализа

в
электронных таблицах MS
Excel

Вывод
итогов

Регрессионная
статистика

Множественный
R

0,7800

R-квадрат

0,6084

Нормированный
R-квадрат

0,5692

Стандартная
ошибка

2,3436

Наблюдения

12

Дисперсионный
анализ

df

SS

MS

F

Значимость
F

Регрессия

1

85,3243

85,3243

15,5345

0,0028

Остаток

10

54,9257

5,4926

Итого

11

140,2500

Коэффи-циенты

Стандарт-ная
ошибка

t-статистика

Р-
значение*

Нижние
95%

Верхние
95%

Свободный
член

10,5836

2,1796

4,8558

0,0007

5,7272

15,4401

Линейный
коэффициент

0,563197

0,1429

3,9414

0,0028

0,2448

0,8816


– значение для переменной X, равное
0,0028 показывает, что истинное значение
переменной коэффициента с 0,28%-ной
вероятностью равна нулю, что предполагает
высокую точность прогнозируемого
значения, равного 0б563197.

Таблица
16.3 показывает выходной результат
регрессии, полученный с применением
популярного программного обеспечения
Minitab
для статистического анализа.

Таблица
16.3 – Результаты регрессионного анализа
Minitab

Анализ регрессии

Уравнение
регрессии:

FO=10,6+0,563DLH

Прогнозируемые
параметры

Коэффициент

Стандартное
отклонение

t-значение

P

Константа

10,584

2,180

4,86

0,000

DLH

0,5632

0,1429

3,94

0,003

s=2,344

R-квадрат=60,8%

R-квадрат
(нормированный)=56,9%

Анализ
отклонений

Показатель

DF

SS

MS

F

P

Регрессия

1

85,324

85,324

15,53

0,003

Отклонение

10

54,926

5,493

Итого

11

140,250

ВЫВОДЫ

C
помощью регрессионного анализа
устанавливается
зависимость
между
изменениями
независимых
переменных
и
значениями зависимой
переменной.
Регрессионный
анализ
— популярный
метод для прогнозирования
продаж.
В
этой
главе обсуждался
широко
распространенный
способ
оценки значений,
так
называемый
метод
наименьших
квадратов.
Метод
наименьших
квадратов
рассматривался
применительно
к
модели
простой
регрессии
Y
=
а
+ bх.
Обсуждались
различные
статистические
коэффициенты,
характеризующие
добротность
и надежность
уравнения
(согласие
модели)
и помогающие установить
доверительный
интервал.

Показано
применение
электронных
таблиц MS Ехсеl для
проведения
регрессионного
анализа
шаг за шагом.
С
помощью электронных
таблиц
можно не только составить
уравнение
регрессии,
но
и рассчитать статистические
коэффициенты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

From Wikipedia, the free encyclopedia

In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value).[citation needed] For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Definition and basic properties[edit]

The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled). The definition of an MSE differs according to whether one is describing a predictor or an estimator.

Predictor[edit]

If a vector of n predictions is generated from a sample of n data points on all variables, and Y is the vector of observed values of the variable being predicted, with hat{Y} being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

In other words, the MSE is the mean {textstyle left({frac {1}{n}}sum _{i=1}^{n}right)} of the squares of the errors {textstyle left(Y_{i}-{hat {Y_{i}}}right)^{2}}. This is an easily computable quantity for a particular sample (and hence is sample-dependent).

In matrix notation,

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}(e_{i})^{2}={frac {1}{n}}mathbf {e} ^{mathsf {T}}mathbf {e} }

where e_{i} is {displaystyle (Y_{i}-{hat {Y_{i}}})} and {displaystyle mathbf {e} } is the {displaystyle ntimes 1} column vector.

The MSE can also be computed on q data points that were not used in estimating the model, either because they were held back for this purpose, or because these data have been newly obtained. Within this process, known as statistical learning, the MSE is often called the test MSE,[4] and is computed as

{displaystyle operatorname {MSE} ={frac {1}{q}}sum _{i=n+1}^{n+q}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

Estimator[edit]

The MSE of an estimator hat{theta} with respect to an unknown parameter theta is defined as[1]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right].}

This definition depends on the unknown parameter, but the MSE is a priori a property of an estimator. The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator hat{theta} is derived as a sample statistic and is used to estimate some population parameter, then the expectation is with respect to the sampling distribution of the sample statistic.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are equivalent.[5]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} ({hat {theta }},theta )^{2}.}

Proof of variance and bias relationship[edit]

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]+operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}+2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+operatorname {E} _{theta }left[2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)right]+operatorname {E} _{theta }left[left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)operatorname {E} _{theta }left[{hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]-theta ={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)left(operatorname {E} _{theta }[{hat {theta }}]-operatorname {E} _{theta }[{hat {theta }}]right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} _{theta }({hat {theta }},theta )^{2}end{aligned}}}

An even shorter proof can be achieved using the well-known formula that for a random variable {textstyle X}, {textstyle mathbb {E} (X^{2})=operatorname {Var} (X)+(mathbb {E} (X))^{2}}. By substituting {textstyle X} with, {textstyle {hat {theta }}-theta }, we have

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=mathbb {E} [({hat {theta }}-theta )^{2}]&=operatorname {Var} ({hat {theta }}-theta )+(mathbb {E} [{hat {theta }}-theta ])^{2}&=operatorname {Var} ({hat {theta }})+operatorname {Bias} ^{2}({hat {theta }})end{aligned}}}

But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see Bias–variance tradeoff). According to the relationship, the MSE of the estimators could be simply used for the efficiency comparison, which includes the information of estimator variance and bias. This is called MSE criterion.

In regression[edit]

In regression analysis, plotting is a more natural way to view the overall trend of the whole data. The mean of the distance from each point to the predicted regression model can be calculated, and shown as the mean squared error. The squaring is critical to reduce the complexity with negative signs. To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset,[6] but whose limitation is related to known distribution of the data.

The term mean squared error is sometimes used to refer to the unbiased estimate of error variance: the residual sum of squares divided by the number of degrees of freedom. This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, (np) for p regressors or (np−1) if an intercept is used (see errors and residuals in statistics for more details).[7] Although the MSE (as defined in this article) is not an unbiased estimator of the error variance, it is consistent, given the consistency of the predictor.

In regression analysis, «mean squared error», often referred to as mean squared prediction error or «out-of-sample mean squared error», can also refer to the mean value of the squared deviations of the predictions from the true values, over an out-of-sample test space, generated by a model estimated over a particular sample space. This also is a known, computed quantity, and it varies by sample and by out-of-sample test space.

Examples[edit]

Mean[edit]

Suppose we have a random sample of size n from a population, X_{1},dots ,X_{n}. Suppose the sample units were chosen with replacement. That is, the n units are selected one at a time, and previously selected units are still eligible for selection for all n draws. The usual estimator for the mu is the sample average

overline{X}=frac{1}{n}sum_{i=1}^n X_i

which has an expected value equal to the true mean mu (so it is unbiased) and a mean squared error of

{displaystyle operatorname {MSE} left({overline {X}}right)=operatorname {E} left[left({overline {X}}-mu right)^{2}right]=left({frac {sigma }{sqrt {n}}}right)^{2}={frac {sigma ^{2}}{n}}}

where sigma ^{2} is the population variance.

For a Gaussian distribution, this is the best unbiased estimator (i.e., one with the lowest MSE among all unbiased estimators), but not, say, for a uniform distribution.

Variance[edit]

The usual estimator for the variance is the corrected sample variance:

{displaystyle S_{n-1}^{2}={frac {1}{n-1}}sum _{i=1}^{n}left(X_{i}-{overline {X}}right)^{2}={frac {1}{n-1}}left(sum _{i=1}^{n}X_{i}^{2}-n{overline {X}}^{2}right).}

This is unbiased (its expected value is sigma ^{2}), hence also called the unbiased sample variance, and its MSE is[8]

{displaystyle operatorname {MSE} (S_{n-1}^{2})={frac {1}{n}}left(mu _{4}-{frac {n-3}{n-1}}sigma ^{4}right)={frac {1}{n}}left(gamma _{2}+{frac {2n}{n-1}}right)sigma ^{4},}

where mu _{4} is the fourth central moment of the distribution or population, and gamma_2=mu_4/sigma^4-3 is the excess kurtosis.

However, one can use other estimators for sigma ^{2} which are proportional to S^2_{n-1}, and an appropriate choice can always give a lower mean squared error. If we define

{displaystyle S_{a}^{2}={frac {n-1}{a}}S_{n-1}^{2}={frac {1}{a}}sum _{i=1}^{n}left(X_{i}-{overline {X}},right)^{2}}

then we calculate:

{displaystyle {begin{aligned}operatorname {MSE} (S_{a}^{2})&=operatorname {E} left[left({frac {n-1}{a}}S_{n-1}^{2}-sigma ^{2}right)^{2}right]&=operatorname {E} left[{frac {(n-1)^{2}}{a^{2}}}S_{n-1}^{4}-2left({frac {n-1}{a}}S_{n-1}^{2}right)sigma ^{2}+sigma ^{4}right]&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)operatorname {E} left[S_{n-1}^{2}right]sigma ^{2}+sigma ^{4}&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{2}right]=sigma ^{2}&={frac {(n-1)^{2}}{a^{2}}}left({frac {gamma _{2}}{n}}+{frac {n+1}{n-1}}right)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{4}right]=operatorname {MSE} (S_{n-1}^{2})+sigma ^{4}&={frac {n-1}{na^{2}}}left((n-1)gamma _{2}+n^{2}+nright)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}end{aligned}}}

This is minimized when

a=frac{(n-1)gamma_2+n^2+n}{n} = n+1+frac{n-1}{n}gamma_2.

For a Gaussian distribution, where gamma_2=0, this means that the MSE is minimized when dividing the sum by a=n+1. The minimum excess kurtosis is gamma_2=-2,[a] which is achieved by a Bernoulli distribution with p = 1/2 (a coin flip), and the MSE is minimized for {displaystyle a=n-1+{tfrac {2}{n}}.} Hence regardless of the kurtosis, we get a «better» estimate (in the sense of having a lower MSE) by scaling down the unbiased estimator a little bit; this is a simple example of a shrinkage estimator: one «shrinks» the estimator towards zero (scales down the unbiased estimator).

Further, while the corrected sample variance is the best unbiased estimator (minimum mean squared error among unbiased estimators) of variance for Gaussian distributions, if the distribution is not Gaussian, then even among unbiased estimators, the best unbiased estimator of the variance may not be S^2_{n-1}.

Gaussian distribution[edit]

The following table gives several estimators of the true parameters of the population, μ and σ2, for the Gaussian case.[9]

True value Estimator Mean squared error
{displaystyle theta =mu } hat{theta} = the unbiased estimator of the population mean, overline{X}=frac{1}{n}sum_{i=1}^n(X_i) operatorname{MSE}(overline{X})=operatorname{E}((overline{X}-mu)^2)=left(frac{sigma}{sqrt{n}}right)^2
{displaystyle theta =sigma ^{2}} hat{theta} = the unbiased estimator of the population variance, S^2_{n-1} = frac{1}{n-1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n-1})=operatorname{E}((S^2_{n-1}-sigma^2)^2)=frac{2}{n - 1}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n} = frac{1}{n}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n})=operatorname{E}((S^2_{n}-sigma^2)^2)=frac{2n - 1}{n^2}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n+1} = frac{1}{n+1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n+1})=operatorname{E}((S^2_{n+1}-sigma^2)^2)=frac{2}{n + 1}sigma^4

Interpretation[edit]

An MSE of zero, meaning that the estimator hat{theta} predicts observations of the parameter theta with perfect accuracy, is ideal (but typically not possible).

Values of MSE may be used for comparative purposes. Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

Both analysis of variance and linear regression techniques estimate the MSE as part of the analysis and use the estimated MSE to determine the statistical significance of the factors or predictors under study. The goal of experimental design is to construct experiments in such a way that when the observations are analyzed, the MSE is close to zero relative to the magnitude of at least one of the estimated treatment effects.

In one-way analysis of variance, MSE can be calculated by the division of the sum of squared errors and the degree of freedom. Also, the f-value is the ratio of the mean squared treatment and the MSE.

MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

Applications[edit]

  • Minimizing MSE is a key criterion in selecting estimators: see minimum mean-square error. Among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance, and the estimator that does this is the minimum variance unbiased estimator. However, a biased estimator may have lower MSE; see estimator bias.
  • In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory variables is possible without significantly harming the model’s predictive ability.
  • In forecasting and prediction, the Brier score is a measure of forecast skill based on MSE.

Loss function[edit]

Squared error loss is one of the most widely used loss functions in statistics[citation needed], though its widespread use stems more from mathematical convenience than considerations of actual loss in applications. Carl Friedrich Gauss, who introduced the use of mean squared error, was aware of its arbitrariness and was in agreement with objections to it on these grounds.[3] The mathematical benefits of mean squared error are particularly evident in its use at analyzing the performance of linear regression, as it allows one to partition the variation in a dataset into variation explained by the model and variation explained by randomness.

Criticism[edit]

The use of mean squared error without question has been criticized by the decision theorist James Berger. Mean squared error is the negative of the expected value of one specific utility function, the quadratic utility function, which may not be the appropriate utility function to use under a given set of circumstances. There are, however, some scenarios where mean squared error can serve as a good approximation to a loss function occurring naturally in an application.[10]

Like variance, mean squared error has the disadvantage of heavily weighting outliers.[11] This is a result of the squaring of each term, which effectively weights large errors more heavily than small ones. This property, undesirable in many applications, has led researchers to use alternatives such as the mean absolute error, or those based on the median.

