Напряжение ошибки что это такое

Analog Integrated Circuits

Peter Wilson, in The Circuit Designer’s Companion (Fourth Edition), 2017

Power Supply Rejection Ratio

PSRR is similar to CMRR but relates to error voltages referred to the input as a result of changes in the power rail voltages. As before, a PSRR of 80 dB with a rail voltage change of 1 V would result in an equivalent input error of 100 μV. Again, PSRR worsens with increasing frequency and may be only 20–30 dB in the tens-to-hundreds of kilohertz range, so that high-frequency noise on the power rails is easily reflected on the output. There may also be a difference of several tens of decibels between the PSRRs of the positive and negative supply rails, due to the difference in internal biasing arrangements. For this reason, it is unwise to expect equal but antiphase power rail signals, such as mains frequency ripple, to cancel each other out.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780081017647000050

Analog integrated circuits

Peter Wilson, in The Circuit Designer’s Companion (Third Edition), 2012

PSRR

Power supply rejection is similar to CMRR but relates to error voltages referred to the input as a result of changes in the power rail voltages. As before, a PSRR of 80 dB with a rail voltage change of 1 V would result in an equivalent input error of 100 μV. Again, PSRR worsens with increasing frequency and may be only 20−30 dB in the tens-to-hundreds of kiloHertz range, so that high-frequency noise on the power rails is easily reflected on the output. There may also be a difference of several tens of dB between the PSRRs of the positive and negative supply rails, due to the difference in internal biasing arrangements. For this reason it is unwise to expect equal but anti-phase power rail signals, such as mains frequency ripple, to cancel each other out.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780080971384000057

Modeling Error Sources: High-Speed A/D Specifications

Michael J. Demler, in High-Speed Analog-to-Digital Conversion, 1991

Signal-to-Noise Ratio

In the process of quantizing a dynamic signal, the error voltage waveform that is generated, as in Fig. 3-3, represents a noise source which corrupts the digital representation of the input signal. The RMS (root-mean squared) amplitude of this error can be easily derived. First, the size of each quantization level, equal to VFS/2N, will be designated as having an amplitude of q. In the ideal A/D all quantization levels are equal and spaced exactly at 1-LSB intervals. If the error signal is generated by a ramp input signal, a uniform distribution of codes results in the sawtooth with a periodicity which is designated as T. The error signal is then described by

υet=qtT−T/2T/2

The RMS value of this function can be calculated with the following standard equations:

(3-5)υe2¯=1/T∫−T/2T/2qt/T2dt=q2T3t33−T/2T/2=q23T3T38+T38υe2¯=q212υe,RMS=q12=q23

If a sine wave with a peak-to-peak amplitude equal to the A/D full-scale voltage is used as an input signal, its RMS voltage would be

Vin,RMS=2Nq22

The RMS-to-RMS signal-to-noise ratio (SNR) for the ideal A/D is then given by

SNR=20log2Nq/22q/12=20Nlog2+log12−log22=6.02N+10.79−9.03SNRRMS=6.02N+1.76

This the well-known equation which relates ideal SNR to the A/D resolution. It should be intuitive that an increase in resolution reduces the error amplitude by a factor of two per bit, resulting in an increase in SNR of 6 dB per bit.

To develop a model for the RMS quantization noise in a real A/D, the example with alternating long and short codes depicted in Fig. 3-6 is used. For such a characteristic, the noise introduced by the long and short codes is at first considered separately. The error voltage from a quantization level with DLE of +12LSB is described as

υlogt=qtT−3T/43T/4

The ramp extends over a quantization period equivalent to 112 LSBs. Similarly, for the short codes the error extends over a period of 12LSB:

υshortt=qtT−1T/41T/4

The squared error for the long codes is

υel2¯=23T∫−3T/43T/4qt/T2dt=2q23T3t33−3T/43T/4υel2¯=3q216υel,RMS=3q4=34q3

The final result shows that the RMS noise contributed by a code that is 50% longer than the ideal is 50% larger than the amount shown in Eq. (3-5). Similar equations for the short codes are as follows:

υes2¯=2T∫−T/4T/4qt/T2dt=2q2T3t33−T/4T/4υes2¯=q248υes,RMS=q43

The noise generated by a code that is 50% short is half the noise that results from an ideal quantization level. Over the full-scale range of the A/D, it will be assumed that there are an equal number of long and short codes. That repetitive pattern that exists over the space of 2 LSBs is depicted in Fig. 3-8. The noise from the long and short codes does not average to zero since, to arrive at a total for the squared error, the two sources of noise must be appropriately weighted by their probability of occurrence. From Fig. 3-8 it can be seen that long codes will occupy three-fourths of the range determined by 2N – 2 quantization levels, with the short codes occupying only one-fourth of the total.

Figure 3-8. Percentage of quantization range for long and short codes.

The alternating code model leads to the following result:

υe2¯=34υel2¯+14υes2¯=34⋅32υe2+14⋅12υe2υe,RMS=1.32q/12

The overall effect of alternating codes is a 32% increase in quantization noise. The degradation in SNR is then

SNRRMS=20log2Nq/221.32q/12=SNRideal−20log1.32SNRRMS=6.02N−0.65dBs

The increased quantization error reduces SNR by 2.41 dBs. A general equation for the alternating code model with variable DLE error is

υe,RMS=q/12⋅1+DLE3+DLE32

This equation is used in Fig. 3-9 to illustrate the degradation in SNR versus DLE error. This should serve as a guideline to relate the dynamic performance that can be expected in an A/D with a given static performance characteristic, since the long and short codes do tend to balance out. In an actual device, a more accurate RMS summation of errors would be complicated by the real distribution of code sizes.

Figure 3-8. Percentage of quantization range for long and short codes.

The alternating code model leads to the following result:

υe2¯=34υel2¯+14υes2¯=34⋅32υe2+14⋅12υe2υe,RMS=1.32q/12

The overall effect of alternating codes is a 32% increase in quantization noise. The degradation in SNR is then

SNRRMS=20log2Nq/221.32q/12=SNRideal−20log1.32SNRRMS=6.02N−0.65dBs

The increased quantization error reduces SNR by 2.41 dBs. A general equation for the alternating code model with variable DLE error is

υe,RMS=q/12⋅1+DLE3+DLE32

This equation is used in Fig. 3-9 to illustrate the degradation in SNR versus DLE error. This should serve as a guideline to relate the dynamic performance that can be expected in an A/D with a given static performance characteristic, since the long and short codes do tend to balance out. In an actual device, a more accurate RMS summation of errors would be complicated by the real distribution of code sizes.

Figure 3-9. Loss of SNR versus DLE, alternating code model.

The usual method of measuring SNR involves an analysis with a fast Fourier transform (FFT) algorithm, which will be discussed in Chapter 6. The FFT analysis of sampled data yields the same information as would be obtained by using an analog spectrum analyzer on a continuous waveform (e.g., noise and harmonic distortion). One of the points to be wary of when reviewing SNR specifications is that some manufacturers separate these dynamic errors, reporting SNR and THD (total harmonic distortion) separately. Others report the ratios of both signal-to-noise and signal to noise + distortion. Removing the error signals that are harmonically related to the input will artificially inflate the SNR. Occasionally, a manufacturer will measure the peak signal to RMS noise. Be aware that in such cases 3 dBs must be added to the ideal SNR.

As part of the process of separating harmonic distortion from noise, spectral averaging is sometimes employed. By accumulating multiple sets of data as input for an FFT, random signals will tend to be averaged out. This allows small amplitude harmonics to be detected while lowering the noise floor in the data. Be aware that if the result of this process is used to report SNR for the A/D, it will give a higher value than the user can expect to achieve in any single measurement.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780080508139500071

Resonant Converter

Keng Wu, in Power Converters with Digital Filter Feedback Control, 2016

9.8 Close-loop under steady state

Following an identical step outlined by (6.4–6.7), the effective error voltage feeding the VCO is given by

(9.10)vef=AVref−naeb(Vo/m)+cRsen1+(R3/R2)−VFRdCTRRe

Taking (9.10) to (9.1), the VCO generates a square wave at frequency fvco. This is the frequency at which the converter’s power MOSFET switch operates. Readers are to be cautioned that this switching frequency is NOT the ω, the resonant tank frequency, mentioned in (9.3).

At the operating frequency fvco, (9.7) generates an output, Vo. The voltage output in turns enters the LED exponential model in (9.10) and closes the regulation loop.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128042984000095

Hysteresis control methods

Oswaldo Lopez-Santos, … Carlos A. Torres-Pinzón, in Multilevel Inverters, 2021

2.7.3 Adaptive hysteresis control implementation

Consider that a sinusoidal voltage reference is compared with the output signal of the inverter, obtaining a voltage error as follows:

(2.10)ev=vrefωt−voωt

The voltage error signal can then be represented simultaneously with the hysteresis band limits, as depicted in Fig. 2.18. As can be noted, for this example a signal of normalized amplitude is built with one cycle using 9 levels and the other using 11 levels. As was mentioned earlier, the amplitude of the hysteresis band for each cycle adapts according to the number of levels used in the previous half-cycle. The zoom of the third quarter of the first cycle allows the commutation events in the inverter to be defined and the dead time introduced to ignore the crossing events that do not imply a new commutation, which are always immediately after a real commutation event.

Fig. 2.18

Fig. 2.18. Representation of the voltage error signal together with different hysteresis bands.

Implementation of the proposed control requires the use of a digital device to store the lookup table with the gate signals required in the bridges, to produce every possible output level and also the lookup table with the reference. Internally, a memory pointer allows consecutive access to the addresses of the tables, taking into account comparison events. The sinusoidal reference is reproduced according to an inner sampling frequency to properly provide the desired output frequency. As depicted in Fig. 2.19, the voltage error is processed by the hysteresis comparator, which provides the up-and-down orders to the memory pointers. Each cycle, the maximum or minimum value produced in the counter allows updates of the amplitude of the hysteresis band for the subsequent cycle.