See also[edit]

  • Bias–variance tradeoff
  • Hodges’ estimator
  • James–Stein estimator
  • Mean percentage error
  • Mean square quantization error
  • Mean square weighted deviation
  • Mean squared displacement
  • Mean squared prediction error
  • Minimum mean square error
  • Minimum mean squared error estimator
  • Overfitting
  • Peak signal-to-noise ratio

Notes[edit]

  1. ^ This can be proved by Jensen’s inequality as follows. The fourth central moment is an upper bound for the square of variance, so that the least value for their ratio is one, therefore, the least value for the excess kurtosis is −2, achieved, for instance, by a Bernoulli with p=1/2.

References[edit]

  1. ^ a b «Mean Squared Error (MSE)». www.probabilitycourse.com. Retrieved 2020-09-12.
  2. ^ Bickel, Peter J.; Doksum, Kjell A. (2015). Mathematical Statistics: Basic Ideas and Selected Topics. Vol. I (Second ed.). p. 20. If we use quadratic loss, our risk function is called the mean squared error (MSE) …
  3. ^ a b Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875.
  4. ^ Gareth, James; Witten, Daniela; Hastie, Trevor; Tibshirani, Rob (2021). An Introduction to Statistical Learning: with Applications in R. Springer. ISBN 978-1071614174.
  5. ^ Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical Statistics with Applications (7 ed.). Belmont, CA, USA: Thomson Higher Education. ISBN 978-0-495-38508-0.
  6. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  7. ^ Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
  8. ^ Mood, A.; Graybill, F.; Boes, D. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill. p. 229.
  9. ^ DeGroot, Morris H. (1980). Probability and Statistics (2nd ed.). Addison-Wesley.
  10. ^ Berger, James O. (1985). «2.4.2 Certain Standard Loss Functions». Statistical Decision Theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. p. 60. ISBN 978-0-387-96098-2. MR 0804611.
  11. ^ Bermejo, Sergio; Cabestany, Joan (2001). «Oriented principal component analysis for large margin classifiers». Neural Networks. 14 (10): 1447–1461. doi:10.1016/S0893-6080(01)00106-X. PMID 11771723.

From Wikipedia, the free encyclopedia

In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value).[citation needed] For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Definition and basic properties[edit]

The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled). The definition of an MSE differs according to whether one is describing a predictor or an estimator.

Predictor[edit]

If a vector of n predictions is generated from a sample of n data points on all variables, and Y is the vector of observed values of the variable being predicted, with hat{Y} being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

In other words, the MSE is the mean {textstyle left({frac {1}{n}}sum _{i=1}^{n}right)} of the squares of the errors {textstyle left(Y_{i}-{hat {Y_{i}}}right)^{2}}. This is an easily computable quantity for a particular sample (and hence is sample-dependent).

In matrix notation,

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}(e_{i})^{2}={frac {1}{n}}mathbf {e} ^{mathsf {T}}mathbf {e} }

where e_{i} is {displaystyle (Y_{i}-{hat {Y_{i}}})} and {displaystyle mathbf {e} } is the {displaystyle ntimes 1} column vector.

The MSE can also be computed on q data points that were not used in estimating the model, either because they were held back for this purpose, or because these data have been newly obtained. Within this process, known as statistical learning, the MSE is often called the test MSE,[4] and is computed as

{displaystyle operatorname {MSE} ={frac {1}{q}}sum _{i=n+1}^{n+q}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

Estimator[edit]

The MSE of an estimator hat{theta} with respect to an unknown parameter theta is defined as[1]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right].}

This definition depends on the unknown parameter, but the MSE is a priori a property of an estimator. The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator hat{theta} is derived as a sample statistic and is used to estimate some population parameter, then the expectation is with respect to the sampling distribution of the sample statistic.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are equivalent.[5]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} ({hat {theta }},theta )^{2}.}

Proof of variance and bias relationship[edit]

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]+operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}+2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+operatorname {E} _{theta }left[2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)right]+operatorname {E} _{theta }left[left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)operatorname {E} _{theta }left[{hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]-theta ={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)left(operatorname {E} _{theta }[{hat {theta }}]-operatorname {E} _{theta }[{hat {theta }}]right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]={text{const.}}&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} _{theta }({hat {theta }},theta )^{2}end{aligned}}}

An even shorter proof can be achieved using the well-known formula that for a random variable {textstyle X}, {textstyle mathbb {E} (X^{2})=operatorname {Var} (X)+(mathbb {E} (X))^{2}}. By substituting {textstyle X} with, {textstyle {hat {theta }}-theta }, we have

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=mathbb {E} [({hat {theta }}-theta )^{2}]&=operatorname {Var} ({hat {theta }}-theta )+(mathbb {E} [{hat {theta }}-theta ])^{2}&=operatorname {Var} ({hat {theta }})+operatorname {Bias} ^{2}({hat {theta }})end{aligned}}}

But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see Bias–variance tradeoff). According to the relationship, the MSE of the estimators could be simply used for the efficiency comparison, which includes the information of estimator variance and bias. This is called MSE criterion.

In regression[edit]

In regression analysis, plotting is a more natural way to view the overall trend of the whole data. The mean of the distance from each point to the predicted regression model can be calculated, and shown as the mean squared error. The squaring is critical to reduce the complexity with negative signs. To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset,[6] but whose limitation is related to known distribution of the data.

The term mean squared error is sometimes used to refer to the unbiased estimate of error variance: the residual sum of squares divided by the number of degrees of freedom. This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, (np) for p regressors or (np−1) if an intercept is used (see errors and residuals in statistics for more details).[7] Although the MSE (as defined in this article) is not an unbiased estimator of the error variance, it is consistent, given the consistency of the predictor.

In regression analysis, «mean squared error», often referred to as mean squared prediction error or «out-of-sample mean squared error», can also refer to the mean value of the squared deviations of the predictions from the true values, over an out-of-sample test space, generated by a model estimated over a particular sample space. This also is a known, computed quantity, and it varies by sample and by out-of-sample test space.

Examples[edit]

Mean[edit]

Suppose we have a random sample of size n from a population, X_{1},dots ,X_{n}. Suppose the sample units were chosen with replacement. That is, the n units are selected one at a time, and previously selected units are still eligible for selection for all n draws. The usual estimator for the mu is the sample average

overline{X}=frac{1}{n}sum_{i=1}^n X_i

which has an expected value equal to the true mean mu (so it is unbiased) and a mean squared error of

{displaystyle operatorname {MSE} left({overline {X}}right)=operatorname {E} left[left({overline {X}}-mu right)^{2}right]=left({frac {sigma }{sqrt {n}}}right)^{2}={frac {sigma ^{2}}{n}}}

where sigma ^{2} is the population variance.

For a Gaussian distribution, this is the best unbiased estimator (i.e., one with the lowest MSE among all unbiased estimators), but not, say, for a uniform distribution.

Variance[edit]

The usual estimator for the variance is the corrected sample variance:

{displaystyle S_{n-1}^{2}={frac {1}{n-1}}sum _{i=1}^{n}left(X_{i}-{overline {X}}right)^{2}={frac {1}{n-1}}left(sum _{i=1}^{n}X_{i}^{2}-n{overline {X}}^{2}right).}

This is unbiased (its expected value is sigma ^{2}), hence also called the unbiased sample variance, and its MSE is[8]

{displaystyle operatorname {MSE} (S_{n-1}^{2})={frac {1}{n}}left(mu _{4}-{frac {n-3}{n-1}}sigma ^{4}right)={frac {1}{n}}left(gamma _{2}+{frac {2n}{n-1}}right)sigma ^{4},}

where mu _{4} is the fourth central moment of the distribution or population, and gamma_2=mu_4/sigma^4-3 is the excess kurtosis.

However, one can use other estimators for sigma ^{2} which are proportional to S^2_{n-1}, and an appropriate choice can always give a lower mean squared error. If we define

{displaystyle S_{a}^{2}={frac {n-1}{a}}S_{n-1}^{2}={frac {1}{a}}sum _{i=1}^{n}left(X_{i}-{overline {X}},right)^{2}}

then we calculate:

{displaystyle {begin{aligned}operatorname {MSE} (S_{a}^{2})&=operatorname {E} left[left({frac {n-1}{a}}S_{n-1}^{2}-sigma ^{2}right)^{2}right]&=operatorname {E} left[{frac {(n-1)^{2}}{a^{2}}}S_{n-1}^{4}-2left({frac {n-1}{a}}S_{n-1}^{2}right)sigma ^{2}+sigma ^{4}right]&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)operatorname {E} left[S_{n-1}^{2}right]sigma ^{2}+sigma ^{4}&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{2}right]=sigma ^{2}&={frac {(n-1)^{2}}{a^{2}}}left({frac {gamma _{2}}{n}}+{frac {n+1}{n-1}}right)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{4}right]=operatorname {MSE} (S_{n-1}^{2})+sigma ^{4}&={frac {n-1}{na^{2}}}left((n-1)gamma _{2}+n^{2}+nright)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}end{aligned}}}

This is minimized when

a=frac{(n-1)gamma_2+n^2+n}{n} = n+1+frac{n-1}{n}gamma_2.

For a Gaussian distribution, where gamma_2=0, this means that the MSE is minimized when dividing the sum by a=n+1. The minimum excess kurtosis is gamma_2=-2,[a] which is achieved by a Bernoulli distribution with p = 1/2 (a coin flip), and the MSE is minimized for {displaystyle a=n-1+{tfrac {2}{n}}.} Hence regardless of the kurtosis, we get a «better» estimate (in the sense of having a lower MSE) by scaling down the unbiased estimator a little bit; this is a simple example of a shrinkage estimator: one «shrinks» the estimator towards zero (scales down the unbiased estimator).

Further, while the corrected sample variance is the best unbiased estimator (minimum mean squared error among unbiased estimators) of variance for Gaussian distributions, if the distribution is not Gaussian, then even among unbiased estimators, the best unbiased estimator of the variance may not be S^2_{n-1}.

Gaussian distribution[edit]

The following table gives several estimators of the true parameters of the population, μ and σ2, for the Gaussian case.[9]

True value Estimator Mean squared error
{displaystyle theta =mu } hat{theta} = the unbiased estimator of the population mean, overline{X}=frac{1}{n}sum_{i=1}^n(X_i) operatorname{MSE}(overline{X})=operatorname{E}((overline{X}-mu)^2)=left(frac{sigma}{sqrt{n}}right)^2
{displaystyle theta =sigma ^{2}} hat{theta} = the unbiased estimator of the population variance, S^2_{n-1} = frac{1}{n-1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n-1})=operatorname{E}((S^2_{n-1}-sigma^2)^2)=frac{2}{n - 1}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n} = frac{1}{n}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n})=operatorname{E}((S^2_{n}-sigma^2)^2)=frac{2n - 1}{n^2}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n+1} = frac{1}{n+1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n+1})=operatorname{E}((S^2_{n+1}-sigma^2)^2)=frac{2}{n + 1}sigma^4

Interpretation[edit]

An MSE of zero, meaning that the estimator hat{theta} predicts observations of the parameter theta with perfect accuracy, is ideal (but typically not possible).

Values of MSE may be used for comparative purposes. Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

Both analysis of variance and linear regression techniques estimate the MSE as part of the analysis and use the estimated MSE to determine the statistical significance of the factors or predictors under study. The goal of experimental design is to construct experiments in such a way that when the observations are analyzed, the MSE is close to zero relative to the magnitude of at least one of the estimated treatment effects.

In one-way analysis of variance, MSE can be calculated by the division of the sum of squared errors and the degree of freedom. Also, the f-value is the ratio of the mean squared treatment and the MSE.

MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

Applications[edit]

  • Minimizing MSE is a key criterion in selecting estimators: see minimum mean-square error. Among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance, and the estimator that does this is the minimum variance unbiased estimator. However, a biased estimator may have lower MSE; see estimator bias.
  • In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory variables is possible without significantly harming the model’s predictive ability.
  • In forecasting and prediction, the Brier score is a measure of forecast skill based on MSE.

Loss function[edit]

Squared error loss is one of the most widely used loss functions in statistics[citation needed], though its widespread use stems more from mathematical convenience than considerations of actual loss in applications. Carl Friedrich Gauss, who introduced the use of mean squared error, was aware of its arbitrariness and was in agreement with objections to it on these grounds.[3] The mathematical benefits of mean squared error are particularly evident in its use at analyzing the performance of linear regression, as it allows one to partition the variation in a dataset into variation explained by the model and variation explained by randomness.

Criticism[edit]

The use of mean squared error without question has been criticized by the decision theorist James Berger. Mean squared error is the negative of the expected value of one specific utility function, the quadratic utility function, which may not be the appropriate utility function to use under a given set of circumstances. There are, however, some scenarios where mean squared error can serve as a good approximation to a loss function occurring naturally in an application.[10]

Like variance, mean squared error has the disadvantage of heavily weighting outliers.[11] This is a result of the squaring of each term, which effectively weights large errors more heavily than small ones. This property, undesirable in many applications, has led researchers to use alternatives such as the mean absolute error, or those based on the median.

See also[edit]

  • Bias–variance tradeoff
  • Hodges’ estimator
  • James–Stein estimator
  • Mean percentage error
  • Mean square quantization error
  • Mean square weighted deviation
  • Mean squared displacement
  • Mean squared prediction error
  • Minimum mean square error
  • Minimum mean squared error estimator
  • Overfitting
  • Peak signal-to-noise ratio

Notes[edit]

  1. ^ This can be proved by Jensen’s inequality as follows. The fourth central moment is an upper bound for the square of variance, so that the least value for their ratio is one, therefore, the least value for the excess kurtosis is −2, achieved, for instance, by a Bernoulli with p=1/2.