Fig. 2.19

Fig. 2.18. Representation of the voltage error signal together with different hysteresis bands.

Implementation of the proposed control requires the use of a digital device to store the lookup table with the gate signals required in the bridges, to produce every possible output level and also the lookup table with the reference. Internally, a memory pointer allows consecutive access to the addresses of the tables, taking into account comparison events. The sinusoidal reference is reproduced according to an inner sampling frequency to properly provide the desired output frequency. As depicted in Fig. 2.19, the voltage error is processed by the hysteresis comparator, which provides the up-and-down orders to the memory pointers. Each cycle, the maximum or minimum value produced in the counter allows updates of the amplitude of the hysteresis band for the subsequent cycle.

Fig. 2.19. Circuit diagram of the converter used to test the proposed control.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780323902175000022

Development of the Ideal Op Amp Equations∗

Bruce Carter, Ron Mancini, in Op Amps for Everyone (Fifth Edition), 2018

2.4 The Inverting Op Amp

The noninverting input of the op amp circuit is grounded. The assumption is made that the input error voltage is zero, so the feedback keeps inverting the input of the op amp at a virtual ground (not actual ground but acting like ground). The current flow in the input leads is assumed to be zero, hence the current flowing through RG equals the current flowing through RF (Fig. 2.4). Using Kirchhoff’s law, we write Eq. (2.4); and the minus sign is inserted because this is the inverting input. Algebraic manipulation gives Eq. (2.5).

Figure 2.4. The inverting op amp.

(2.4)I1=VINRG=−I2=−VOUTRF

(2.5)VOUTVIN=−RFRG

Notice that the gain is only a function of the feedback and gain resistors, so the feedback has accomplished its function of making the gain independent of the op amp parameters. The actual resistor values are determined by the impedance levels that the designer wants to establish. If RF = 10 k and RG = 10 k the gain is −1 as shown in Eq. (2.5), and if RF = 100 k and RG = 100 k the gain is still −1. The impedance levels of 10 or 100 k determine the current drain, the effect of stray capacitance, and a few other points. The impedance level does not set the gain; the ratio of RF/RG does.

One final note; the output signal is the input signal amplified and inverted. The circuit input impedance is set by RG because the inverting input is held at a virtual ground.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128116487000029

Nonideal Op Amp Characteristics

David L. Terrell, in Op Amps (Second Edition), 1996

10.1.3 Input Offset Voltage

Input offset voltage is another parameter listed in the manufacturer’s data sheet. Like the bias currents, it produces an error voltage in the output. That is, with 0 volts applied to the inputs of an op amp, we expect to find 0 volts at the output. In fact, we will find a small DC offset present at the output. This is called the output offset voltage and is a result of the combined effects of bias current (previously discussed above) and input offset voltage.

The error contributed by input offset voltage is a result of DC imbalances within the op amp. The transistor currents (see Figure 10.1) in the input stage may not be exactly equal because of component tolerances within the integrated circuit. In any case, an output voltage is produced just as if there were an actual voltage applied to the input of the op amp. To facilitate the analysis of the problem, we model the circuit with a small DC source at the noninverting input terminal (see Figure 10.4). This apparent source is called the input offset voltage, and it will be amplified and appear in the output as an error voltage. The output voltage caused by the input offset voltage can be computed with our basic gain equation.

Figure 2.4. The inverting op amp.

(2.4)I1=VINRG=−I2=−VOUTRF

(2.5)VOUTVIN=−RFRG

Notice that the gain is only a function of the feedback and gain resistors, so the feedback has accomplished its function of making the gain independent of the op amp parameters. The actual resistor values are determined by the impedance levels that the designer wants to establish. If RF = 10 k and RG = 10 k the gain is −1 as shown in Eq. (2.5), and if RF = 100 k and RG = 100 k the gain is still −1. The impedance levels of 10 or 100 k determine the current drain, the effect of stray capacitance, and a few other points. The impedance level does not set the gain; the ratio of RF/RG does.

One final note; the output signal is the input signal amplified and inverted. The circuit input impedance is set by RG because the inverting input is held at a virtual ground.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128116487000029

Nonideal Op Amp Characteristics

David L. Terrell, in Op Amps (Second Edition), 1996

10.1.3 Input Offset Voltage

Input offset voltage is another parameter listed in the manufacturer’s data sheet. Like the bias currents, it produces an error voltage in the output. That is, with 0 volts applied to the inputs of an op amp, we expect to find 0 volts at the output. In fact, we will find a small DC offset present at the output. This is called the output offset voltage and is a result of the combined effects of bias current (previously discussed above) and input offset voltage.

The error contributed by input offset voltage is a result of DC imbalances within the op amp. The transistor currents (see Figure 10.1) in the input stage may not be exactly equal because of component tolerances within the integrated circuit. In any case, an output voltage is produced just as if there were an actual voltage applied to the input of the op amp. To facilitate the analysis of the problem, we model the circuit with a small DC source at the noninverting input terminal (see Figure 10.4). This apparent source is called the input offset voltage, and it will be amplified and appear in the output as an error voltage. The output voltage caused by the input offset voltage can be computed with our basic gain equation.

FIGURE 10.4. The input offset voltage contributes to the DC offset voltage in the output of an op amp.

The manufacturer’s data sheet for a standard 741 lists the worst-case value for input offset voltage as 6 millivolts. In the case of the circuit shown in Figure 10.4, we could compute the output error voltage caused by the input offset voltage as follows:

VO=6 mV(180 kΩ56 kΩ+1)=25.29 mV

The polarity of the output offset may be either positive or negative. Therefore, it may add or subtract from the DC offset caused by the op amp bias currents. The worst-case output offset voltage can be estimated by assuming that the output voltages caused by the bias currents and the input offset voltage are additive. In that case, the resulting value of output offset voltage can be found as

(10.4)VOO=RFIIO+VIO(RFRI+1)

Most op amps, including the 741, have provisions for nulling or canceling the output offset voltage. Appendix 4 shows the recommended nulling circuit for an MC1741SC. It consists of a 10-kilohm potentiometer connected between the offset null pins (1 and 5) of the op amp. The wiper arm of the potentiometer connects to the negative supply voltage. The amplifier is connected for normal operation (excluding any DC input signals), and the potentiometer is adjusted to produce 0 volts at the output of the op amp. You should realize, however, that this only cancels the output offset voltage at one particular operating point. With temperature changes or simply over a period of time, the circuit may drift and need to be readjusted. Nevertheless, it is an improvement over a circuit with no compensation.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780750697026500111

Linear Regulator

Keng Wu, in Power Converters with Digital Filter Feedback Control, 2016

5.2 Derivation of modulator gain

Following the same procedure, Figure 5.1 is first placed in its small signal equivalent circuit form, Figure 5.2.

Figure 5.1. A PNP Bipolar Linear Regulator.

Figure 5.1. A PNP Bipolar Linear Regulator.

Figure 5.2. Small Signal Equivalent Circuit for Figure 5.1.

For the purpose of developing modulator gain, and loop gain, eventually the equivalent circuit loop is broken at the error voltage node, and an external low-level test signal, vi, is injected. Both transistors are replaced by the common-emitter h-parameters. In this case, the simpler version considering only current gain, hfe, and input impedance, hie, is used. The transistor output feedback factor, hre, and output conductance, hoe, are omitted. Several variables are assigned as independent: v3, v4, and vo. At node v3, the following Kirchhoff’s current law (KCL) equation is established.

(5.1)1+hfe1R3+hie1+1R4v3=1+hfe1R3+hie1vi

And, at node v4,

(5.2)hfe1R3+hie1v3−1hie2+1ZE(s)v4=hfe1R3+hie1vi

at the output node,

(5.3)hfe2hie2v4+1R1+R2+Cces+1ZL(s)vo=0

The above three equations give the output as,

(5.4)vo=1+hfe1R3+hie1+1R401+hfe1R3+hie1vihfe1R3+hie1−1hie2+1ZE(s)hfe1R3+hie1vi0hfe2hie201+hfe1R3+hie1+1R400hfe1R3+hie1−1hie2+1ZE(s)00hfe2hie21R1+R2+Cces+1ZL(s)

The modulator gain, from the test signal injection to the error amplifier input, is then given as,

(5.5)M(s)=1+hfe1R3+hie1+1R401+hfe1R3+hie1hfe1R3+hie1−1hie2+1ZE(s)hfe1R3+hie10hfe2hie20R2R1+R21+hfe1R3+hie1+1R400hfe1R3+hie1−1hie2+1ZE(s)00hfe2hie21R1+R2+Cces+1ZL(s)

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128042984000058

Review of Op Amp Basics

Bruce Carter, in Op Amps for Everyone (Fourth Edition), 2013

2.3.2 The Inverting Op Amp

The non-inverting input of the inverting op amp circuit is grounded as shown in Figure 2.7. One assumption made is that the input error voltage is zero, so the feedback keeps inverting the input of the op amp at a virtual ground (not actual ground but acting like ground). The current flow in the input leads is assumed to be zero; hence the current flowing through Rg equals the current flowing through Rf. Using Kirchhoff’s law, we write Equation 2.11; and the minus sign is inserted because this is the inverting input. Algebraic manipulation gives Equation 2.12.

Figure 2.7. The Inverting Op Amp

(2.11)I1=VINRg=−I2=−VOUTRf

(2.12)VOUTVIN=−RfRg

Notice that the gain is only a function of the feedback and gain resistors, so the feedback has accomplished its function of making the gain independent of the op amp parameters. The actual resistor values are determined by the impedance levels that you want to establish. If Rf=10 kΩ and Rg=10 kΩ the gain is minus one as shown in Equation 2.12, and if Rf=100 kΩ and Rg=100 kΩ the gain is still minus one. The impedance levels of 10 kΩ or 100 kΩ determine the current drain, the effect of stray capacitance, and a few other points. The impedance level does not set the gain; the ratio of Rf/Rg does.

One final note: the output signal is the input signal amplified and inverted. The circuit input impedance is set by Rg because the inverting input is held at a virtual ground.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123914958000027

High efficiency, high density, PolyPhase converters for high current applications

Wei Chen, in Analog Circuit Design, 2011

Current-sharing

The current-sharing can be easily achieved by implementing peak current mode control. In a current mode control regulator, the load current is proportional to the error voltage in the voltage feedback loop. If the paralleled regulators see the same error voltage, they will source equal currents. A 2-channel circuit is used as the example to explain this current-sharing mechanism.

As shown in Figure 14.1, peak current mode control requires that the high side switch turn off when the peak inductor current (IL1, IL2) intersects the error voltage, VER, resulting in the same peak inductor currents. If the inductors are identical, the peak-to-peak ripple currents of the inductors will be the same. The DC currents of two inductors, which are the peak current less half of the peak-to-peak ripple current, will be equivalent. Two modules therefore share the load current equally. The same current-sharing mechanism can be extended to any number of channels in parallel. This current-sharing scheme will prevent an individual module from suffering excessive current stress in steady state operation and during line/load transient conditions. Note that the sharing mechanism is open loop, so no oscillations will occur due to current-sharing.

Figure 2.7. The Inverting Op Amp

(2.11)I1=VINRg=−I2=−VOUTRf

(2.12)VOUTVIN=−RfRg

Notice that the gain is only a function of the feedback and gain resistors, so the feedback has accomplished its function of making the gain independent of the op amp parameters. The actual resistor values are determined by the impedance levels that you want to establish. If Rf=10 kΩ and Rg=10 kΩ the gain is minus one as shown in Equation 2.12, and if Rf=100 kΩ and Rg=100 kΩ the gain is still minus one. The impedance levels of 10 kΩ or 100 kΩ determine the current drain, the effect of stray capacitance, and a few other points. The impedance level does not set the gain; the ratio of Rf/Rg does.

One final note: the output signal is the input signal amplified and inverted. The circuit input impedance is set by Rg because the inverting input is held at a virtual ground.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123914958000027

High efficiency, high density, PolyPhase converters for high current applications

Wei Chen, in Analog Circuit Design, 2011

Current-sharing

The current-sharing can be easily achieved by implementing peak current mode control. In a current mode control regulator, the load current is proportional to the error voltage in the voltage feedback loop. If the paralleled regulators see the same error voltage, they will source equal currents. A 2-channel circuit is used as the example to explain this current-sharing mechanism.

As shown in Figure 14.1, peak current mode control requires that the high side switch turn off when the peak inductor current (IL1, IL2) intersects the error voltage, VER, resulting in the same peak inductor currents. If the inductors are identical, the peak-to-peak ripple currents of the inductors will be the same. The DC currents of two inductors, which are the peak current less half of the peak-to-peak ripple current, will be equivalent. Two modules therefore share the load current equally. The same current-sharing mechanism can be extended to any number of channels in parallel. This current-sharing scheme will prevent an individual module from suffering excessive current stress in steady state operation and during line/load transient conditions. Note that the sharing mechanism is open loop, so no oscillations will occur due to current-sharing.

Figure 14.1. 2-Channel Converter: (a) Schematic and (b) Typical Waveforms

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123851857000147

Источник

Напряжение — ошибка

Cтраница 2

При уменьшении напряжения ошибки стабилизирующее напряжение будет резко уменьшать напряжение на входе усилителя и способствовать торможению двигателя; при возрастании напряжения ошибки стабилизирующий сигнал способствует разгону системы.
 [16]

Поэтому к напряжению ошибки щ прибавляется напряжение Д и суммарный сигнал на входе усилителя У: us ые. Благодаря этому обеспечивается большая скорость уменьшения угла рассогласования. Увеличение напряжения us по сравнению с 6 соответствует повышению kp системы. При малых углах рассогласования и1 2 т-е — начинает преобладать отрицательная обратная связь.
 [18]

При таком напряжении ошибки усилитель остается, как правило, работоспособным. Если при заданном входном сопротивлении инвертирующего усилителя сопротивление резистора в цепи обратной связи Roc получается свыше 1 МОм, то используют схему с Т — образной цепью обратной связи ( рис. 6.6), которая позволяет снизить номиналы резисторов обратной связи до приемлемого значения.
 [19]

С выхода УСО напряжение ошибки поступает на регулирующий элемент РЭ и изменяет его коэффициент передачи.
 [21]

С движка R6 напряжение ошибки поступает на регулирующий транзистор VT1, который управляет длительностью импульсов, генерируемых микросхемой.
 [23]

Это напряжение ( напряжение ошибки) подается на вход усилителя УРЗ, который усиливает сигнал ошибки по напряжению и по мощности.
 [24]

С движка R6 напряжение ошибки поступает на регулирующий транзистор VT1, который управляет длительностью импульсов, генерируемых микросхемой.
 [26]

Практически всегда имеется напряжение ошибки следящей системы е А — ВС.
 [28]

При положительном значении напряжения ошибки полевой транзистор запирается, ток стока уменьшается, и напряжение, подаваемое на варикап, становится меньше. Частота гетеродина при этом в процессе автоподстройки возрастает.
 [29]

Необходимо заметить, что напряжение ошибки на вход усилителя-преобразователя в рассматриваемой схеме поступает в виде пачки ам-плитудно-модулированных растянутых импульсов через промежутки времени Та, равные периоду вращения антенны РЛС. Продолжительность каждой пачки импульсов напряжения ошибки очень мала по сравнению с периодом обзора.
 [30]

Страницы:  

   1

   2

   3

   4

   5

Источник

Содержание

  1. напряжение ошибки
  2. Смотреть что такое «напряжение ошибки» в других словарях:
  3. Принцип получения напряжения сигнала ошибки
  4. Большая Энциклопедия Нефти и Газа
  5. Напряжение — ошибка
  6. 10 возможных причин почему низкое напряжение бортовой сети
  7. Возможные последствия низкого напряжения бортовой сети
  8. Краткий перечень возможных причин низкого напряжения
  9. Некорректное измерение напряжения
  10. Не заряжен аккумулятор
  11. Проблемы с реле-регулятором
  12. Не хватает мощности генератора и чрезмерная нагрузка (п. 4 и п. 10)
  13. Проблемы с ремнем генератора
  14. Пробитый диодный мост
  15. Обрыв или КЗ в проводке
  16. Плохие контакты в силовых цепях
  17. Малое сечение силовой проводки
  18. Краткие итоги

напряжение ошибки

Универсальный русско-английский словарь . Академик.ру . 2011 .

Смотреть что такое «напряжение ошибки» в других словарях:

ОПОРНОЕ НАПРЯЖЕНИЕ — электрич. напряжение, относительно к рого отсчитывается другое напряжение. Источник О. н. должен обеспечивать его высокую стабильность. О. н. необходимо для прямого сравнения (в этом случае оно должно быть известным), для измерений относит.… … Большой энциклопедический политехнический словарь

система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

Athlon — > Центральный процессор … Википедия

Duron — Duron >> Центральный процессор … Википедия

Pentium III — > Центральный процессор Производство … Википедия

Tualatin — > Центральный процессор Производство: с 1999 по 2003 год Производитель: ЦП: 450 1400 МГц Частота FSB … Википедия

Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться … Википедия

Pentium II — > Центральный процессор … Википедия

Аналого-цифровой преобразователь — Четырёхканальный аналого цифровой преобразователь Аналого цифровой преобразователь[1][2] … Википедия

Athlon XP — > Центральный процессор … Википедия

АЦП — Четырёхканальный аналого цифровой преобразователь Аналого цифровой преобразователь (АЦП, ADC) устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (DAC)… … Википедия

Источник

Принцип получения напряжения сигнала ошибки

Работа СУА при автосопровождении цели

Управление антенной от КПН

Командирский прибор наведения (КПН) предназначен для визирования воздушных целей и выдачи целеуказания оператору поиска путем полуавтоматического наведения антенны на цель.

При наведении антенны от КПН сигнал ошибки образуется за счет рассогласования сельсинов:

по азимуту – М1 КПН и М2-37;

по углу места – М2 КПН и М2-36,

включенных по трансформаторной схеме. Роторы сельсинов М2-37 и

М2-36 механически соединены с осями qнс , εнс антенной колонки. Роторы сельсинов М1 КПН и М2 КПН кинематически соединены с рукоятками управления КПН. Режим включается постановкой тумблера

«РАБОТА» в положение «ВКЛ.» и одновременным нажатием кнопок «БАШ­НЯ» и «ЦЕЛЬ». При этом напряжение +27 В подается на реле Р36-3, сигнальную лампу ЛНЗ6-5 «ЦУ» (целеуказание), а так же в блок Т-55М2 для включения режима подслеживания, как и при автосопро­вождении цели. Лампа «ЦУ» загорается, сигнализируя о включении режима наведения антенны от КПН.

Реле Р36-3 срабатывает и своими контактами отключает движки переменных резисторов «АЗИМУТ. УСИЛ. РУЧН.» И «УГОЛ МЕСТА УСИЛ.РУЧН.» от усилителей и катодных повторителей субблоков У13-3 и У13-4 и подключает к ним движки потенциометров «УСИЛ.АЗ. КПН» и «УСИЛ. УМ.КПН». Далее СУА работает так же, как и в режиме ручного управления.

При повороте рукояток КПН поворачиваются роторы сельсин­трансформаторов, в их обмотках возникают напряжения рассогласования, под воздействием которых антенна будет поворачиваться до тех пор, пока сельсин-датчики антенной колонки не займут согласованное положение с сельсин-трансформаторами КПН.

Таким образом, командир установки с помощью КПН может принудительно наводить антенну на цель в пределах по углу места от –5± до +30±, по азимуту +20 0 . Для введения цели в поле зрения КПН предусмотрена возможность управления башней от КПН. Управле­ние башней осуществляется постановкой рукояток КПН в одно из крайних положений при нажатых кнопках «БАШНЯ» и «ЦЕЛЬ».