References[edit]

  1. ^ a b «Mean Squared Error (MSE)». www.probabilitycourse.com. Retrieved 2020-09-12.
  2. ^ Bickel, Peter J.; Doksum, Kjell A. (2015). Mathematical Statistics: Basic Ideas and Selected Topics. Vol. I (Second ed.). p. 20. If we use quadratic loss, our risk function is called the mean squared error (MSE) …
  3. ^ a b Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875.
  4. ^ Gareth, James; Witten, Daniela; Hastie, Trevor; Tibshirani, Rob (2021). An Introduction to Statistical Learning: with Applications in R. Springer. ISBN 978-1071614174.
  5. ^ Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical Statistics with Applications (7 ed.). Belmont, CA, USA: Thomson Higher Education. ISBN 978-0-495-38508-0.
  6. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  7. ^ Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
  8. ^ Mood, A.; Graybill, F.; Boes, D. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill. p. 229.
  9. ^ DeGroot, Morris H. (1980). Probability and Statistics (2nd ed.). Addison-Wesley.
  10. ^ Berger, James O. (1985). «2.4.2 Certain Standard Loss Functions». Statistical Decision Theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. p. 60. ISBN 978-0-387-96098-2. MR 0804611.
  11. ^ Bermejo, Sergio; Cabestany, Joan (2001). «Oriented principal component analysis for large margin classifiers». Neural Networks. 14 (10): 1447–1461. doi:10.1016/S0893-6080(01)00106-X. PMID 11771723.

Содержание:

Регрессионный анализ:

Регрессионным анализом называется раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между случайными величинами по результатам наблюдений над ними. Сюда включаются методы выбора модели изучаемой зависимости и оценки ее параметров, методы проверки статистических гипотез о зависимости.

Пусть между случайными величинами X и Y существует линейная корреляционная зависимость. Это означает, что математическое ожидание Y линейно зависит от значений случайной величины X. График этой зависимости (линия регрессии Y на X) имеет уравнение Регрессионный анализ - определение и вычисление с примерами решения

Линейная модель пригодна в качестве первого приближения и в случае нелинейной корреляции, если рассматривать небольшие интервалы возможных значений случайных величин.

Пусть параметры линии регрессии Регрессионный анализ - определение и вычисление с примерами решения неизвестны, неизвестна и величина коэффициента корреляции Регрессионный анализ - определение и вычисление с примерами решения Над случайными величинами X и Y проделано n независимых наблюдений, в результате которых получены n пар значений: Регрессионный анализ - определение и вычисление с примерами решения Эти результаты могут служить источником информации о неизвестных значениях Регрессионный анализ - определение и вычисление с примерами решения надо только уметь эту информацию извлечь оттуда.

Неизвестная нам линия регрессии Регрессионный анализ - определение и вычисление с примерами решения как и всякая линия регрессии, имеет то отличительное свойство, что средний квадрат отклонений значений Y от нее минимален. Поэтому в качестве оценок для Регрессионный анализ - определение и вычисление с примерами решения можно принять те их значения, при которых имеет минимум функция Регрессионный анализ - определение и вычисление с примерами решения

Такие значения Регрессионный анализ - определение и вычисление с примерами решения, согласно необходимым условиям экстремума, находятся из системы уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

Решения этой системы уравнений дают оценки называемые оценками по методу наименьших квадратов.Регрессионный анализ - определение и вычисление с примерами решения

и

Регрессионный анализ - определение и вычисление с примерами решения

Известно, что оценки по методу наименьших квадратов являются несмещенными и, более того, среди всех несмещенных оценок обладают наименьшей дисперсией. Для оценки коэффициента корреляции можно воспользоваться тем, что Регрессионный анализ - определение и вычисление с примерами решения где Регрессионный анализ - определение и вычисление с примерами решения средние квадратические отклонения случайных величин X и Y соответственно. Обозначим через Регрессионный анализ - определение и вычисление с примерами решения оценки этих средних квадратических отклонений на основе опытных данных. Оценки можно найти, например, по формуле (3.1.3). Тогда для коэффициента корреляции имеем оценку Регрессионный анализ - определение и вычисление с примерами решения

По методу наименьших квадратов можно находить оценки параметров линии регрессии и при нелинейной корреляции. Например, для линии регрессии вида Регрессионный анализ - определение и вычисление с примерами решения оценки параметров Регрессионный анализ - определение и вычисление с примерами решения находятся из условия минимума функции

Регрессионный анализ - определение и вычисление с примерами решения

Пример:

По данным наблюдений двух случайных величин найти коэффициент корреляции и уравнение линии регрессии Y наРегрессионный анализ - определение и вычисление с примерами решения

Решение. Вычислим величины, необходимые для использования формул (3.7.1)–(3.7.3):

 Регрессионный анализ - определение и вычисление с примерами решения

По формулам (3.7.1) и (3.7.2) получимРегрессионный анализ - определение и вычисление с примерами решения

Итак, оценка линии регрессии имеет вид Регрессионный анализ - определение и вычисление с примерами решения Так как Регрессионный анализ - определение и вычисление с примерами решения то по формуле (3.1.3)

Регрессионный анализ - определение и вычисление с примерами решения

Аналогично, Регрессионный анализ - определение и вычисление с примерами решения Поэтому в качестве оценки коэффициента корреляции имеем по формуле (3.7.3) величину Регрессионный анализ - определение и вычисление с примерами решения

Ответ.  Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Получена выборка значений величин X и YРегрессионный анализ - определение и вычисление с примерами решения

Для представления зависимости между величинами предполагается использовать модель Регрессионный анализ - определение и вычисление с примерами решения Найти оценки параметров Регрессионный анализ - определение и вычисление с примерами решения

Решение. Рассмотрим сначала задачу оценки параметров этой модели в общем виде. Линия Регрессионный анализ - определение и вычисление с примерами решения играет роль линии регрессии и поэтому параметры ее можно найти из условия минимума функции (сумма квадратов отклонений значений Y от линии должна быть минимальной по свойству линии регрессии)Регрессионный анализ - определение и вычисление с примерами решения

Необходимые условия экстремума приводят к системе из двух уравнений:Регрессионный анализ - определение и вычисление с примерами решения

Откуда

Регрессионный анализ - определение и вычисление с примерами решения

Решения системы уравнений (3.7.4) и (3.7.5) и будут оценками по методу наименьших квадратов для параметров Регрессионный анализ - определение и вычисление с примерами решения

На основе опытных данных вычисляем:Регрессионный анализ - определение и вычисление с примерами решения

В итоге получаем систему уравнений (?????) и (?????) в виде Регрессионный анализ - определение и вычисление с примерами решения

Эта система имеет решения Регрессионный анализ - определение и вычисление с примерами решения

Ответ. Регрессионный анализ - определение и вычисление с примерами решения

Если наблюдений много, то результаты их обычно группируют и представляют в виде корреляционной таблицы.Регрессионный анализ - определение и вычисление с примерами решения

В этой таблице Регрессионный анализ - определение и вычисление с примерами решения равно числу наблюдений, для которых X находится в интервале Регрессионный анализ - определение и вычисление с примерами решения а Y – в интервале Регрессионный анализ - определение и вычисление с примерами решения Через Регрессионный анализ - определение и вычисление с примерами решения обозначено число наблюдений, при которых Регрессионный анализ - определение и вычисление с примерами решения а Y произвольно. Число наблюдений, при которых Регрессионный анализ - определение и вычисление с примерами решения а X произвольно, обозначено через Регрессионный анализ - определение и вычисление с примерами решения

Если величины дискретны, то вместо интервалов указывают отдельные значения этих величин. Для непрерывных случайных величин представителем каждого интервала считают его середину и полагают, что Регрессионный анализ - определение и вычисление с примерами решения и Регрессионный анализ - определение и вычисление с примерами решения  наблюдались Регрессионный анализ - определение и вычисление с примерами решения раз.

При больших значениях X и Y можно для упрощения вычислений перенести начало координат и изменить масштаб по каждой из осей, а после завершения вычислений вернуться к старому масштабу.

Пример:

Проделано 80 наблюдений случайных величин X и Y. Результаты наблюдений представлены в виде таблицы. Найти линию регрессии Y на X. Оценить коэффициент корреляции.Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Решение. Представителем каждого интервала будем считать его середину. Перенесем начало координат и изменим масштаб по каждой оси так, чтобы значения X и Y были удобны для вычислений. Для этого перейдем к новым переменным Регрессионный анализ - определение и вычисление с примерами решения Значения этих новых переменных указаны соответственно в самой верхней строке и самом левом столбце таблицы.

Чтобы иметь представление о виде линии регрессии, вычислим средние значения Регрессионный анализ - определение и вычисление с примерами решения при фиксированных значениях Регрессионный анализ - определение и вычисление с примерами решения:Регрессионный анализ - определение и вычисление с примерами решения

Нанесем эти значения на координатную плоскость, соединив для наглядности их отрезками прямой (рис. 3.7.1).Регрессионный анализ - определение и вычисление с примерами решения

По виду полученной ломанной линии можно предположить, что линия регрессии Y на X является прямой. Оценим ее параметры. Для этого сначала вычислим с учетом группировки данных в таблице все величины, необходимые для использования формул (3.31–3.33): Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Тогда

Регрессионный анализ - определение и вычисление с примерами решения

В новом масштабе оценка линии регрессии имеет вид Регрессионный анализ - определение и вычисление с примерами решения График этой прямой линии изображен на рис. 3.7.1.

Для оценки Регрессионный анализ - определение и вычисление с примерами решения по корреляционной таблице можно воспользоваться формулой (3.1.3):

Регрессионный анализ - определение и вычисление с примерами решения

Подобным же образом можно оценить Регрессионный анализ - определение и вычисление с примерами решения величиной Регрессионный анализ - определение и вычисление с примерами решения Тогда оценкой коэффициента корреляции может служить величина Регрессионный анализ - определение и вычисление с примерами решения

Вернемся к старому масштабу:

 Регрессионный анализ - определение и вычисление с примерами решения

Коэффициент корреляции пересчитывать не нужно, так как это величина безразмерная и от масштаба не зависит.

Ответ. Регрессионный анализ - определение и вычисление с примерами решения

Пусть некоторые физические величины X и Y связаны неизвестной нам функциональной зависимостью Регрессионный анализ - определение и вычисление с примерами решения Для изучения этой зависимости производят измерения Y при разных значениях X. Измерениям сопутствуют ошибки и поэтому результат каждого измерения случаен. Если систематической ошибки при измерениях нет, то Регрессионный анализ - определение и вычисление с примерами решения играет роль линии регрессии и все свойства линии регрессии приложимы к Регрессионный анализ - определение и вычисление с примерами решения. В частности, Регрессионный анализ - определение и вычисление с примерами решения обычно находят по методу наименьших квадратов.

Регрессионный анализ

Основные положения регрессионного анализа:

Основная задача регрессионного анализа — изучение зависимости между результативным признаком Y и наблюдавшимся признаком X, оценка функции регрессий.

Предпосылки регрессионного анализа:

  1. Y — независимые случайные величины, имеющие постоянную дисперсию;
  2. X— величины наблюдаемого признака (величины не случайные);
  3. условное математическое ожидание Регрессионный анализ - определение и вычисление с примерами решения можно представить в виде Регрессионный анализ - определение и вычисление с примерами решения

Выражение (2.1), как уже упоминалось в п. 1.2, называется функцией регрессии (или модельным уравнением регрессии) Y на X. Оценке в этом выражении подлежат параметры Регрессионный анализ - определение и вычисление с примерами решения называемые коэффициентами регрессии, а также Регрессионный анализ - определение и вычисление с примерами решения— остаточная дисперсия.

Остаточной дисперсией называется та часть рассеивания результативного признака, которую нельзя объяснить действием наблюдаемого признака; Остаточная дисперсия может служить для оценки точности подбора вида функции регрессии (модельного уравнения регрессии), полноты набора признаков, включенных в анализ. Оценки параметров функции регрессии находят, используя метод наименьших квадратов.

В данном вопросе рассмотрен линейный регрессионный анализ. Линейным он называется потому, что изучаем лишь те виды зависимостейРегрессионный анализ - определение и вычисление с примерами решения которые линейны по оцениваемым параметрам, хотя могут быть нелинейны по переменным X. Например, зависимости Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения линейны относительно параметров Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения хотя вторая и третья зависимости нелинейны относительно переменных х. Вид зависимости Регрессионный анализ - определение и вычисление с примерами решения выбирают, исходя из визуальной оценки характера расположения точек на поле корреляции; опыта предыдущих исследований; соображений профессионального характера, основанных и знании физической сущности процесса.

Важное место в линейном регрессионном анализе занимает так называемая «нормальная регрессия». Она имеет место, если сделать предположения относительно закона распределения случайной величины Y. Предпосылки «нормальной регрессии»:

  1. Y — независимые случайные величины, имеющие постоянную дисперсию и распределенные по нормальному закону;
  2. X— величины наблюдаемого признака (величины не случайные);
  3. условное математическое ожидание Регрессионный анализ - определение и вычисление с примерами решения можно представить в виде (2.1).