Переменные резисторы «УСИЛ.АЗ.КПН» и «УСИЛ.УМ.КПН», распо-

ложенные под левой откидной панелью шкафа Т-36,предназначены для регулировки скорости вращения антенны в режиме управления от КПН.

При автоматическом сопровождении цели сигнал ошибки получается в результате непрерывного вращения (сканирования) диаграммы направленности антенны (электромагнитного луча) вокруг электрической оси антенны. Ось диаграммы направленности антенны отклонена от электрической оси антенны на 0,5 0 . Если направление на цель не совпадает с электрической осью антенны, то отраженные от цели эхо-сигналы, поступающие на вход приемной системы, будут модулированы по амплитуде частотой сканирования. Глубина ампли­тудной модуляции отраженных эхо-сигналов зависит от угла между осью антенны и направлением на цель, а фаза огибающей определяет­ся направлением смещения оси антенны от цели по азимуту и углу места. Таким образом, информация об отклонении электрической оси антенны от направления на цель заключается в огибающей эхо-сигна­лов. Эта огибающая выделяется в канале угловой автоматики прием­ной системы на детекторе огибающей (ДОГ) в виде пульсирующего напряжения. Так как управление антенной по угловым координатам осуществляется отдельными каналами, то необходимо из общего нап­ряжения СО выделить азимутальную и угломестную составляющие, а затем раздельно усилить до необходимой величины.

Выделение составляющих СО происходит на ФЧВ с помощью напря­жения, снимаемого с генератора опорных напряжений (ГОН).

Опорные напряжения азимута и угла места равны по величине и сдвинуты по фазе относительно друг друга на 90 0 .

Сканирование по углу места диаграммы направленности антенны (электромагнитного луча) создается при работе АВС на облучатель поиска, который из конструктивных соображений смещен относительно облучателя пеленга и центра рефлектора антенны на 3,7 0 в горизон­тальной плоскости. Поэтому при переходе на автоматическое сопровождение цели, для исключения потери цели, необходимо повернуть антенну на угол 3,7 0 .

При автоматическом сопровождении цели одновременно с вращением антенны будут разворачиваться и роторы сельсин­–датчиков М2-33 и М2-32. Поэтому, если не принять мер, то при переходе с автоматического управления в ручной режим работы роторы сельсин–датчиков и сельсин–трансформаторов могут оказаться в рассогласованном положении, что приведет к появлению большого напряжения сигнала ошибки, а это, в свою очередь,– к резкому рывку антенны. Для исключения этого необходимо, чтобы сельсины блока Т-2М3 и блока Т-55М2 постоянно находились в согласованном положении, т. е. необходимо осуществлять подслежи­вание.

Таким образом, для обеспечения нормальной работы СУА в режиме автосопровождения цели необходимо:

произвести доворот антенны на угол 3,7 0 ;

разделить общий сигнал ошибки, поступающий с выхода КУА приемной системы на угломестную и азимутальную составляющие и усилить их до необходимой величины;

удерживать в согласованном положении сельсины блоков Т-2М3 и Т55М2.

Источник

Большая Энциклопедия Нефти и Газа

Напряжение — ошибка

Напряжение ошибки е5 в этой схеме после усиления усилителем М — ДМ подается с демодулирующего контакта вибратора ВП на один из электродов неоновой лампы НЛ. Второй электрод подключается к общей шине, к которой подключены неоновые лампы остальных решающих усилителей. Реле Plt включенное в анодную цепь лампы Л3, при этом срабатывает и замыкает контакты, / Pj и 2 / Y Контакты реле подают сигналы на прекращение работы. Система настроена так, что реле срабатывает при напряжении в суммирующей точке, превышающем 2 ме. [1]

Напряжение ошибки в фазе — ошибка основной частоты, находящаяся во временной фазе с напряжением на роторе при малой скорости. [3]

Напряжение ошибки может быть преобразовано: в относительную длительность различными методами, например, путем формирования вспомогательного пилообразного напряжения яри помощи магнитных преобразователей, при помощи управляемые релаксационных генераторов. [5]

Напряжение ошибки подается на фильтр НЧ, где ослабляются высокочастотные составляющие. Сглаженное напряжение усиливается и поступает на вход ГУН. Частота генерируемых ГУН колебаний изменяется таким образом, чтобы с уменьшением напряжения ошибки уменьшалась разность частот между входным и гетеродинным сигналами. Напряжение ошибки уменьшается до тех пор, пока частоты сигнала и ГУН не уравняются, но между ними остается конечная разность фаз, кото рая здесь оказывается сигналом рассогласования, необходимым для удержания петли ОС в режиме смещения. [6]

Напряжения ошибки я опорное через разделительные лампы подаются да общий трансформатор. Полученное суммарное напряжение возбуждает сетку лампы, работающей в режиме С. Эта лампа включена как регулируемое сопротивление в делителе напряжения, с постоянного плеча которого снимается напряжение отражателя. [8]

Напряжение ошибки изменяет соотношение между временем включения реверсивных обмоток, появляется нек-рое ср. В области существенных частот система оказывается практически пропорциональной; вибрационная линеаризация позволяет преодолеть зону нечувствительности поляризованного реле и сухое трение двигателя. [9]

Напряжение ошибки A U усиливается усилителем 3 ( фиг. [10]

Если напряжение ошибки выводится из дискриминатора наложенным на несущий сигнал, то можно использовать усиление по переменному току с тем, чтобы существенно ослабить дрейф, фоновые наводки и шумы мерцания. [12]

Если же напряжение ошибки предва рительно подавать на интегрирующее устройство, а затем с его выход на исполнительный двигатель, то скоростная ошибка будет уменьшать ся. [13]

Детектор вырабатывает напряжение ошибки , пропорциональное разности частот сравниваемых сигналов, и управляет задающим генератором ( ЗГ) таким образом, чтобы эта разность равнялась нулю. Так обеспечивается автоматическая подстройка частоты строчной развертки. Для увеличения стабильности собственной частоты ЗГ в качестве С7 применен высокостабильный конденсатор типа К71 — 7 ( ТКЕ 2 %), а включение резистора R8 выбрано таким образом, что с повышением температуры увеличение сопротивления R8 сопровождается повышением потенциала вывода 14, что приводит к уменьшению деста-бильности частоты ЗГ. [15]

Источник

10 возможных причин почему низкое напряжение бортовой сети

Низкое напряжение бортовой сети автомобиля – это довольно серьезная неисправность, которая, между тем, легко устраняется. Как правило, есть пара-тройка причин, поиск в направлении которых помогает вернуть напряжение к норме 90% автолюбителям. У оставшихся 10% причины встречаются менее распространенные. Но их тоже не так уж сложно вычислить, а потом успешно устранить.

Возможные последствия низкого напряжения бортовой сети

Перед тем, как начинать разбор возможных причин низкого напряжения бортовой сети, предлагаем вкратце рассмотреть последствия, с которыми можно столкнуться. Это должно помочь понять то, что ездить долгое время на автомобиле с такой неисправностью не следует, так как она притянет за собой и другие неприятные проблемы.

Во-первых, если напряжение бортовой сети автомобиля систематически находится ниже уровня 14.4В – АКБ никогда не будет полностью заряжаться от генератора. То есть, например, если вольтметр показывает в разных режимах максимум 14.00В, при наилучших раскладах аккумулятор сможет зарядиться лишь процентов на 60-70. О таких напряжениях, как 13.5В или ниже – вообще нечего говорить. Батарея на такой машине не будет заряжаться даже до половины.

Во-вторых, при заниженном напряжении бортовой сети – АКБ восстанавливает заряд дольше. Это значит, что при коротких поездках батарея вообще может не успевать возвращать себе энергию, отданную накануне на очередной запуск двигателя, а также потерянную при стоянке из-за утечек тока и саморазряда. Соответственно, после нескольких таких циклов неполноценного восстановления аккумулятор рано или поздно сядет слишком сильно, и двигатель однажды запустить не удастся.

В-третьих, из-за низкого напряжения бортовой сети и систематического недозаряда – ускоряется деградация АКБ. То есть, значительно сокращается срок службы аккумулятора. Происходит это, в первую очередь, из-за сульфатации, которой подвержены абсолютно любого типа свинцово-кислотные батареи, не получающие регулярно полноценный заряд. Хотя есть и другие причины, связанные с этим же моментом.

В-четвертых, низкое напряжение бортовой сети – это гарантированная нехватка питания для мощных потребителей. Например, если это достаточно мощная акустика, то она будет звучать с искажениями или вообще с провалами. Да те же самые фары головного света по-разному светят при 14.0В и при 13.2В. Если вы пользуетесь инвертором, преобразующим постоянные 12 вольт в 220 переменки, при таких раскладах он тоже не сможет выдавать полную мощность.

В-пятых, если напряжение бортовой сети слишком низкое или сильно скачет, возможна нестабильная работа двигателя. Например, могут плавать холостые обороты, снижаться мощность и динамика машины, и так далее. Но, справедливости ради стоит отметить, что такие серьезные проблемы возникают тогда, когда ситуация крайне запущенная, и напряжение упало ниже плинтуса. То есть, бортовая система питается только от почти сдохшего аккумулятора (с генератора ничего не идет или идет критически мало).

Кроме того, низкое напряжение бортовой сети автомобиля может свидетельствовать и о более серьезных проблемах. Например, об обрыве в «жизненно важных» цепях, или даже о коротких замыканиях, последствия которых могут быть весьма печальными. В общем и целом, низкое напряжение – серьезная неисправность, и не обращать на нее внимание просто нельзя. Надо как можно раньше искать причину, и устранять ее, пока ситуация не привела к большим убыткам.

Краткий перечень возможных причин низкого напряжения

Как уже было отмечено в самом начале, есть несколько неисправностей в бортовой сети автомобиля, которые становятся причиной заниженного напряжения чаще всего. Таковых, от силы, две-три штуки. Однако, бывает и так, что поиск по наиболее часто встречающимся проблемам не помогает найти поломку. В таких случаях сектор поиска приходится существенно расширять.

Здесь предлагается аж целых 10 возможных причин, почему напряжение бортовой сети автомобиля ниже нормы. Вот их краткий перечень:

  1. Некорректное измерение.
  2. Не заряжен аккумулятор.
  3. Проблемы с реле-регулятором.
  4. Не хватает мощности генератора.
  5. Проблемы с ремнем генератора.
  6. Пробитый диодный мост.
  7. Обрыв или КЗ в проводке.
  8. Плохие контакты в силовых цепях.
  9. Малое сечение силовой проводки.
  10. Чрезмерная нагрузка.

Поскольку, наверняка, многим автолюбителям будут понятны не все пункты из представленного списка, далее предлагается более детальный разбор каждого из них.

Некорректное измерение напряжения

Как бы наивно это не выглядело, тем не менее, бывает и такое, когда напряжение бортовой сети измеряется некорректно. Соответственно, выводы делаются заведомо неверные. А все потому, что в бортовых цепях автомобиля имеются факторы, которые вполне могут привести к ошибочным измерениям.

По большей части, на этот пункт стоит обратить внимание тем, у кого напряжение бортовой сети занижено не сильно. Если же вольтметр при запущенном двигателе показывает что-то в районе 11-13В, то это явное свидетельство поломки, и некорректное измерение здесь почти ни при чем.

В первую очередь, определимся, какое напряжение бортовой сети автомобиля мы будем принимать за эталонное. Это важно, так как в этом вопросе часто встречается довольно заметный разброс. Одни говорят, что напряжения в 14.1В – более, чем достаточно. Другие говорят о таких значениях, как 14.8-15.0В, называя такое напряжение нормой для современного автомобиля. Как видим – разброс довольно серьезный. Почти целый 1 вольт.

Между тем, если отталкиваться от особенностей большинства автомобильных аккумуляторных батарей, эталонным напряжением бортовой сети всегда следует считать 14.4В. Только при таких показаниях вольтметра у АКБ есть все шансы заряжаться от генератора на все 100%. Естественно, если на это ей будет хватать времени.

С другой стороны, нужно понимать, что такое напряжение не обязано быть при любых условиях. Есть факторы, из-за которых и на полностью исправном автомобиле допускаются просадки. На них и остановимся немного подробнее.

Первый фактор – это где измеряется напряжение. Понятно, что где-то на машине. Но в каких именно точках? Дело в том, что это самое эталонное напряжение должно нас интересовать исключительно на клеммах АКБ. Если же мы измеряем его при помощи встроенного в панель приборов вольтметра, то от аккумулятора к нему идут довольно длинные провода, имеющие свое сопротивление и, соответственно, занижающие интересующее нас напряжение. А ведь бывает и так, что вольтметр подсоединен вообще не к АКБ, а к первым попавшим под руку проводам в салоне автомобиля. Что это за провода, какое у них сечение, длина и сопротивление – никто, как правило, не задумывается. Именно поэтому – измерять напряжение бортовой сети нужно непосредственно на клеммах АКБ.

Если в машине установлен штатный (или своими руками) вольтметр – стоит проверить, че он там показывает. Для этого его показатели достаточно сравнить с напряжением, измеренным вольтметром прямо на клеммах аккумулятора. Контрольный измерительный прибор крайне желательно проверить отдельно, дабы убедиться в его точности.

Второй фактор – это насколько в данный момент заряжен аккумулятор. Почему-то почти все поголовно пренебрегают этим моментом. А между тем, он крайне важный. Его важность многие поняли на собственной шкуре, когда измерили и потом повысили напряжение бортовой сети при разряженном аккумуляторе. Естественно, когда вольтаж принудительно был увеличен, батарея набрала свое, и теперь напряжение бортовой сети уже начало зашкаливать. Именно поэтому – измерять напряжение бортовой сети нужно на клеммах заведомо заряженной АКБ.

Вспомните, как ведет себя напряжение, когда вы заряжаете посаженный аккумулятор от стационарного зарядного устройства. Когда АКБ дохлая, а на ЗУ выставить 14.4В, то после подключения крокодилов вольтаж чего всегда делает? Правильно. Падает на полвольта-вольт. А потом, по мере того, как аккумулятор заряжается, вольтаж растет и постепенно достигает эталона. В машине примерно так же. Разница может быть только в мощности ЗУ и генератора. Потенциально более мощный генератор (если все остальное тоже исправно) способен вывести просевшее напряжение к эталонному быстрее, чем маленькая китайская зарядка.

Третий фактор – это под какой нагрузкой в данный момент бортовая сеть. Об этом факторе, к счастью, знают почти все. Если во время измерений напряжения включить мощную нагрузку – печку, фары – вольтаж просядет. Это допускается, и не является поломкой. Единственный момент – просадка не должна быть слишком большой. А в идеале, после включения мощных приборов напряжение должно немного проседать, а потом возвращаться к эталону (так работает адекватная связка генератор-реле-регулятор). Короче говоря, нас больше должно интересовать то напряжение, которое измерено без нагрузки.

И последний, четвертый фактор – на каких оборотах в данный момент работает двигатель. Если по-хорошему, то без включенной нагрузки эталонное напряжение мы должны видеть при любых оборотах двигателя, включая холостые. В идеале же, что бы мы не делали – газовали, отпускали газ, включали потребители – напряжение должно быть примерно одинаковым. Плюс или минус 0.1-0.2В. Если же генератор «еле дышит», а реле-регулятор глючит – на нормальную работу бортовой сети можно не надеяться. Посему – на исправном автомобиле бортовое напряжение не должно зависеть от того, какие в данный момент обороты двигателя.

Есть и другие факторы. Но этих, пожалуй, будет достаточно для решения проблемы в 95% случаев.

Не заряжен аккумулятор

После внимательного изучения предыдущей причины эта должна быть уже понятной. Поэтому, вместо теоретического рассмотрения, предлагаем ознакомиться с реальной историей из жизни, которая наглядно покажет, как разряженный аккумулятор может быть причиной низкого напряжения бортовой сети.

Начинается история стандартно – встроенный в приборную панель своими руками вольтметр однажды начал показывать без нагрузки (печка, фары) всего 13.5В, чего явно маловато. По заявлению владельца этого автомобиля вольтметр был тщательно проверен и откалиброван. То есть, показывал реальное напряжение на клеммах АКБ.

Чтобы поднять бортовое напряжение, было принято решение пойти путем «Кулибиных из Интернета», а именно установить в цепь генератора диод. Если кто не знает, такой диод позволяет «обмануть» реле-регулятор. На диоде падает 0.5-0.7 вольт напряжения, регулятор это «видит», и добавляет в бортовую сеть недостающие 0.5-0.7В.

Вполне логично то, что с появлением проблем с напряжением бортовой сети АКБ тем временем некоторое время недополучала заряд. То есть, на момент «ремонта» с помощью диода она была изрядно подсевшей.

Установка диода, естественно, дала ожидаемый результат. Напряжение бортовой сети с 13.5В подскочило до почти идеальных 14.3В. Понятное дело – радостям не было предела. Но недолго…

Дело в том, что обычный режим эксплуатации рассматриваемой машины – это очень короткие поездки. Но однажды, уже после установки диода, пришло время проехаться на дальнее расстояние. И вот тут случился казус – после побега в 150-200 км по трассе владелец нашего автомобиля вдруг обнаружил, что вольтметр на панели показывает 15.0 вольт! Чтобы не «кипятить» АКБ и не убить таким напряжением бортовую электронику, он быстренько включил фары, печку и все остальные потребители. Напряжение, естественно, просело до менее пугающих значений…

Какой вывод можно сделать из этой истории? Сами видите, получилось так, что до «ремонта» напряжение было измерено некорректно, то есть на изрядно просаженной батарее. На трассе, уже с диодом в цепи генератора, батарее хватило времени вдоволь, чтобы зарядиться. Вот напряжение и подскочило до 15 вольт.

Поэтому, следует помнить – разряженная АКБ тоже является серьезной нагрузкой, которая вполне может стать причиной низкого напряжения бортовой сети автомобиля. В некоторых случаях она, заряжаясь, может потреблять ток 20-30 и более ампер. А это, на минуточку, более 200-400 Вт, что для бортовой сети автомобиля немало так получается.

Итого, если проблема только в этом, то решить ее можно с помощью регулярной подзарядки аккумулятора при помощи стационарного зарядного устройства. Это, в принципе, полезно делать регулярно. Ну а, если вы еще и ездите на короткие дистанции, то для вас эта процедура должна быть чуть-ли не еженедельной.

Проблемы с реле-регулятором

Реле-регулятор является виновником низкого напряжения бортовой сети автомобиля чаще всего. Это, вроде бы, крайне простой электронный приборчик, но он нередко глючит, подгорает, перегревается, или просто наглухо выходит из строя. Есть и такие, которые изначально сделаны похабно. То есть, даже в новом состоянии не способны адекватно регулировать напряжение бортовой сети и удерживать его на нормальном уровне.

Проверяется реле-регулятор следующим образом. Сначала необходимо убедиться в том, что мы измеряем напряжение бортовой сети корректно. Далее, желательно измерить напряжение непосредственно после реле-регулятора. Это нужно для того, чтобы исключить вероятность снижения напряжения из-за плохих контактов или малого сечения проводки (к этому еще вернемся).