В этом случае оценки коэффициентов регрессии — несмещённые с минимальной дисперсией и нормальным законом распределения. Из этого положения следует что при «нормальной регрессии» имеется возможность оценить значимость оценок коэффициентов регрессии, а также построить доверительный интервал для коэффициентов регрессии и условного математического ожидания M(YX=x).

Линейная регрессия

Рассмотрим простейший случай регрессионного анализа — модель вида (2.1), когда зависимость Регрессионный анализ - определение и вычисление с примерами решения линейна и по оцениваемым параметрам, и

по переменным. Оценки параметров модели (2.1) Регрессионный анализ - определение и вычисление с примерами решения обозначил Регрессионный анализ - определение и вычисление с примерами решенияОценку остаточной дисперсии Регрессионный анализ - определение и вычисление с примерами решения обозначим Регрессионный анализ - определение и вычисление с примерами решенияПодставив в формулу (2.1) вместо параметров их оценки, получим уравнение регрессии Регрессионный анализ - определение и вычисление с примерами решениякоэффициенты которого Регрессионный анализ - определение и вычисление с примерами решения находят из условия минимума суммы квадратов отклонений измеренных значений результативного признакаРегрессионный анализ - определение и вычисление с примерами решения от вычисленных по уравнению регрессии Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Составим систему нормальных уравнений: первое уравнение

Регрессионный анализ - определение и вычисление с примерами решения

откуда   Регрессионный анализ - определение и вычисление с примерами решения

второе уравнениеРегрессионный анализ - определение и вычисление с примерами решения

откудаРегрессионный анализ - определение и вычисление с примерами решения

Итак,
Регрессионный анализ - определение и вычисление с примерами решения
Оценки, полученные по способу наименьших квадратов, обладают минимальной дисперсией в классе линейных оценок. Решая систему (2.2) относительноРегрессионный анализ - определение и вычисление с примерами решения найдём оценки параметров Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Остаётся получить оценку параметра Регрессионный анализ - определение и вычисление с примерами решения . Имеем
Регрессионный анализ - определение и вычисление с примерами решения
где т — количество наблюдений.

Еслит велико, то для упрощения расчётов наблюдавшиеся данные принята группировать, т.е. строить корреляционную таблицу. Пример построения такой таблицы приведен в п. 1.5. Формулы для нахождения коэффициентов регрессии по сгруппированным данным те же, что и для расчёта по несгруппированным данным, но суммыРегрессионный анализ - определение и вычисление с примерами решениязаменяют на
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения — частоты повторений соответствующих значений переменных. В дальнейшем часто используется этот наглядный приём вычислений.
 

Нелинейная регрессия

Рассмотрим случай, когда зависимость нелинейна по переменным х, например модель вида
Регрессионный анализ - определение и вычисление с примерами решения   Регрессионный анализ - определение и вычисление с примерами решения

На рис. 2.1 изображено поле корреляции. Очевидно, что зависимость между Y и X нелинейная и её графическим изображением является не прямая, а кривая. Оценкой выражения (2.6) является уравнение регрессии

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения —оценки коэффициентов регрессии Регрессионный анализ - определение и вычисление с примерами решения
Регрессионный анализ - определение и вычисление с примерами решения
Принцип нахождения коэффициентов тот же — метод наименьших квадратов, т.е.

Регрессионный анализ - определение и вычисление с примерами решения

или

Регрессионный анализ - определение и вычисление с примерами решения

Дифференцируя последнее равенство по Регрессионный анализ - определение и вычисление с примерами решения и приравнивая правые части нулю, получаем так называемую систему нормальных уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

В общем случае нелинейной зависимости между переменными Y и X связь может выражаться многочленом k-й степени от x:

Регрессионный анализ - определение и вычисление с примерами решения

Коэффициенты регрессии определяют по принципу наименьших квадратов. Система нормальных уравнений имеет вид

Регрессионный анализ - определение и вычисление с примерами решения
Вычислив коэффициенты системы, её можно решить любым известным способом.
 

Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии

Проверить значимость оценок коэффициентов регрессии — значит установить, достаточна ли величина оценки для статистически обоснованного вывода о том, что коэффициент регрессии отличен от нуля. Для этого проверяют гипотезу о равенстве нулю коэффициента регрессии, соблюдая предпосылки «нормальной регрессии». В этом случае вычисляемая для проверки нулевой гипотезы Регрессионный анализ - определение и вычисление с примерами решения статистика

Регрессионный анализ - определение и вычисление с примерами решения

имеет распределение Стьюдента с к= n-2 степенями свободы (b — оценка коэффициента регрессии, Регрессионный анализ - определение и вычисление с примерами решения— оценка среднеквадратического отклонения

коэффициента регрессии, иначе стандартная ошибка оценки). По уровню значимости а и числу степеней свободы к находят по таблицам распределения Стьюдента (см. табл. 1 приложений) критическое значениеРегрессионный анализ - определение и вычисление с примерами решения удовлетворяющее условию Регрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают, коэффициент считают значимым. ПриРегрессионный анализ - определение и вычисление с примерами решениянет оснований отвергать нулевую гипотезу.

Оценки среднеквадратического отклонения коэффициентов регрессии вычисляют по следующим формулам:
Регрессионный анализ - определение и вычисление с примерами решения
где   Регрессионный анализ - определение и вычисление с примерами решения— оценка остаточной дисперсии, вычисляемая по
формуле (2.5).

Доверительный интервал для значимых параметров строят по обычной схеме. Из условия

Регрессионный анализ - определение и вычисление с примерами решения
где а — уровень значимости, находим

Регрессионный анализ - определение и вычисление с примерами решения
 

Интервальная оценка для условного математического ожидания

Линия регрессии характеризует изменение условного математического ожидания результативного признака от вариации остальных признаков.

Точечной оценкой условного математического ожидания Регрессионный анализ - определение и вычисление с примерами решения является условное среднее Регрессионный анализ - определение и вычисление с примерами решения   Кроме точечной оценки для Регрессионный анализ - определение и вычисление с примерами решения можно
построить доверительный интервал в точке Регрессионный анализ - определение и вычисление с примерами решения

Известно, что Регрессионный анализ - определение и вычисление с примерами решения имеет распределение
Стьюдента с k=n—2 степенями свободы. Найдя оценку среднеквадратического отклонения для условного среднего, можно построить доверительный интервал для условного математического ожидания Регрессионный анализ - определение и вычисление с примерами решения

Оценку дисперсии условного среднего вычисляют по формуле
Регрессионный анализ - определение и вычисление с примерами решения
или для интервального ряда
Регрессионный анализ - определение и вычисление с примерами решения
Доверительный интервал находят из условия
Регрессионный анализ - определение и вычисление с примерами решения
где а — уровень значимости. Отсюда

Регрессионный анализ - определение и вычисление с примерами решения
Доверительный интервал для условного математического ожидания можно изобразить графически (рис, 2.2).

Регрессионный анализ - определение и вычисление с примерами решения

Из рис. 2.2 видно, что в точке Регрессионный анализ - определение и вычисление с примерами решения границы интервала наиболее близки друг другу. Расположение границ доверительного интервала показывает, что прогнозы по уравнению регрессии, хороши только в случае, если значение х не выходит за пределы выборки, по которой вычислено уравнение регрессии; иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.

Проверка значимости уравнения регрессии

Оценить значимость уравнения регрессии — значит установить, соответствует ли математическая, модель, выражающая зависимость между Y и X, экспериментальным данным. Для оценки значимости в предпосылках «нормальной регрессии» проверяют гипотезу Регрессионный анализ - определение и вычисление с примерами решения Если она отвергается, то считают, что между Y и X нет связи (или связь нелинейная). Для проверки нулевой гипотезы используют основное положение дисперсионного анализа о разбиении суммы квадратов на слагаемые. Воспользуемся разложением Регрессионный анализ - определение и вычисление с примерами решения— Общая сумма квадратов отклонений результативного признака

Регрессионный анализ - определение и вычисление с примерами решения разлагается на Регрессионный анализ - определение и вычисление с примерами решения (сумму, характеризующую влияние признака

X) и Регрессионный анализ - определение и вычисление с примерами решения (остаточную сумму квадратов, характеризующую влияние неучтённых факторов). Очевидно, чем меньше влияние неучтённых факторов, тем лучше математическая модель соответствует экспериментальным данным, так как вариация У в основном объясняется влиянием признака X.

Для проверки нулевой гипотезы вычисляют статистику Регрессионный анализ - определение и вычисление с примерами решения которая имеет распределение Фишера-Снедекора с АРегрессионный анализ - определение и вычисление с примерами решения степенями свободы (в п — число наблюдений). По уровню значимости а и числу степеней свободы Регрессионный анализ - определение и вычисление с примерами решения находят по таблицам F-распределение для уровня значимости а=0,05 (см. табл. 3 приложений) критическое значениеРегрессионный анализ - определение и вычисление с примерами решения удовлетворяющее условию Регрессионный анализ - определение и вычисление с примерами решения. Если Регрессионный анализ - определение и вычисление с примерами решениянулевую гипотезу отвергают, уравнение считают значимым. Если Регрессионный анализ - определение и вычисление с примерами решения то нет оснований отвергать нулевую гипотезу.

Многомерный регрессионный анализ

В случае, если изменения результативного признака определяются действием совокупности других признаков, имеет место многомерный регрессионный анализ. Пусть результативный признак У, а независимые признаки Регрессионный анализ - определение и вычисление с примерами решенияДля многомерного случая предпосылки регрессионного анализа можно сформулировать следующим образом: У -независимые случайные величины со средним Регрессионный анализ - определение и вычисление с примерами решения и постоянной дисперсией Регрессионный анализ - определение и вычисление с примерами решения— линейно независимые векторы Регрессионный анализ - определение и вычисление с примерами решения. Все положения, изложенные в п.2.1, справедливы для многомерного случая. Рассмотрим модель вида 

Регрессионный анализ - определение и вычисление с примерами решения

Оценке подлежат параметры Регрессионный анализ - определение и вычисление с примерами решения и остаточная дисперсия.

Заменив параметры их оценками, запишем уравнение регрессии

Регрессионный анализ - определение и вычисление с примерами решения
Коэффициенты в этом выражении находят методом наименьших квадратов.

Исходными данными для вычисления коэффициентов Регрессионный анализ - определение и вычисление с примерами решения является выборка из многомерной совокупности, представляемая обычно в виде матрицы X и вектора Y:
Регрессионный анализ - определение и вычисление с примерами решения   

Как и в двумерном случае, составляют систему нормальных уравнений
Регрессионный анализ - определение и вычисление с примерами решения
которую можно решить любым способом, известным из линейной алгебры. Рассмотрим один из них — способ обратной матрицы. Предварительно преобразуем систему уравнений. Выразим из первого уравнения значение Регрессионный анализ - определение и вычисление с примерами решениячерез остальные параметры:

Регрессионный анализ - определение и вычисление с примерами решения

Подставим в остальные уравнения системы вместо Регрессионный анализ - определение и вычисление с примерами решения полученное выражение:

Регрессионный анализ - определение и вычисление с примерами решения

Пусть С — матрица коэффициентов при неизвестных параметрах Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения— матрица, обратная матрице С; Регрессионный анализ - определение и вычисление с примерами решения — элемент, стоящий на пересечении i-Й строки и i-го столбца матрицыРегрессионный анализ - определение и вычисление с примерами решения    — выражение
Регрессионный анализ - определение и вычисление с примерами решения. Тогда, используя формулы линейной алгебры,

запишем окончательные выражения для параметров:

Регрессионный анализ - определение и вычисление с примерами решения

Оценкой остаточной дисперсииРегрессионный анализ - определение и вычисление с примерами решения является

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения — измеренное значение результативного признака;Регрессионный анализ - определение и вычисление с примерами решения значение результативного признака, вычисленное по уравнению регрессий.

Если выборка получена из нормально распределенной генеральной совокупности, то, аналогично изложенному в п. 2.4, можно проверить значимость оценок коэффициентов регрессии, только в данном случае статистикуРегрессионный анализ - определение и вычисление с примерами решения вычисляют для каждого j-го коэффициента регрессии

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения—элемент обратной матрицы, стоящий на пересечении i-й строки и j-
го столбца;Регрессионный анализ - определение и вычисление с примерами решения —диагональный элемент обратной матрицы.

При заданном уровне значимости а и числе степеней свободы к=n— m—1 по табл. 1 приложений находят критическое значение Регрессионный анализ - определение и вычисление с примерами решения ЕслиРегрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают. Оценку коэффициента считают значимой. Такую проверку производят последовательно для каждого коэффициента регрессии. ЕслиРегрессионный анализ - определение и вычисление с примерами решения то нет оснований отвергать нулевую гипотезу, оценку коэффициента регрессии считают незначимой.

Для значимых коэффициентов регрессии целесообразно построить доверительные интервалы по формуле (2.10). Для оценки значимости уравнения регрессии следует проверить нулевую гипотезу о том, что все коэффициенты регрессии (кроме свободного члена) равны нулю:Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения — вектор коэффициентов регрессии). Нулевую гипотезу проверяют, так же как и в п. 2.6, с помощью статистики Регрессионный анализ - определение и вычисление с примерами решения, где Регрессионный анализ - определение и вычисление с примерами решения — сумма квадратов, характеризующая влияние признаков X; Регрессионный анализ - определение и вычисление с примерами решения — остаточная сумма квадратов, характеризующая влияние неучтённых факторов; Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решенияДля уровня значимости а и числа степеней свободы Регрессионный анализ - определение и вычисление с примерами решения по табл. 3 приложений находят критическое значение Регрессионный анализ - определение и вычисление с примерами решения Если Регрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу об одновременном равенстве нулю коэффициентов регрессии отвергают. Уравнение регрессии считают значимым. При Регрессионный анализ - определение и вычисление с примерами решения нет оснований отвергать нулевую гипотезу, уравнение регрессии считают незначимым.