Далее нужно полученные значения напряжения сравнить с показателями между генератором и реле-регулятором. Это нужно для того, чтобы убедиться, что наш генератор в принципе способен выдавать достаточное для бортовой сети напряжение. Реле-регулятор – это устройство, которое работает, как бы, на понижение. То есть, грубо говоря, если генератор выдает, скажем, 16 вольт, то благодаря реле-регулятору в бортовую сеть попадает нужное – 14.2.-14.5В. Если же генератор дохлый, и сам по себе выдает менее 13 вольт, скажем, то реле-регулятор нигде недостающие полтора вольта взять не сможет, даже будучи идеально исправным.

Если же после проверки было выявлено, что генератор «могет», но реле-регулятор чудит – замена последнего решает проблему. Единственная возможная проблема здесь – это найти годный реле-регулятор для замены. Для некоторых машин, как показывает практика, их нормальных «родных» в принципе найти невозможно. В таких случаях приходится прибегать к колхозу – перепаивать с других моделей, устанавливать регулируемые вручную регуляторы и так далее.

Кстати, многие торопятся, и при низком напряжении бортовой сети решают проблему при помощи упомянутых выше регулируемых реле-регуляторов. Самые популярные модели имеют тумблер, при помощи которого можно вручную выбирать, какое напряжение в бортовой сети вашего автомобиля будет. Так вот, не стоит спешить решать проблему с низким напряжением именно так. Сначала пробегитесь по описанным здесь пунктам. Вполне возможно, что колхоз вам не понадобится.

Довольно частой проблемой реле-регуляторов является принудительный сброс напряжения бортовой сети из-за так называемой термокомпенсации. Дело в том, что в некоторых автомобилях предусмотрен датчик, который «мониторит» температуру АКБ. В случае ее перегрева с датчика поступает сигнал на реле-регулятор напряжения, и тот сбрасывает напряжение, дабы избежать перезаряда аккумулятора.

Есть и такие случаи, когда никакого датчика температуры на аккумуляторе и в помине нет. Тем не менее, автолюбители часто отмечают, что напряжение бортовой сети после запуска мотора более или менее нормальное, а по мере прогрева – резко падает. Так вот, многие и этот эффект обзывают термокомпенсацией, нацеленной на сохранение АКБ от перезаряда. Однако ничем таким здесь и не пахнет, поскольку датчика на аккумуляторе изначально нет, и не было никогда.

Напряжение же проседает из-за того, что от прогретого двигателя нагревается непосредственно схема реле-регулятора. А мы еще со школы знаем (по крайней мере, должны знать), что при нагреве некоторые вещества (из которых сделаны радиодетали в регуляторе) изменяют свое сопротивление. Короче говоря, реле-регулятор сам по себе перегревается, и начинает банально глючить. Никоим образом в данном случае с термокомпенсацией это не связано.

Решают такую проблему по-разному. Кто-то, опять же, занимается колхозом, и выносит реле-регулятор подальше от горячего двигателя. Это, в принципе, хороший вариант, если других нет. Только учитывайте сопротивление проводов (и падение напряжения на них), при помощи которых отдаленный от штатного места регулятор соединяется со щеточным узлом. Еще можно попробовать подобрать другой регулятор (от другой машины), которое по отзывам не страдает такой жесткой зависимостью от температурных условий.

Не хватает мощности генератора и чрезмерная нагрузка (п. 4 и п. 10)

Мощность генератора напрямую связана с напряжением, которое он в принципе может отдавать в бортовую сеть автомобиля. И если этой мощности по тем или иным причинам маловато, то получить нормальное напряжение на контрольном вольтметре мы никогда не сможем. Чаще такая проблема наблюдается тогда, когда машина оборудуется какими-либо мощными потребителями. Но не всегда.

Иногда генератор автомобиля «не тянет» нагрузку, даже если она минимальная. То есть, прожорливые потребители выключены, работают только основные системы – топливная, зажигание, ну и еще аккумулятор подзаряжается. Если и при таких раскладах напряжение не вытягивается до нормы при заведомо исправном реле-регуляторе, генератор подлежит ремонту или замене. Не «тянуть» в таких простых условиях он может по разным причинам. Например, если поизносились щетки – с напряжением будет не только просадка, но и конкретные перебои. Подгоревшие обмотки генератора тоже очень даже могут стать причиной того, что он не тянет элементарной нагрузки.

Теперь вернемся к мощным потребителям. К таковым относится следующее:

Понятно, что при наличии подобного оборудования жесткие просадки бортового напряжения будут наблюдаться только тогда, когда что-то из вышеперечисленного включается в рабочий режим. К слову, довольно часто серьезные просадки напряжения при включении чего-либо мощного и внештатного (не рассчитанного для этого автомобиля) являются первым шагом на пути к верной и неизбежной смерти генератора. Посему, если такое оборудование, все же, решено было установить в машину, неплохо будет убедиться, что штатный генератор потянет такую нагрузку. Возможно (как многие успешно и делают), установка более мощного генератора позволит решить проблему подобного характера.

Проблемы с ремнем генератора

Здесь все просто. Когда ремень прослабленный, генератор может без проблем вращаться без нагрузки, но с ее появлением – банально останавливается. Как правило, довольно часто при такой поломке слышен характерный свист ремня. Соответственно, правильная регулировка натяжения или замена растянувшегося ремня генератора – устраняет проблему.

Аналогичные чудеса могут также происходить, даже если ремень новый и хорошо натянут. Например, в мокрую дождливую погоду из-за недостатков конструкции подкапотного пространства между шкивом генератора и ремнем попадает вода. Срабатывает она, как смазка. В результате ремень просто проскальзывает по шкиву, а водитель видит на вольтметре дикие просадки напряжения бортовой сети.

Если из двигателя со всех, что называется, щелей течет моторное масло, недолго до того, что оно попадет на шкив или ремень генератора. Результат – ожидаемый и понятный уже должен быть. Кстати, про дождливую погоду и воду. Когда идет дождь, что мы делаем? Правильно, включаем печку, чтобы стекла не потели, а также фары, противотуманки и прочее – дабы нас видно было на дороге. А это все нагрузка на генератор, из-за которой даже совсем чуток водички на его шкиве приведет к проскальзыванию ремня. Учитывайте это, и при случае обратите внимание.

Пробитый диодный мост

Диодный мост – это конструкция из, как минимум, шести выпрямительных мощных диодов, отвечающих за выпрямление напряжения. Дело в том, что генератор сам по себе вырабатывает переменное напряжение, а бортовой сети автомобиля нужно постоянное. Преобразованием переменного в постоянное как раз и занимается диодный мост. Находится он, как правило, непосредственно на генераторе, или внутри него.

Так вот, довольно редко, но встречаются случаи, когда один или несколько диодов этого моста выходят из строя или даже немного меняются их характеристики. Такое положение дел неминуемо приводит к проблемам с бортовым напряжением. Проверить диодный мост не так уж сложно. Но, если опыта и знаний в этом деле нет, проще и быстрее обратиться за этим к профессионалу или к знающему «соседу дяде Васе».

Обрыв или КЗ в проводке

Такая поломка редко заканчивается только низким напряжением бортовой сети. Обычно, если где-то что-то оборвалось или подкорачивает, то перестает работать какой-либо прибор или целая система автомобиля. «Благодаря» этой особенности поломку искать намного проще, так как по прекратившему работать узлу можно начать копать сразу в правильном направлении.

Плохие контакты в силовых цепях

Эта причина относится к часто встречающимся. Наверное, даже чаще, чем неисправность реле-регулятора. Заключается она в том, что при плохих контактах в местах соединения силовой проводки напряжение падает гарантированно. А под нагрузкой оно в таких случаях вообще проваливается «до бесконечности».

Как советуют опытные автолюбители, начинать поиски подобной проблемы всегда стоит с «массы» двигателя. Зачастую провод, которым это дело реализуется, крепится к мотору в самом «грязном» месте – где-то снизу. Соответственно, контакт там быстро загрязняется, постоянно мокнет, окисляется, гниет и так далее… Посему – почистить и смазать.

Не забываем и про плюсовые провода, которые, в том числе, подходят к аккумуляторной батарее и генератору (заодно и стартерные для профилактики не помешает почистить). Если хоть где-то в этих цепях будет плохой контакт – низкое напряжение бортовой сети обеспечено. Со временем, если ничего не предпринимать, к просадкам появятся дикие провалы по вольтам, а также моргание контрольной лампочки на приборной панели, которая с аккумулятором нарисованным.

Малое сечение силовой проводки

Последняя, очень даже вероятная, причина низкого напряжения бортовой сети автомобиля – малое или недостаточное сечение силовых проводов. Стать таковым оно может даже тогда, когда вся проводка штатная. Например, жилки под слоем изоляции или в местах, где ее нет, могли окислиться, сгнить или разорваться из-за вибраций или других факторов.

Ну а нештатных силовые провода, которые были установлены на машину в процессе ремонта, что называется, на глазок – это отдельная тема. Нередко в качестве них применяются либо слишком тонкие провода, либо слишком некачественные. Например, не из меди, как того хотелось бы, а из какого-то более дешевого сплава, покрашенного хитрыми китайцами в похожий на медь цвет.

Так или иначе, если в результате проверок подозрение пало на силовые провода – их можно либо заменить на нормальные, либо же продублировать. То есть, параллельно уже идущим добавить по тому же пути еще по проводу на каждую силовую цепь. За счет этого увеличится общее сечение проводника в цепи, а его сопротивление, наоборот, уменьшится. Как правило, если в машину устанавливается что-либо мощное (из списка выше), то такие манипуляции являются просто обязательными. Иначе ничего работать нормально не будет.

Краткие итоги

Как видим, причин, почему наблюдается низкое напряжение бортовой сети автомобиля – не так уж и мало. К счастью, находятся они все довольно легко даже при наличии не очень большого опыта «общения» с внутренностями машины. Самое главное – не спешить прибегать к кардинальным мерам (замена генератора или колхоз с реле-регуляторами и диодами) до того, как будут проработаны более элементарные шаги, включающие корректные измерения напряжения бортовой сети и исключение простых в поиске и устранении причин.