Факторный анализ

Основные положения. В последнее время всё более широкое распространение находит один из новых разделов многомерного статистического анализа — факторный анализ. Первоначально этот метод

разрабатывался для объяснения многообразия корреляций между исходными параметрами. Действительно, результатом корреляционного анализа является матрица коэффициентов корреляций. При малом числе параметров можно произвести визуальный анализ этой матрицы. С ростом числа параметра (10 и более) визуальный анализ не даёт положительных результатов. Оказалось, что всё многообразие корреляционных связей можно объяснить действием нескольких обобщённых факторов, являющихся функциями исследуемых параметров, причём сами обобщённые факторы при этом могут быть и неизвестны, однако их можно выразить через исследуемые параметры.

Один из основоположников факторного анализа Л. Терстоун приводит такой пример: несколько сотен мальчиков выполняют 20 разнообразных гимнастических упражнений. Каждое упражнение оценивают баллами. Можно рассчитать матрицу корреляций между 20 упражнениями. Это большая матрица размером 20><20. Изучая такую матрицу, трудно уловить закономерность связей между упражнениями. Нельзя ли объяснить скрытую в таблице закономерность действием каких-либо обобщённых факторов, которые в результате эксперимента непосредственно, не оценивались? Оказалось, что обо всех коэффициентах корреляции можно судить по трём обобщённым факторам, которые и определяют успех выполнения всех 20 гимнастических упражнений: чувство равновесия, усилие правого плеча, быстрота движения тела.

Дальнейшие разработки факторного анализа доказали, что этот метод может быть с успехом применён в задачах группировки и классификации объектов. Факторный анализ позволяет группировать объекты со сходными сочетаниями признаков и группировать признаки с общим характером изменения от объекта к объекту. Действительно, выделенные обобщённые факторы можно использовать как критерии при классификации мальчиков по способностям к отдельным группам гимнастических упражнений.

Методы факторного анализа находят применение в психологии и экономике, социологии и экономической географии. Факторы, выраженные через исходные параметры, как правило, легко интерпретировать как некоторые существенные внутренние характеристики объектов.

Факторный анализ может быть использован и как самостоятельный метод исследования, и вместе с другими методами многомерного анализа, например в сочетании с регрессионным анализом. В этом случае для набора зависимых переменных наводят обобщённые факторы, которые потом входят в регрессионный анализ в качестве переменных. Такой подход позволяет сократить число переменных в регрессионном анализе, устранить коррелированность переменных, уменьшить влияние ошибок и в случае ортогональности выделенных факторов значительно упростить оценку значимости переменных.

Представление, информации в факторном анализе

Для проведения факторного анализа информация должна быть представлена в виде двумерной таблицы чисел размерностью Регрессионный анализ - определение и вычисление с примерами решенияаналогичной приведенной в п. 2.7 (матрица исходных данных). Строки этой матрицы должны соответствовать объектам наблюдений Регрессионный анализ - определение и вычисление с примерами решения столбцы — признакамРегрессионный анализ - определение и вычисление с примерами решениятаким образом, каждый признак является как бы статистическим рядом, в котором наблюдения варьируют от объекта к объекту. Признаки, характеризующие объект наблюдения, как правило, имеют различную размерность. Чтобы устранить влияние размерности и обеспечить сопоставимость признаков, матрицу исходных данных    обычно нормируют, вводя единый    масштаб. Самым распространенным видом нормировки является стандартизация. От переменных Регрессионный анализ - определение и вычисление с примерами решения переходят к переменным Регрессионный анализ - определение и вычисление с примерами решенияВ дальнейшем, говоря о матрице исходных переменных, всегда будем иметь в виду стандартизованную матрицу.

Основная модель факторного анализа. Основная модель факторного анализа имеет вид

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения-j-й признак (величина случайная); Регрессионный анализ - определение и вычисление с примерами решения— общие факторы (величины случайные, имеющие нормальный закон распределения); Регрессионный анализ - определение и вычисление с примерами решения— характерный фактор; Регрессионный анализ - определение и вычисление с примерами решения— факторные нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);Регрессионный анализ - определение и вычисление с примерами решения — нагрузка характерного фактора.

Модель предполагает, что каждый из j признаков, входящих в исследуемый набор и заданных в стандартной форме, может быть представлен в виде линейной комбинации небольшого числа общих факторов Регрессионный анализ - определение и вычисление с примерами решения и характерного фактора Регрессионный анализ - определение и вычисление с примерами решения

Термин «общий фактор» подчёркивает, что каждый такой фактор имеет существенное значение для анализа всех признаковРегрессионный анализ - определение и вычисление с примерами решения, т.е.

Регрессионный анализ - определение и вычисление с примерами решения

Термин «характерный фактор» показывает, что он относится только к данному j-му признаку. Это специфика признака, которая не может быть, выражена через факторы Регрессионный анализ - определение и вычисление с примерами решения

Факторные нагрузки Регрессионный анализ - определение и вычисление с примерами решения. характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа — определение факторных нагрузок. Факторная модель относится к классу аппроксимационных. Параметры модели должны быть выбраны так, чтобы наилучшим образом аппроксимировать корреляции между наблюдаемыми признаками.

Для j-го признака и i-го объекта модель (2.19) можно записать в. виде

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения значение k-го фактора для i-го объекта.

Дисперсию признака Регрессионный анализ - определение и вычисление с примерами решения можно разложить на составляющие: часть, обусловленную действием общих факторов, — общность Регрессионный анализ - определение и вычисление с примерами решения и часть, обусловленную действием j-го характера фактора, характерность Регрессионный анализ - определение и вычисление с примерами решения Все переменные представлены в стандартизированном виде, поэтому дисперсий у-го признака Регрессионный анализ - определение и вычисление с примерами решенияДисперсия признака может быть выражена через факторы и в конечном счёте через факторные нагрузки.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения —доля дисперсии признака Регрессионный анализ - определение и вычисление с примерами решения приходящаяся на k-й фактор.

Полный вклад k-го фактора в суммарную дисперсию признаков

Регрессионный анализ - определение и вычисление с примерами решения

Вклад общих факторов в суммарную дисперсию Регрессионный анализ - определение и вычисление с примерами решения
 

Факторное отображение

Используя модель (2.19), запишем выражения для каждого из параметров:

Регрессионный анализ - определение и вычисление с примерами решения
Коэффициенты системы (2,21) — факторные нагрузки — можно представить в виде матрицы, каждая строка которой соответствует параметру, а столбец — фактору.

Факторный анализ позволяет получить не только матрицу отображений, но и коэффициенты корреляции между параметрами и

факторами, что является важной характеристикой качества факторной модели. Таблица таких коэффициентов корреляции называется факторной структурой или просто структурой.

Коэффициенты отображения можно выразить через выборочные парные коэффициенты корреляции. На этом основаны методы вычисления факторного отображения.

Рассмотрим связь между элементами структуры и коэффициентами отображения. Для этого, учитывая выражение (2.19) и определение выборочного коэффициента корреляции, умножим уравнения системы (2.21) на соответствующие факторы, произведём суммирование по всем n наблюдениям и, разделив на n, получим следующую систему уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

гдеРегрессионный анализ - определение и вычисление с примерами решения — выборочный коэффициент корреляции между j-м параметром и к-
м фактором;Регрессионный анализ - определение и вычисление с примерами решения — коэффициент корреляции между к-м и р-м факторами.

Если предположить, что общие факторы между собой, не коррелированы, то уравнения    (2.22) можно записать в виде

Регрессионный анализ - определение и вычисление с примерами решения, т.е. коэффициенты отображения равны
элементам структуры.

Введём понятие, остаточного коэффициента корреляции и остаточной корреляционной матрицы. Исходной информацией для построения факторной модели (2.19) служит матрица выборочных парных коэффициентов корреляции. Используя построенную факторную модель, можно снова вычислить коэффициенты корреляции между признаками и сравнись их с исходными Коэффициентами корреляции. Разница между ними и есть остаточный коэффициент корреляции.

В случае независимости факторов имеют место совсем простые выражения для вычисляемых коэффициентов корреляции между параметрами: для их вычисления достаточно взять сумму произведений коэффициентов отображения, соответствующих наблюдавшимся признакам: Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения —вычисленный по отображению коэффициент корреляции между j-м
и к-м признаком. Остаточный коэффициент корреляции

Регрессионный анализ - определение и вычисление с примерами решения

Матрица остаточных коэффициентов корреляции называется остаточной матрицей или матрицей остатков

Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения — матрица остатков; R — матрица выборочных парных коэффициентов корреляции, или полная матрица; R’— матрица вычисленных по отображению коэффициентов корреляции.

Результаты факторного анализа удобно представить в виде табл. 2.10.
Регрессионный анализ - определение и вычисление с примерами решения

Здесь суммы квадратов нагрузок по строкам — общности параметров, а суммы квадратов нагрузок по столбцам — вклады факторов в суммарную дисперсию параметров. Имеет место соотношение

Регрессионный анализ - определение и вычисление с примерами решения

Определение факторных нагрузок

Матрицу факторных нагрузок можно получить различными способами. В настоящее время наибольшее распространение получил метод главных факторов. Этот метод основан на принципе последовательных приближений и позволяет достичь любой точности. Метод главных факторов предполагает использование ЭВМ. Существуют хорошие алгоритмы и программы, реализующие все вычислительные процедуры.

Введём понятие редуцированной корреляционной матрицы или просто редуцированной матрицы. Редуцированной называется матрица выборочных коэффициентов корреляцииРегрессионный анализ - определение и вычисление с примерами решения у которой на главной диагонали стоят значения общностей Регрессионный анализ - определение и вычисление с примерами решения:Регрессионный анализ - определение и вычисление с примерами решения

Редуцированная и полная матрицы связаны соотношением

Регрессионный анализ - определение и вычисление с примерами решения

где D — матрица характерностей.

Общности, как правило, неизвестны, и нахождение их в факторном анализе представляет серьезную проблему. Вначале определяют (хотя бы приближённо) число общих факторов, совокупность, которых может с достаточной точностью аппроксимировать все взаимосвязи выборочной корреляционной матрицы. Доказано, что число общих факторов (общностей) равно рангу редуцированной матрицы, а при известном ранге можно по выборочной корреляционной матрице найти оценки общностей. Числа общих факторов можно определить априори, исходя из физической природы эксперимента. Затем рассчитывают матрицу факторных нагрузок. Такая матрица, рассчитанная методом главных факторов, обладает одним интересным свойством: сумма произведений каждой пары её столбцов равна нулю, т.е. факторы попарно ортогональны.

Сама процедура нахождения факторных нагрузок, т.е. матрицы А, состоит из нескольких шагов и заключается в следующем: на первом шаге ищут коэффициенты факторных нагрузок при первом факторе так, чтобы сумма вкладов данного фактора в суммарную общность была максимальной:Регрессионный анализ - определение и вычисление с примерами решения

Максимум Регрессионный анализ - определение и вычисление с примерами решения должен быть найден при условии
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения —общностьРегрессионный анализ - определение и вычисление с примерами решенияпараметраРегрессионный анализ - определение и вычисление с примерами решения

Затем рассчитывают матрицу коэффициентов корреляции с учётом только первого фактораРегрессионный анализ - определение и вычисление с примерами решения Имея эту матрицу, получают первую матрицу остатков:Регрессионный анализ - определение и вычисление с примерами решения

На втором шаге определяют коэффициенты нагрузок при втором факторе так, чтобы сумма вкладов второго фактора в остаточную общность (т.е. полную общность без учёта той части, которая приходится на долю первого фактора) была максимальной. Сумма квадратов нагрузок при втором фактореРегрессионный анализ - определение и вычисление с примерами решения

Максимум Регрессионный анализ - определение и вычисление с примерами решения находят из условия
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения— коэффициент корреляции из первой матрицы остатков; Регрессионный анализ - определение и вычисление с примерами решения — факторные нагрузки с учётом второго фактора. Затем рассчитыва коэффициентов корреляций с учётом второго фактора и вычисляют вторую матрицу остатков: Регрессионный анализ - определение и вычисление с примерами решения

Факторный анализ учитывает суммарную общность. Исходная суммарная общностьРегрессионный анализ - определение и вычисление с примерами решения Итерационный процесс выделения факторов заканчивают, когда учтённая выделенными факторами суммарная общность отличается от исходной суммарной общности меньше чем на Регрессионный анализ - определение и вычисление с примерами решения— наперёд заданное малое число).

Адекватность факторной модели оценивается по матрице остатков (если величины её коэффициентов малы, то модель считают адекватной).

Такова последовательность шагов для нахождения факторных нагрузок. Для нахождения максимума функции (2.24) при условии (2.25) используют метод множителей Лагранжа, который приводит к системе т уравнений относительно m неизвестных Регрессионный анализ - определение и вычисление с примерами решения

Метод главных компонент

Разновидностью метода главных факторов является метод главных компонент или компонентный анализ, который реализует модель вида

Регрессионный анализ - определение и вычисление с примерами решения

где m — количество параметров (признаков).

Каждый из наблюдаемых, параметров линейно зависит от m не коррелированных между собой новых компонент (факторов) Регрессионный анализ - определение и вычисление с примерами решенияПо сравнению с моделью факторного анализа (2.19) в модели (2.28) отсутствует характерный фактор, т.е. считается, что вся вариация параметра может быть объяснена только действием общих или главных факторов. В случае компонентного анализа исходной является матрица коэффициентов корреляции, где на главной диагонали стоят единицы. Результатом компонентного анализа, так же как и факторного, является матрица факторных нагрузок. Поиск факторного решения — это ортогональное преобразование матрицы исходных переменных, в результате которого каждый параметр может быть представлен линейной комбинацией найденных m факторов, которые называют главными компонентами. Главные компоненты легко выражаются через наблюдённые параметры.

Если для дальнейшего анализа оставить все найденные т компонент, то тем самым будет использована вся информация, заложенная в корреляционной матрице. Однако это неудобно и нецелесообразно. На практике обычно оставляют небольшое число компонент, причём количество их определяется долей суммарной дисперсии, учитываемой этими компонентами. Существуют различные критерии для оценки числа оставляемых компонент; чаще всего используют следующий простой критерий: оставляют столько компонент, чтобы суммарная дисперсия, учитываемая ими, составляла заранее установленное число процентов. Первая из компонент должна учитывать максимум суммарной дисперсии параметров; вторая — не коррелировать с первой и учитывать максимум оставшейся дисперсии и так до тех пор, пока вся дисперсия не будет учтена. Сумма учтённых всеми компонентами дисперсий равна сумме дисперсий исходных параметров. Математический аппарат компонентного анализа полностью совпадает с аппаратом метода главных факторов. Отличие только в исходной матрице корреляций.

Компонента (или фактор) через исходные переменные выражается следующим образом:

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения— элементы факторного решения:Регрессионный анализ - определение и вычисление с примерами решения— исходные переменные; Регрессионный анализ - определение и вычисление с примерами решения.— k-е собственное значение; р — количество оставленных главных
компонент.

Для иллюстрации возможностей факторного анализа покажем, как, используя метод главных компонент, можно сократить размерность пространства независимых переменных, перейдя от взаимно коррелированных параметров к независимым факторам, число которых р

Следует особо остановиться на интерпретации результатов, т.е. на смысловой стороне факторного анализа. Собственно факторный анализ состоит из двух важных этапов; аппроксимации корреляционной матрицы и интерпретации результатов. Аппроксимировать корреляционную матрицу, т.е. объяснить корреляцию между параметрами действием каких-либо общих для них факторов, и выделить сильно коррелирующие группы параметров достаточно просто:    из корреляционной матрицы одним из методов

факторного анализа непосредственно получают матрицу нагрузок — факторное решение, которое называют прямым факторным решением. Однако часто это решение не удовлетворяет исследователей. Они хотят интерпретировать фактор как скрытый, но существенный параметр, поведение которого определяет поведение некоторой своей группы наблюдаемых параметров, в то время как, поведение других параметров определяется поведением других факторов. Для этого у каждого параметра должна быть наибольшая по модулю факторная нагрузка с одним общим фактором. Прямое решение следует преобразовать, что равносильно повороту осей общих факторов. Такие преобразования называют вращениями, в итоге получают косвенное факторное решение, которое и является результатом факторного анализа.

Приложения

Значение t — распределения Стьюдента Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Понятие о регрессионном анализе. Линейная выборочная регрессия. Метод наименьших квадратов (МНК)

Основные задачи регрессионного анализа:

  •  Вычисление выборочных коэффициентов регрессии
  •  Проверка значимости коэффициентов регрессии
  •  Проверка адекватности модели
  •  Выбор лучшей регрессии
  •  Вычисление стандартных ошибок, анализ остатков

Построение простой регрессии по экспериментальным данным.

Предположим, что случайные величины Регрессионный анализ - определение и вычисление с примерами решения связаны линейной корреляционной зависимостью Регрессионный анализ - определение и вычисление с примерами решения для отыскания которой проведено Регрессионный анализ - определение и вычисление с примерами решения независимых измерений Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Диаграмма рассеяния (разброса, рассеивания)
Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — координаты экспериментальных точек.

Выборочное уравнение прямой линии регрессии Регрессионный анализ - определение и вычисление с примерами решения имеет вид

Регрессионный анализ - определение и вычисление с примерами решения

Задача: подобрать Регрессионный анализ - определение и вычисление с примерами решения таким образом, чтобы экспериментальные точки как можно ближе лежали к прямой Регрессионный анализ - определение и вычисление с примерами решения

Для того, что бы провести прямую Регрессионный анализ - определение и вычисление с примерами решения воспользуемся МНК. Потребуем,

чтобы Регрессионный анализ - определение и вычисление с примерами решения

Постулаты регрессионного анализа, которые должны выполняться при использовании МНК.

  1. Регрессионный анализ - определение и вычисление с примерами решения подчинены нормальному закону распределения.
  2. Дисперсия Регрессионный анализ - определение и вычисление с примерами решения постоянна и не зависит от номера измерения.
  3. Результаты наблюдений Регрессионный анализ - определение и вычисление с примерами решения в разных точках независимы.
  4. Входные переменные Регрессионный анализ - определение и вычисление с примерами решения независимы, неслучайны и измеряются без ошибок.

Введем функцию ошибок Регрессионный анализ - определение и вычисление с примерами решения и найдём её минимальное значение

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Решив систему, получим искомые значения Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения является несмещенными оценками истинных значений коэффициентов Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения где 

Регрессионный анализ - определение и вычисление с примерами решения несмещенная оценка корреляционного момента (ковариации),
Регрессионный анализ - определение и вычисление с примерами решения несмещенная оценка дисперсии Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения выборочная ковариация,

  Регрессионный анализ - определение и вычисление с примерами решения выборочная дисперсия Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — выборочный коэффициент корреляции

Коэффициент детерминации

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — наблюдаемое экспериментальное значение Регрессионный анализ - определение и вычисление с примерами решения при Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — предсказанное значение Регрессионный анализ - определение и вычисление с примерами решения удовлетворяющее уравнению регрессии

Регрессионный анализ - определение и вычисление с примерами решения — средневыборочное значение Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — коэффициент детерминации, доля изменчивости Регрессионный анализ - определение и вычисление с примерами решения объясняемая  рассматриваемой регрессионной моделью. Для парной линейной регрессии Регрессионный анализ - определение и вычисление с примерами решения

Коэффициент детерминации принимает значения от 0 до 1. Чем ближе значение коэффициента к 1, тем сильнее зависимость. При оценке регрессионных моделей это используется для доказательства адекватности модели (качества регрессии). Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 0,5 (в этом случае коэффициент множественной корреляции превышает по модулю 0,7). Модели с коэффициентом детерминации выше 0,8 можно признать достаточно хорошими (коэффициент корреляции превышает 0,9). Подтверждение адекватности модели проводится на основе дисперсионного анализа путем проверки гипотезы о значимости коэффициента детерминации.

Регрессионный анализ - определение и вычисление с примерами решения регрессия незначима

Регрессионный анализ - определение и вычисление с примерами решения регрессия значима

Регрессионный анализ - определение и вычисление с примерами решения — уровень значимости 

Регрессионный анализ - определение и вычисление с примерами решения — статистический критерий

Критическая область — правосторонняя; Регрессионный анализ - определение и вычисление с примерами решения

Если Регрессионный анализ - определение и вычисление с примерами решения то нулевая гипотеза отвергается на заданном уровне значимости, следовательно, коэффициент детерминации значим, следовательно, регрессия адекватна.

Мощность статистического критерия. Функция мощности

Регрессионный анализ - определение и вычисление с примерами решения

Определение. Мощностью критерия Регрессионный анализ - определение и вычисление с примерами решения называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза.

Задача: построить критическую область таким образом, чтобы мощность критерия была максимальной.

Определение. Наилучшей критической областью (НКО) называют критическую область, которая обеспечивает минимальную ошибку второго рода Регрессионный анализ - определение и вычисление с примерами решения

Пример:

По паспортным данным автомобиля расход топлива на 100 километров составляет 10 литров. В результате измерения конструкции двигателя ожидается, что расход топлива уменьшится. Для проверки были проведены испытания 25 автомобилей с модернизированным двигателем; выборочная средняя расхода топлива по результатам испытаний составила 9,3 литра. Предполагая, что выборка получена из нормально распределенной генеральной совокупности с математическим ожиданием Регрессионный анализ - определение и вычисление с примерами решения и дисперсией Регрессионный анализ - определение и вычисление с примерами решения проверить гипотезу, утверждающую, что изменение конструкции двигателя не повлияло на расход топлива.

Регрессионный анализ - определение и вычисление с примерами решения

3) Уровень значимости Регрессионный анализ - определение и вычисление с примерами решения

4) Статистический критерий

Регрессионный анализ - определение и вычисление с примерами решения

5) Критическая область — левосторонняя

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения  следовательно Регрессионный анализ - определение и вычисление с примерами решения отвергается на уровне значимости Регрессионный анализ - определение и вычисление с примерами решения

Пример:

В условиях примера 1 предположим, что наряду с Регрессионный анализ - определение и вычисление с примерами решения рассматривается конкурирующая гипотеза Регрессионный анализ - определение и вычисление с примерами решения а критическая область задана неравенством Регрессионный анализ - определение и вычисление с примерами решения Найти вероятность ошибок I рода и II рода.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения автомобилей имеют меньший расход топлива)

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения  автомобилей, имеющих расход топлива 9л на 100 км, классифицируются как автомобили, имеющие расход 10 литров).

Определение. Пусть проверяется Регрессионный анализ - определение и вычисление с примерами решения — критическая область критерия с заданным уровнем значимости Регрессионный анализ - определение и вычисление с примерами решения Функцией мощности критерия Регрессионный анализ - определение и вычисление с примерами решения называется вероятность отклонения Регрессионный анализ - определение и вычисление с примерами решения как функция параметра Регрессионный анализ - определение и вычисление с примерами решения т.е.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — ошибка 1-ого рода

Регрессионный анализ - определение и вычисление с примерами решения — мощность критерия

Пример:

Построить график функции мощности из примера 2 для Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения попадает в критическую область.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Какой минимальный объем выборки следует взять в условии примера 2 для того, чтобы обеспечить Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Лемма Неймана-Пирсона.

При проверке простой гипотезы Регрессионный анализ - определение и вычисление с примерами решения против простой альтернативной гипотезы Регрессионный анализ - определение и вычисление с примерами решения наилучшая критическая область (НКО) критерия заданного уровня значимости Регрессионный анализ - определение и вычисление с примерами решения состоит из точек выборочного пространства (выборок объема Регрессионный анализ - определение и вычисление с примерами решения для которых справедливо неравенство:

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — константа, зависящая от Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — элементы выборки;

Регрессионный анализ - определение и вычисление с примерами решения — функция правдоподобия при условии, что соответствующая гипотеза верна.

Пример:

Случайная величина Регрессионный анализ - определение и вычисление с примерами решения имеет нормальное распределение с параметрами Регрессионный анализ - определение и вычисление с примерами решения известно. Найти НКО для проверки Регрессионный анализ - определение и вычисление с примерами решения против Регрессионный анализ - определение и вычисление с примерами решенияпричем Регрессионный анализ - определение и вычисление с примерами решения

Решение:

Регрессионный анализ - определение и вычисление с примерами решения

Ошибка первого рода: Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

НКО: Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Для зависимостиРегрессионный анализ - определение и вычисление с примерами решения заданной корреляционной табл. 13, найти оценки параметров Регрессионный анализ - определение и вычисление с примерами решения уравнения линейной регрессии Регрессионный анализ - определение и вычисление с примерами решения остаточную дисперсию; выяснить значимость уравнения регрессии при Регрессионный анализ - определение и вычисление с примерами решения

Решение. Воспользуемся предыдущими результатами

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Согласно формуле (24), уравнение регрессии будет иметь вид Регрессионный анализ - определение и вычисление с примерами решения тогда Регрессионный анализ - определение и вычисление с примерами решения

Для выяснения значимости уравнения регрессии вычислим суммы Регрессионный анализ - определение и вычисление с примерами решенияСоставим расчетную таблицу:

Регрессионный анализ - определение и вычисление с примерами решения

Из (27) и (28) по данным таблицы получим Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения по табл. П7 находим Регрессионный анализ - определение и вычисление с примерами решения 

Вычислим статистику

Регрессионный анализ - определение и вычисление с примерами решения

Так как Регрессионный анализ - определение и вычисление с примерами решения то уравнение регрессии значимо. Остаточная дисперсия равна Регрессионный анализ - определение и вычисление с примерами решения

  • Корреляционный анализ
  • Статистические решающие функции
  • Случайные процессы
  • Выборочный метод
  • Проверка гипотезы о равенстве вероятностей
  • Доверительный интервал для математического ожидания
  • Доверительный интервал для дисперсии
  • Проверка статистических гипотез

Для того чтобы модель линейной регрессии можно было применять на практике необходимо сначала оценить её качество. Для этих целей предложен ряд показателей, каждый из которых предназначен для использования в различных ситуациях и имеет свои особенности применения (линейные и нелинейные, устойчивые к аномалиям, абсолютные и относительные, и т.д.). Корректный выбор меры для оценки качества модели является одним из важных факторов успеха в решении задач анализа данных.

«Хорошая» аналитическая модель должна удовлетворять двум, зачастую противоречивым, требованиям — как можно лучше соответствовать данным и при этом быть удобной для интерпретации пользователем. Действительно, повышение соответствия модели данным как правило связано с её усложнением (в случае регрессии — увеличением числа входных переменных модели). А чем сложнее модель, тем ниже её интерпретируемость.