Источник

Источник

TL494 (Texas Instruments) — это наверное самый распространённый ШИМ-контроллер, на базе которого создавалась основная масса компьютерных блоков питания, и силовые части различных бытовых приборов.
Да и сейчас эта микросхема довольно популярна среди радиолюбителей, занимающихся построением импульсных блоков питания. Отечественный аналог этой микросхемы — М1114ЕУ4 (КР1114ЕУ4). Кроме того ещё разные зарубежные фирмы выпускают данную микросхему с разными названиями. Например IR3M02 (Sharp), KA7500 (Samsung), MB3759 (Fujitsu). Всё это одна и та же микросхема.
Возраст её гораздо моложе TL431. Выпускаться он начала фирмой Texas Instruments где то с конца 90-х — начала 2000-х годов.
Давайте-ка вместе попробуем разобраться, что она из себя представляет и что это за «зверь» такой? Рассматривать мы будем микросхему TL494 (Texas Instruments).

TL494

И так, для начала посмотрим, что у неё внутри.

Структурная схема TL494

Состав.

В её составе имеется:
   — генератор пилообразного напряжения (ГПН);
   — компаратор регулировки мертвого времени (DA1);
   — компаратор регулировки ШИМ (DA2);
   — усилитель ошибки 1 (DA3), используется в основном по напряжению;
   — усилитель ошибки 2 (DA4), используется в основном по сигналу ограничения тока;
   — стабильный источник опорного напряжения (ИОН) на 5В с внешним выводом 14;
   — схема управления работой выходного каскада.

Потом все её составные части мы конечно рассмотрим и постараемся разобраться, для чего всё это нужно и как всё это работает, но для начала необходимо будет привести её рабочие параметры (характеристики).

Рекомендуемые рабочие параметры.

Параметры Мин. Макс. Ед. Изм.
 VCC    Напряжение питания 7 40 В
 VI       Напряжение на входе усилителя -0,3 VCC – 2 В
 VO     Напряжение на коллекторе   40 В
 Ток коллектора (каждого транзистора)   200 мА
 Ток обратной связи   0,3 мА
 fOSC Частота генератора 1 300 кГц
 CT     Емкость конденсатора генератора 0,47 10000 нФ
 RT  Сопротивление резистора генератора 1,8 500 кОм
TA       Рабочая температура TL494C
TL494I
0 70 °C
-40 85 °C

Предельные её характеристики следующие;

Напряжение питания……………………………………………..41В

Входное напряжение усилителя………………………………(Vcc+0.3)В

Выходное напряжение коллектора…………………………..41В

Выходной ток коллектора………………………………………250мА

Общая мощность рассеивания в непрерывном режиме….1Вт

Расположение и назначение выводов микросхемы.

Цоколевка TL494

Вывод 1

Это не инвертирующий (положительный) вход усилителя ошибки 1.
Если входное напряжение на нём будет ниже, чем напряжение на выводе 2, то на выходе этого усилителя ошибки 1, напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если на этом выводе напряжение будет выше, чем на выводе 2, то на выходе этого усилителя 1, появится напряжение (выход усилителя 1, будет иметь высокий уровень) и ширина (скважность) выходных импульсов будет уменьшаться тем больше, чем выше выходное напряжение этого усилителя (максимум 3,3 вольта).

Вывод 2

Это инвертирующий (отрицательный) вход усилителя сигнала ошибки 1.
Если входное напряжение на этом выводе выше, чем на выводе 1, на выходе усилителя ошибки напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если же напряжение на этом выводе ниже, чем на выводе 1, выход усилителя будет иметь высокий уровень.

Усилитель ошибки, это обычный ОУ с коэффициентом усиления порядка = 70..95дБ по постоянному напряжению, (Ку = 1 на частоте 350 кГц). Диапазон входных напряжений ОУ простирается от -0.3В и до напряжения питания, минус 2В. То есть максимальное входное напряжение должно быть ниже напряжения питания минимум на два вольта.

Вывод 3

Это выходы усилителей ошибки 1 и 2, соединённых с этим выводом через диоды (схема ИЛИ). Если напряжение на выходе какого-либо усилителя меняется с низкого на высокий уровень, то на выводе 3 оно также переходит в высокий.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе микросхемы пропадают (нулевая скважность).
Если напряжение на этом выводе близко к 0 В, тогда длительность выходных импульсов (скважность) будет максимальна.

Вывод 3 обычно используется для обеспечения ОС усилителей, но если это необходимо, то вывод 3 может быть использован и в качестве входного, для обеспечения изменения ширины импульсов.
Если напряжение на нем высокое (> ~ 3,5 В), то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.

Вывод 4

Он управляет диапазоном изменения «мёртвого» времени (англ. Dead-Time Control), в принципе это та же самая скважность.
Если напряжение на нем будет близко к 0 В, то на выходе микросхемы будут, как минимально возможные, так и максимальные по ширине импульсы, что соответственно может задаваться другими входными сигналами (усилители ошибок, вывод 3).
Если напряжение на этом выводе будет около 1,5 В, то ширина выходных импульсов будет в районе 50% от их максимальной ширины.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.
Но стоит не забывать, что при увеличении «мёртвого» времени, диапазон регулировки ШИМ будет уменьшаться.

Изменяя напряжение на выводе 4, можно задавать фиксированную ширину «мёртвого» времени (R-R делителем), осуществить в БП режим мягкого старта (R-C цепочкой), обеспечить дистанционное выключение МС (ключ), а также можно использовать этот вывод, как линейный управляющий вход.

Давайте рассмотрим (для тех, кто не знает), что такое «мёртвое» время и для чего оно нужно.
При работе двухтактной схемы БП, импульсы поочерёдно подаются с выходов микросхемы на базы (затворы) выходных транзисторов. Так как любой транзистор — элемент инерционный, он не может мгновенно закрыться (открыться) при снятии (подаче) сигнала с базы (затвора) выходного транзистора. И если на выходные транзисторы подавать импульсы без «мёртвого» времени (то есть с одного импульс снять и на второй сразу подать), может наступить такой момент, когда один транзистор не успеет закрыться, а второй уже открылся. Тогда весь ток (называется сквозной ток) потечёт через оба открытых транзистора минуя нагрузку (обмотку трансформатора), и так как он ни чем не будет ограничен, выходные транзисторы мгновенно выйдут из строя.
Чтобы такое не произошло, необходимо после окончания одного импульса и до начала следующего — прошло какое-то определённое время, достаточное для надёжного закрытия того выходного транзистора, со входа которого снят управляющий сигнал.
Это время и называется «мёртвым» временем.

Да, ещё если посмотреть рисунок с составом микросхемы, то мы видим, что вывод 4 соединён со входом компаратора регулировки мертвым временем (DA1) через источник напряжения, величиной 0,1-0,12 В. Для чего это сделано?
Это как раз и сделано для того, чтобы максимальная ширина (скважность) выходных импульсов никогда не была равна 100%, для обеспечения безопасной работы выходных (выходного) транзисторов.
То есть если «посадить» вывод 4 на общий провод, то на входе компаратора DA1 всё равно не будет нулевого напряжения, а будет напряжение как раз этой величины (0,1-0,12 В) и импульсы с генератора пилообразного напряжения (ГПН) появятся на выходе микросхемы только тогда, когда их амплитуда на выводе 5, превысит это напряжение. То есть микросхема имеет фиксированный максимальный порог скважности выходных импульсов, который не превысит для однотактного режима работы выходного каскада 95-96%, и для двухтактного режима работы выходного каскада — 47,5-48%.

Вывод 5

Это вывод ГПН, он предназначен для подключения к нему времязадающего конденсатора Ct, второй конец которого подсоединяется к общему проводу. Ёмкость его выбирается обычно от 0,01 мкФ до 0,1 мкФ, в зависимости от выходной частоты ГПН импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества.
Выходную частоту ГПН можно как раз контролировать на этом выводе. Размах выходного напряжения генератора (амплитуда выходных импульсов) где-то в районе 3-х вольт.

Вывод 6

Тоже вывод ГПН, предназначенный для подключения к нему врямя-задающего резистора Rt, второй конец которого подсоединяется к общему проводу.
Величины Rt и Ct определяют выходную частоту ГПН, и рассчитываются по формуле для однотактного режима работы;

формула1

Где F, R, C — кГц, кОм, мкФ. Для двухтактного режима работы формула имеет следующий вид;

формула2

Для ШИМ-контроллеров других фирм, частота рассчитывается по такой же формуле, за исключением — цифру 1 необходимо будет поменять на 1,1.

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 8

В составе микросхемы имеется выходной каскад с двумя выходными транзисторами, которые являются ее выходными ключами. Выводы коллекторов и эмиттеров этих транзисторов свободные, и поэтому в зависимости от необходимости, эти транзисторы можно включать в схему для работы как с общим эмиттером, так и с общим коллектором.
В зависимости от напряжения на выводе 13, этот выходной каскад может работать как в двухтактном режиме работы, так и в однотактном. В однотактном режиме работы эти транзисторы можно соединять параллельно для увеличения тока нагрузки, что обычно и делают.
Так вот, вывод 8, это вывод коллектора транзистора 1.

Вывод 9

Это вывод эмиттера транзистора 1.

Вывод 10

Это вывод эмиттера транзистора 2.

Вывод 11

Это коллектор транзистора 2.

Вывод 12

К этому выводу подсоединяется «плюс» источника питания TL494CN.

Вывод 13

Это вывод выбора режима работы выходного каскада. Если этот вывод подсоединить к общему проводу, выходной каскад будет работать в однотактном режиме. Выходные сигналы на выводах транзисторных ключей будут одинаковыми.
Если подать на этот вывод напряжение +5 В (соединить между собой выводы 13 и 14), то выходные ключи будут работать в двухтактном режиме. Выходные сигналы на выводах транзисторных ключей будут противофазны и частота выходных импульсов будет в два раза меньше.