Поэтому при выборе между простой и сложной моделью последняя должна значимо увеличивать соответствие модели данным чтобы оправдать рост сложности и соответствующее снижение интерпретируемости. Если это условие не выполняется, то следует выбрать более простую модель.

Таким образом, чтобы оценить, насколько повышение сложности модели значимо увеличивает её точность, необходимо использовать аппарат оценки качества регрессионных моделей. Он включает в себя следующие меры:

  • Среднеквадратичная ошибка (MSE).
  • Корень из среднеквадратичной ошибки (RMSE).
  • Среднеквадратичная ошибка в процентах (MSPE).
  • Средняя абсолютная ошибка (MAE).
  • Средняя абсолютная ошибка в процентах (MAPE).
  • Cимметричная средняя абсолютная процентная ошибка (SMAPE).
  • Средняя абсолютная масштабированная ошибка (MASE)
  • Средняя относительная ошибка (MRE).
  • Среднеквадратичная логарифмическая ошибка (RMSLE).
  • Коэффициент детерминации R-квадрат.
  • Скорректированный коэффициент детеминации.

Прежде чем перейти к изучению метрик качества, введём некоторые базовые понятия, которые нам в этом помогут. Для этого рассмотрим рисунок.

Рисунок 1. Линейная регрессия

Наклонная прямая представляет собой линию регрессии с переменной, на которой расположены точки, соответствующие предсказанным значениям выходной переменной widehat{y} (кружки синего цвета). Оранжевые кружки представляют фактические (наблюдаемые) значения y . Расстояния между ними и линией регрессии — это ошибка предсказания модели y-widehat{y} (невязка, остатки). Именно с её использованием вычисляются все приведённые в статье меры качества.

Горизонтальная линия представляет собой модель простого среднего, где коэффициент при независимой переменной x равен нулю, и остаётся только свободный член b, который становится равным среднему арифметическому фактических значений выходной переменной, т.е. b=overline{y}. Очевидно, что такая модель для любого значения входной переменной будет выдавать одно и то же значение выходной — overline{y}.

В линейной регрессии такая модель рассматривается как «бесполезная», хуже которой работает только «случайный угадыватель». Однако, она используется для оценки, насколько дисперсия фактических значений y относительно линии среднего, больше, чем относительно линии регрессии с переменной, т.е. насколько модель с переменной лучше «бесполезной».

MSE

Среднеквадратичная ошибка (Mean Squared Error) применяется в случаях, когда требуется подчеркнуть большие ошибки и выбрать модель, которая дает меньше именно больших ошибок. Большие значения ошибок становятся заметнее за счет квадратичной зависимости.

Действительно, допустим модель допустила на двух примерах ошибки 5 и 10. В абсолютном выражении они отличаются в два раза, но если их возвести в квадрат, получив 25 и 100 соответственно, то отличие будет уже в четыре раза. Таким образом модель, которая обеспечивает меньшее значение MSE допускает меньше именно больших ошибок.

MSE рассчитывается по формуле:

MSE=frac{1}{n}sumlimits_{i=1}^{n}(y_{i}-widehat{y}_{i})^{2},

где n — количество наблюдений по которым строится модель и количество прогнозов, y_{i} — фактические значение зависимой переменной для i-го наблюдения, widehat{y}_{i} — значение зависимой переменной, предсказанное моделью.

Таким образом, можно сделать вывод, что MSE настроена на отражение влияния именно больших ошибок на качество модели.

Недостатком использования MSE является то, что если на одном или нескольких неудачных примерах, возможно, содержащих аномальные значения будет допущена значительная ошибка, то возведение в квадрат приведёт к ложному выводу, что вся модель работает плохо. С другой стороны, если модель даст небольшие ошибки на большом числе примеров, то может возникнуть обратный эффект — недооценка слабости модели.

RMSE

Корень из среднеквадратичной ошибки (Root Mean Squared Error) вычисляется просто как квадратный корень из MSE:

RMSE=sqrt{frac{1}{n}sumlimits_{i=1}^{n}(y_{i}-widehat{y_{i}})^{2}}

MSE и RMSE могут минимизироваться с помощью одного и того же функционала, поскольку квадратный корень является неубывающей функцией. Например, если у нас есть два набора результатов работы модели, A и B, и MSE для A больше, чем MSE для B, то мы можем быть уверены, что RMSE для A больше RMSE для B. Справедливо и обратное: если MSE(A)<MSE(B), то и RMSE(A)<RMSE(B).

Следовательно, сравнение моделей с помощью RMSE даст такой же результат, что и для MSE. Однако с MSE работать несколько проще, поэтому она более популярна у аналитиков. Кроме этого, имеется небольшая разница между этими двумя ошибками при оптимизации с использованием градиента:

frac{partial RMSE}{partial widehat{y}_{i}}=frac{1}{2sqrt{MSE}}frac{partial MSE}{partial widehat{y}_{i}}

Это означает, что перемещение по градиенту MSE эквивалентно перемещению по градиенту RMSE, но с другой скоростью, и скорость зависит от самой оценки MSE. Таким образом, хотя RMSE и MSE близки с точки зрения оценки моделей, они не являются взаимозаменяемыми при использовании градиента для оптимизации.

Влияние каждой ошибки на RMSE пропорционально величине квадрата ошибки. Поэтому большие ошибки оказывают непропорционально большое влияние на RMSE. Следовательно, RMSE можно считать чувствительной к аномальным значениям.

MSPE

Среднеквадратичная ошибка в процентах (Mean Squared Percentage Error) представляет собой относительную ошибку, где разность между наблюдаемым и фактическим значениями делится на наблюдаемое значение и выражается в процентах:

MSPE=frac{100}{n}sumlimits_{i=1}^{n}left ( frac{y_{i}-widehat{y}_{i}}{y_{i}} right )^{2}

Проблемой при использовании MSPE является то, что, если наблюдаемое значение выходной переменной равно 0, значение ошибки становится неопределённым.

MSPE можно рассматривать как взвешенную версию MSE, где вес обратно пропорционален квадрату наблюдаемого значения. Таким образом, при возрастании наблюдаемых значений ошибка имеет тенденцию уменьшаться.

MAE

Cредняя абсолютная ошибка (Mean Absolute Error) вычисляется следующим образом:

MAE=frac{1}{n}sumlimits_{i=1}^{n}left | y_{i}-widehat{y}_{i} right |

Т.е. MAE рассчитывается как среднее абсолютных разностей между наблюдаемым и предсказанным значениями. В отличие от MSE и RMSE она является линейной оценкой, а это значит, что все ошибки в среднем взвешены одинаково. Например, разница между 0 и 10 будет вдвое больше разницы между 0 и 5. Для MSE и RMSE, как отмечено выше, это не так.

Поэтому MAE широко используется, например, в финансовой сфере, где ошибка в 10 долларов должна интерпретироваться как в два раза худшая, чем ошибка в 5 долларов.

MAPE

Средняя абсолютная процентная ошибка (Mean Absolute Percentage Error) вычисляется следующим образом:

MAPE=frac{100}{n}sumlimits_{i=1}^{n}frac{left | y_{i}-widehat{y_{i}} right |}{left | y_{i} right |}

Эта ошибка не имеет размерности и очень проста в интерпретации. Её можно выражать как в долях, так и в процентах. Если получилось, например, что MAPE=11.4, то это говорит о том, что ошибка составила 11.4% от фактического значения.

SMAPE

Cимметричная средняя абсолютная процентная ошибка (Symmetric Mean Absolute Percentage Error) — это мера точности, основанная на процентных (или относительных) ошибках. Обычно определяется следующим образом:

SMAPE=frac{100}{n}sumlimits_{i=1}^{n}frac{left | y_{i}-widehat{y_{i}} right |}{(left | y_{i} right |+left | widehat{y}_{i} right |)/2}

Т.е. абсолютная разность между наблюдаемым и предсказанным значениями делится на полусумму их модулей. В отличие от обычной MAPE, симметричная имеет ограничение на диапазон значений. В приведённой формуле он составляет от 0 до 200%. Однако, поскольку диапазон от 0 до 100% гораздо удобнее интерпретировать, часто используют формулу, где отсутствует деление знаменателя на 2.

Одной из возможных проблем SMAPE является неполная симметрия, поскольку в разных диапазонах ошибка вычисляется неодинаково. Это иллюстрируется следующим примером: если y_{i}=100 и widehat{y}_{i}=110, то SMAPE=4.76, а если y_{i}=100 и widehat{y}_{i}=90, то SMAPE=5.26.

Ограничение SMAPE заключается в том, что, если наблюдаемое или предсказанное значение равно 0, ошибка резко возрастет до верхнего предела (200% или 100%).

MASE

Средняя абсолютная масштабированная ошибка (Mean absolute scaled error) — это показатель, который позволяет сравнивать две модели. Если поместить MAE для новой модели в числитель, а MAE для исходной модели в знаменатель, то полученное отношение и будет равно MASE. Если значение MASE меньше 1, то новая модель работает лучше, если MASE равно 1, то модели работают одинаково, а если значение MASE больше 1, то исходная модель работает лучше, чем новая модель. Формула для расчета MASE имеет вид:

MASE=frac{MAE_{i}}{MAE_{j}}

MASE симметрична и устойчива к выбросам.

MRE

Средняя относительная ошибка (Mean Relative Error) вычисляется по формуле:

MRE=frac{1}{n}sumlimits_{i=1}^{n}frac{left | y_{i}-widehat{y}_{i}right |}{left | y_{i} right |}

Несложно увидеть, что данная мера показывает величину абсолютной ошибки относительно фактического значения выходной переменной (поэтому иногда эту ошибку называют также средней относительной абсолютной ошибкой, MRAE). Действительно, если значение абсолютной ошибки, скажем, равно 10, то сложно сказать много это или мало. Например, относительно значения выходной переменной, равного 20, это составляет 50%, что достаточно много. Однако относительно значения выходной переменной, равного 100, это будет уже 10%, что является вполне нормальным результатом.

Очевидно, что при вычислении MRE нельзя применять наблюдения, в которых y_{i}=0.

Таким образом, MRE позволяет более адекватно оценить величину ошибки, чем абсолютные ошибки. Кроме этого она является безразмерной величиной, что упрощает интерпретацию.

RMSLE

Среднеквадратичная логарифмическая ошибка (Root Mean Squared Logarithmic Error) представляет собой RMSE, вычисленную в логарифмическом масштабе:

RMSLE=sqrt{frac{1}{n}sumlimits_{i=1}^{n}(log(widehat{y}_{i}+1)-log{(y_{i}+1}))^{2}}

Константы, равные 1, добавляемые в скобках, необходимы чтобы не допустить обращения в 0 выражения под логарифмом, поскольку логарифм нуля не существует.

Известно, что логарифмирование приводит к сжатию исходного диапазона изменения значений переменной. Поэтому применение RMSLE целесообразно, если предсказанное и фактическое значения выходной переменной различаются на порядок и больше.

R-квадрат

Перечисленные выше ошибки не так просто интерпретировать. Действительно, просто зная значение средней абсолютной ошибки, скажем, равное 10, мы сразу не можем сказать хорошая это ошибка или плохая, и что нужно сделать чтобы улучшить модель.

В этой связи представляет интерес использование для оценки качества регрессионной модели не значения ошибок, а величину показывающую, насколько данная модель работает лучше, чем модель, в которой присутствует только константа, а входные переменные отсутствуют или коэффициенты регрессии при них равны нулю.

Именно такой мерой и является коэффициент детерминации (Coefficient of determination), который показывает долю дисперсии зависимой переменной, объяснённой с помощью регрессионной модели. Наиболее общей формулой для вычисления коэффициента детерминации является следующая:

R^{2}=1-frac{sumlimits_{i=1}^{n}(widehat{y}_{i}-y_{i})^{2}}{sumlimits_{i=1}^{n}({overline{y}}_{i}-y_{i})^{2}}

Практически, в числителе данного выражения стоит среднеквадратическая ошибка оцениваемой модели, а в знаменателе — модели, в которой присутствует только константа.

Главным преимуществом коэффициента детерминации перед мерами, основанными на ошибках, является его инвариантность к масштабу данных. Кроме того, он всегда изменяется в диапазоне от −∞ до 1. При этом значения близкие к 1 указывают на высокую степень соответствия модели данным. Очевидно, что это имеет место, когда отношение в формуле стремится к 0, т.е. ошибка модели с переменными намного меньше ошибки модели с константой. R^{2}=0 показывает, что между независимой и зависимой переменными модели имеет место функциональная зависимость.

Когда значение коэффициента близко к 0 (т.е. ошибка модели с переменными примерно равна ошибке модели только с константой), это указывает на низкое соответствие модели данным, когда модель с переменными работает не лучше модели с константой.

Кроме этого, бывают ситуации, когда коэффициент R^{2} принимает отрицательные значения (обычно небольшие). Это произойдёт, если ошибка модели среднего становится меньше ошибки модели с переменной. В этом случае оказывается, что добавление в модель с константой некоторой переменной только ухудшает её (т.е. регрессионная модель с переменной работает хуже, чем предсказание с помощью простой средней).

На практике используют следующую шкалу оценок. Модель, для которой R^{2}>0.5, является удовлетворительной. Если R^{2}>0.8, то модель рассматривается как очень хорошая. Значения, меньшие 0.5 говорят о том, что модель плохая.

Скорректированный R-квадрат

Основной проблемой при использовании коэффициента детерминации является то, что он увеличивается (или, по крайней мере, не уменьшается) при добавлении в модель новых переменных, даже если эти переменные никак не связаны с зависимой переменной.

В связи с этим возникают две проблемы. Первая заключается в том, что не все переменные, добавляемые в модель, могут значимо увеличивать её точность, но при этом всегда увеличивают её сложность. Вторая проблема — с помощью коэффициента детерминации нельзя сравнивать модели с разным числом переменных. Чтобы преодолеть эти проблемы используют альтернативные показатели, одним из которых является скорректированный коэффициент детерминации (Adjasted coefficient of determinftion).

Скорректированный коэффициент детерминации даёт возможность сравнивать модели с разным числом переменных так, чтобы их число не влияло на статистику R^{2}, и накладывает штраф за дополнительно включённые в модель переменные. Вычисляется по формуле:

R_{adj}^{2}=1-frac{sumlimits_{i=1}^{n}(widehat{y}_{i}-y_{i})^{2}/(n-k)}{sumlimits_{i=1}^{n}({overline{y}}_{i}-y_{i})^{2}/(n-1)}

где n — число наблюдений, на основе которых строится модель, k — количество переменных в модели.

Скорректированный коэффициент детерминации всегда меньше единицы, но теоретически может принимать значения и меньше нуля только при очень малом значении обычного коэффициента детерминации и большом количестве переменных модели.

Сравнение метрик

Резюмируем преимущества и недостатки каждой приведённой метрики в следующей таблице:

Мера Сильные стороны Слабые стороны
MSE Позволяет подчеркнуть большие отклонения, простота вычисления. Имеет тенденцию занижать качество модели, чувствительна к выбросам. Сложность интерпретации из-за квадратичной зависимости.
RMSE Простота интерпретации, поскольку измеряется в тех же единицах, что и целевая переменная. Имеет тенденцию занижать качество модели, чувствительна к выбросам.
MSPE Нечувствительна к выбросам. Хорошо интерпретируема, поскольку имеет линейный характер. Поскольку вклад всех ошибок отдельных наблюдений взвешивается одинаково, не позволяет подчёркивать большие и малые ошибки.
MAPE Является безразмерной величиной, поэтому её интерпретация не зависит от предметной области. Нельзя использовать для наблюдений, в которых значения выходной переменной равны нулю.
SMAPE Позволяет корректно работать с предсказанными значениями независимо от того больше они фактического, или меньше. Приближение к нулю фактического или предсказанного значения приводит к резкому росту ошибки, поскольку в знаменателе присутствует как фактическое, так и предсказанное значения.
MASE Не зависит от масштаба данных, является симметричной: положительные и отрицательные отклонения от фактического значения учитываются одинаково. Устойчива к выбросам. Позволяет сравнивать модели. Сложность интерпретации.
MRE Позволяет оценить величину ошибки относительно значения целевой переменной. Неприменима для наблюдений с нулевым значением выходной переменной.
RMSLE Логарифмирование позволяет сделать величину ошибки более устойчивой, когда разность между фактическим и предсказанным значениями различается на порядок и выше Может быть затруднена интерпретация из-за нелинейности.
R-квадрат Универсальность, простота интерпретации. Возрастает даже при включении в модель бесполезных переменных. Плохо работает когда входные переменные зависимы.
R-квадрат скорр. Корректно отражает вклад каждой переменной в модель. Плохо работает, когда входные переменные зависимы.

В данной статье рассмотрены наиболее популярные меры качества регрессионных моделей, которые часто используются в различных аналитических приложениях. Эти меры имеют свои особенности применения, знание которых позволит обоснованно выбирать и корректно применять их на практике.

Однако в литературе можно встретить и другие меры качества моделей регрессии, которые предлагаются различными авторами для решения конкретных задач анализа данных.

Другие материалы по теме:

Отбор переменных в моделях линейной регрессии

Репрезентативность выборочных данных

Логистическая регрессия и ROC-анализ — математический аппарат

Регрессионный анализ

Министерство
образования и науки российской федерации

Федеральное
государственное автономное образовательное учреждение высшего профессионального
образования

Дальневосточный
федеральный университет

Школа
экономики и менеджмента

Кафедра
бизнес-информатики и экономико-математических методов

ЛАБОРАТОРНАЯ
РАБОТА

по
дисциплине «Имитационное моделирование»

Специальность
080801.65 «Прикладная информатика (в экономике)»

Рудакова

г.
Владивосток


ОТЧЕТ

Задание: рассмотреть процедуру
регрессионного анализа на основе данных (цена продажи и жилая площадь) о 23
объектах недвижимости.

Режим работы «Регрессия» служит для
расчета параметров уравнения линейной регрессии и проверки его адекватности
исследуемому процессу.

Для решения задачи регрессионного анализа в MS
Excel выбираем в меню Сервис команду Анализ данных и инструмент
анализа «Регрессия«.

В появившемся диалоговом окне задаем следующие
параметры:

1.   Входной интервал Y
— это диапазон данных по результативному признаку. Он должен состоять из одного
столбца.

2.      Входной интервал X
— это диапазон ячеек, содержащих значения факторов (независимых переменных).
Число входных диапазонов (столбцов) должно быть не больше 16.

.        Флажок Уровень надежности активизируется,
если в поле, находящееся рядом с ним необходимо ввести уровень надежности,
отличный от установленного по умолчанию. Используется для проверки значимости
коэффициента детерминации R2
и
коэффициентов регрессии.

5.      Константа ноль.
Данный флажок необходимо установить, если линия регрессии должна пройти через
начало координат (а0=0).

6.      Выходной интервал/ Новый
рабочий лист/ Новая рабочая книга —
указать адрес
верхней левой ячейки выходного диапазона.

.        Флажки в группе Остатки
устанавливаются, если необходимо включить в выходной диапазон соответствующие
столбцы или графики.

.        Флажок График нормальной вероятности
необходимо сделать активным, если требуется вывести на лист точечный график
зависимости наблюдаемых значений Y
от автоматически формируемых интервалов персентилей.

После нажатия кнопки ОК в выходном диапазоне
получаем отчет.

С помощью набора средств анализа данных выполним
регрессионный анализ исходных данных.

Инструмент анализа «Регрессия»
применяется для подбора параметров уравнения регрессии с помощью метода
наименьших квадратов. Регрессия используется для анализа воздействия на
отдельную зависимую переменную значений одной или нескольких независимых переменных.

ТАБЛИЦА РЕГРЕССИОННАЯ СТАТИСТИКА

Величина множественный R
— это корень из коэффициента детерминации (R-квадрат).
Также его называют индексом корреляции или множественным коэффициентом
корреляции. Выражает степень зависимости независимых переменных (X1, X2)
и зависимой переменной (Y) и равен квадратному корню из коэффициента
детерминации, эта величина принимает значения в интервале от нуля до единицы. В
нашем случае он равен 0,7, что говорит о существенной связи между переменными.

Величина R-квадрат (коэффициент детерминации),
называемая также мерой определенности, характеризует качество полученной
регрессионной прямой. Это качество выражается степенью соответствия между
исходными данными и регрессионной моделью (расчетными данными). Мера
определенности всегда находится в пределах интервала [0;1].

В нашем случае величина R-квадрат
равна 0,48 , т.е. почти 50%, что говорит о слабой подгонке регрессионной прямой
к исходным данным.Т.к. найденная величина R-квадрат
= 48%<75%, то, следовательно, также можно сделать вывод о невозможности
прогнозирования с помощью найденной регрессионной зависимости. Таким образом,
модель объясняет всего 48% вариации цены, что говорит о недостаточности
выбранных факторов, либо о недостаточном объеме выборки.

Нормированный R-квадрат
— это тот же коэффициент детерминации, но скорректированный на величину
выборки.

Норм.R-квадрат=1-(1-R-квадрат)*((n-1)/(n-k)),

регрессионный анализ линейный
уравнение

где n
— число наблюдений; k — число
параметров. Нормированный R-квадрат
предпочтительнее использовать в случае добавления новых регрессоров (факторов),
т.к. при их увеличении будет также увеличиваться значение R-квадрат,
однако это не будет свидетельствовать об улучшении модели. Так как в нашем
случае полученная величина равна 0,43 (что отличается от R-квадрат
всего на 0,05), то можно говорить о высоком доверии коэффициенту R-квадрат.

Стандартная ошибка
показывает качество аппроксимации (приближения) результатов наблюдений. В нашем
случае ошибка равна 5,1. Рассчитаем в процентах: 5,1/(57,4-40,1)=0,294 ≈
29% (Модель считается лучше, когда стандартная ошибка составляет <30%)

Наблюдения
— указывается число наблюдаемых значений (23).

ТАБЛИЦА ДИСПЕРСИОННЫЙ АНАЛИЗ

Для получения уравнения регрессии
определяется -статистика
— характеристика точности уравнения регрессии, представляющая собой отношение
той части дисперсии зависимой переменной которая объяснена уравнением регрессии
к необъясненной (остаточной) части дисперсии.

Для регрессии это число регрессоров
(факторов) — X1 (площадь)
и X2 (оценка),
т.е. k=2.

Для остатка это величина, равная n-(m+1), т.е.
число исходных точек (23) минус число коэффициентов (2) и минус свободный член
(1).

В столбце SS — суммы
квадратов отклонений от среднего значения результирующего признака. В нем
представлены:

Регрессионная сумма квадратов
отклонений от среднего значения результирующего признака теоретических
значений, рассчитанных по регрессионному уравнению.

Остаточная сумма отклонений исходных
значений от теоретических значений.

Общая сумма квадратов отклонений
исходных значений от результирующего признака .

Чем больше регрессионная сумма
квадратов отклонений (или чем меньше остаточная сумма), тем лучше регрессионное
уравнение аппроксимирует облако исходных точек. В нашем случае остаточная сумма
составляет около 50%. Следовательно, уравнение регрессии очень слабо
аппроксимирует облако исходных точек.

В столбце MS
несмещенные выборочные дисперсии, регрессионная и остаточная.

В столбце F вычислено
значение критериальной статистики для проверки значимости уравнения регрессии.

Для осуществления статистической
проверки значимости уравнения регрессии формулируется нулевая гипотеза об
отсутствии связи между переменными (все коэффициенты при переменных равны нулю)
и выбирается уровень значимости.

Уровень значимости — это допустимая
вероятность совершить ошибку первого рода — отвергнуть в результате проверки
верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода
означает признать по выборке наличие связи между переменными в генеральной
совокупности, когда на самом деле ее там нет. Обычно уровень значимости
принимается равным 5%. Сравнивая полученное значение = 9,4 с табличным значением
= 3,5 (число степеней свободы 2 и 20 соответственно) можно говорить о том, что
уравнение регрессии значимо (F>Fкр).

В столбце значимость F вычисляется
вероятность полученного значения критериальной статистике. Так как в нашем
случае это значение = 0,00123, что меньше 0,05 то можно говорить о том, что
уравнение регрессии (зависимость) значимо с вероятностью 95%.

Два выше описанных столба показывают
надежность модели в целом.

Следующая таблица содержит
коэффициенты для регрессоров и их оценки.

Строка Y-пересечение
не связана ни с каким регрессором, это свободный коэффициент.

В столбце коэффициенты
записаны значения коэффициентов уравнения регрессии. Таким образом, получилось
уравнение:

Y=25,6+0,009X1+0,346X2

Регрессионное уравнение должно
проходить через центр облака исходных точек: 13,02≤M(b)≤38,26

Далее сравниваем попарно значения
столбцов Коэффициенты и Стандартная ошибка. Видно, что в нашем случае,
все абсолютные значения коэффициентов превосходят значения стандартных ошибок.
Это может свидетельствовать о значимости регрессоров, однако, это грубый
анализ. Столбец t-статистика содержит более точную
оценку значимости коэффициентов.

В столбце t-статистика содержатся
значения t-критерия,
рассчитанные по формуле:

t=(Коэффициент)/(Стандартная
ошибка)

Этот критерий имеет распределение
Стьюдента с числом степеней свободы

n-(k+1)=23-(2+1)=20

По таблице Стьюдента находим
значение tтабл=2,086.
Сравнивая

t с tтабл
получаем, что коэффициент регрессора X2 незначим.

Столбец p-значение
представляет вероятность того, что критическое значение статистики
используемого критерия (статистики Стьюдента) превысит значение, вычисленное по
выборке. В данном случае сравниваем p-значения с выбранным
уровнем значимости (0.05). Видно, что незначимым можно считать только
коэффициент регрессора X2=0.08>0,05

В столбцах нижние 95% и верхние 95%
приводятся границы доверительных интервалов с надежностью 95%. Для каждого
коэффициента свои границы: Коэффициентtтабл*Стандартная
ошибка

Доверительные интервалы строятся
только для статистически значимых величин.

ТАБЛИЦА ВЫВОД ОСТАТКА

Остаток— это
отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного
значения).

Предположение о нормальности остатков
допускает, что распределение разницы предсказанных и наблюдаемых значений
является нормальным. Для визуального определения характера распределения
включаем функцию график остатков.

На графиках остатков отображаются
разности между исходными значениями Y и
вычисленными по функции регрессии для каждого значения компонента переменной X1 и X2. Он
применяется для определения, является ли приемлемой используемая
аппроксимирующая прямая.

График подбора может быть
использован для получения наглядного представления о линии регрессии.

Стандартные остатки — нормированные
остатки на оценку их стандартного отклонения.

Понравилась статья? Поделить с друзьями:
  • Носок или носков тип ошибки
  • Нормативы и ошибки при надевании противогаза
  • Носок или носков вид ошибки
  • Нормальный закон распределения ошибок это
  • Носов н а ошибка это