Вывод 14

Это выход стабильного Источника Опорного Напряжения (ИОН), С выходным напряжением +5 В и выходным током до 10 мА, которое может быть использовано в качестве образцового для сравнения в усилителях ошибки, и в других целях.

Вывод 15

Он работает точно так же, как и вывод 2. Если второй усилитель ошибки не используется, то вывод 15 просто подключают к 14-му выводу (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и вывод 1. Если второй усилитель ошибки не используется, то его обычно подключают к общему проводу (вывод 7).
С выводом 15, подключенным к +5 В и выводом 16, подключенным к общему проводу, выходное напряжение второго усилителя отсутствует, поэтому он не оказывает никакого влияния на работу микросхемы.

Принцип работы микросхемы.

Так как же работает ШИМ-контроллер TL494.
Выше мы подробно рассмотрели назначение выводов этой микросхемы и какую функцию они выполняют.
Если всё это тщательно проанализировать, то из всего этого становится ясно, как работает эта микросхема. Но я ещё раз очень кратко опишу принцип её работы.

При типовом включении микросхемы и подаче на неё питания (минус на вывод 7, плюс на вывод 12), ГПН начинает вырабатывать пилообразные импульсы, амплитудой около 3-х вольт, частота которых зависит от подключенных С и R к выводам 5 и 6 микросхемы.
Если величина управляющих сигналов (на выводе 3 и 4) меньше 3-х вольт, то на выходных ключах микросхемы появляются прямоугольные импульсы, ширина которых (скважность) зависит от величины управляющих сигналов на выводе 3 и 4.
То есть в микросхеме идёт сравнение положительного пилообразного напряжения с конденсатора Ct (C1) с любым из двух управляющих сигналов.
Логические схемы управления выходными транзисторами VT1 и VT2, открывают их только тогда, когда напряжение пилообразных импульсов выше сигналов управления. И чем больше эта разница, тем шире выходной импульс (больше скважность).
Управляющее напряжение на выводе 3 в свою очередь зависит от сигналов на входах операционных усилителей (усилителей ошибок), которые в свою очередь могут контролировать выходное напряжение и выходной ток БП.

Таким образом, увеличение или уменьшение величины какого либо управляющего сигнала, вызывает соответственно линейное уменьшение или увеличение ширины импульсов напряжения на выходах микросхемы.
В качестве управляющих сигналов, как уже было сказано выше, может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи непосредственно с вывода 3.

Теория, как говорится теорией, но гораздо будет лучше всё это посмотреть и «пощупать» на практике, поэтому соберём на макетной плате следующую схемку и посмотрим воочию, как всё это работает.

схема

Самый простой и быстрый способ — собрать всё это на макетной плате. Да, микросхему я поставил КА7500. Вывод «13» микросхемы посадил на общий провод, то есть у нас выходные ключи будут работать в однотактном режиме (сигналы на транзисторах будут одинаковыми), а частота повторения выходных импульсов, будет соответствовать частоте пилообразного напряжения ГПН.

макетная плата

Осциллограф я подключил к следующим контрольным точкам:
   — Первый луч к выводу «4», для контроля постоянного напряжения на этом выводе. Находится в центре экрана на нулевой линии. Чувствительность — 1 вольт на деление;
   — Второй луч к выводу «5», для контроля пилообразного напряжения ГПН. Находится он так же на нулевой линии (совмещены оба луча) в центре осциллографа и с такой же чувствительностью;
   — Третий луч на выход микросхемы к выводу «9», для контроля импульсов на выходе микросхемы. Чувствительность луча 5 вольт на деление (0,5 вольт, плюс делитель на 10). Находится в нижней части экрана осциллографа.

Осциллограмма 1

Забыл сказать, выходные ключи микросхемы подключены с общим коллектором. По другому сказать — по схеме эмиттерного повторителя. Почему повторителя? Потому что сигнал на эмиттере транзистора в точности повторяет сигнал базы, чтобы нам всё было хорошо видно.
Если снимать сигнал с коллектора транзистора, то он будет инвертирован (перевёрнут) по отношению к сигналу базы.
Подаём питание на микросхему и смотрим что у нас имеется на выводах.

Осциллограмма 2

На четвёртой ножке у нас ноль (бегунок подстроечного резистора в крайнем нижнем положении), первый луч находится на нулевой линии в центре экрана. Усилители ошибки тоже не работают.
На пятой ножке мы видим пилообразное напряжение ГПН (второй луч), амплитудой чуть больше 3-х вольт.
На выходе микросхемы (вывод 9) мы видим прямоугольные импульсы, амплитудой около 15-ти вольт и максимальной ширины (96%). Точки в нижней части экрана — это как раз фиксированный порог скважности и есть. Чтобы его было лучше видно, включим растяжку на осциллографе.

Осциллограмма 3

Ну вот, сейчас видно лучше. Это как раз и есть время, когда амплитуда импульса падает до нуля и выходной транзистор закрыт это короткое время. Уровень нуля для этого луча в нижней части экрана.
Ну что, давайте добавим напряжение на вывод «4» и посмотрим что у нас получается.

Осциллограмма 4

На выводе «4» подстроечным резистором я установил постоянное напряжение величиной 1 вольт, первый луч поднялся на одно деление (прямая линия на экране осциллографа). Что мы видим? Мёртвое время увеличилось (уменьшилась скважность), это пунктирная линия в нижней части экрана. То есть выходной транзистор закрыт на время уже примерно на половину длительности самого импульса.
Добавим ещё один вольт подстроечным резистором на вывод «4» микросхемы.

Осциллограмма 5

Мы видим, что первый луч поднялся ещё на одно деление вверх, длительность выходных импульсов стала ещё меньше (1/3 от длительности всего импульса), а мёртвое время (время закрытия выходного транзистора) увеличилось до двух третьей. То есть наглядно видно, что логика микросхемы сравнивает уровень сигнала ГПН с уровнем управляющего сигнала, и пропускает на выход только тот сигнал ГПН, уровень которого выше управляющего сигнала.

Чтобы стало ещё понятней — длительность (ширина) выходных импульсов микросхемы будет такой, какой является длительность (ширина) выходных импульсов пилообразного напряжения находящихся выше уровня управляющего сигнала (выше прямой линии на экране осциллографа).

Осциллограмма 6

Идём дальше, добавляем ещё один вольт на вывод «4» микросхемы. Что мы видим? На выходе микросхемы очень короткие импульсы, по ширине примерно такие же, как и выступающие выше прямой линии верхушки пилообразного напряжения. Включим растяжку на осциллографе, чтобы импульс было лучше видно.

Осциллограмма 7

Вот, мы видим короткий импульс, в течении которого выходной транзистор будет открыт, а всё остальное время (нижняя линия на экране) будет закрыт.
Ну что, попробуем поднять напряжение на выводе «4» ещё больше. Ставим подстроечным резистором напряжение на выводе выше уровня пилообразного напряжения ГПН.

Осциллограмма 8

Ну всё, БП у нас перестанет работать, так как на выходе полный «штиль». Выходных импульсов нет, так как на управляющем выводе «4» у нас постоянное напряжение уровнем больше 3,3 вольта.
Абсолютно то же самое будет, если подавать управляющий сигнал и на вывод «3», или на какой либо усилитель ошибки. Кому интересно, можете сами проверить опытным путём. Притом, если управляющие сигналы будут сразу на всех управляющих выводах, управлять микросхемой (преобладать), будет сигнал с того управляющего вывода, амплитуда которого больше.

Ну что, давайте попробуем отключить вывод «13» от общего провода и подсоединить его к выводу «14», то есть переключить режим работы выходных ключей из однотактного в двухтактный. Посмотрим, что у нас получится.

Осциллограмма 9

Подстроечным резистором выводим опять напряжение на выводе «4» на ноль. Включаем питание. Что мы видим?
На выходе микросхемы так же присутствуют прямоугольные импульсы максимальной длительности, но их частота следования стала в два раза меньше частоты пилообразных импульсов.
Такие же самые импульсы будут и на втором ключевом транзисторе микросхемы (вывод 10), с той лишь разницей, что они будут сдвинуты по времени относительно этих на 180 градусов.
Здесь так же присутствует максимальный порог скважности (2%). Сейчас его не видно, нужно подключать 4-й луч осциллографа и совмещать вместе два выходных сигнала. Щупа четвёртого нет под рукой, поэтому этого не сделал. Кто хочет, проверьте практически сами, чтобы в этом удостовериться.

В таком режиме микросхема работает точно так же, как и в однотактном режиме, лишь с той разницей, что максимальная длительность выходных импульсов здесь не будет превышать 48% от общей длительности импульса.
Так что долго рассматривать этот режим мы не будем, а просто посмотрим, какие у нас будут импульсы при напряжении на выводе «4» в два вольта.

Осциллограмма 10

Поднимаем напряжение подстроечным резистором. Ширина выходных импульсов уменьшилась до 1/6 общей длительности импульса, то есть тоже ровно в два раза, чем в однотактном режиме работы выходных ключей (там в 1/3 раза).
На выводе второго транзистора (вывод 10) будут такие же импульсы, только сдвинутые по времени на 180 градусов.
Ну вот в принципе мы и разобрали работу ШИМ контроллера.

Ещё по выводу «4». Как говорилось раньше, этот вывод можно использовать для «мягкого» старта блока питания. Как это организовать?
Очень просто. Для этого подключаем к выводу «4» RC цепочку. Вот например фрагмент схемы:

Фрагмент схемы

Как здесь работает «мягкий старт»? Смотрим схему. Конденсатор С1 через резистор R5 подключен к ИОН (+5 вольт).
При подаче питания на микросхему (вывод 12), на выводе 14 появляется +5 вольт. Начинает заряжаться конденсатор С1. Через резистор R5 протекает зарядный ток конденсатора, в момент включения он максимальный (конденсатор разряжен) и на резисторе возникает падение напряжения 5 вольт, которое подаётся на вывод «4». Это напряжение, как мы уже выяснили опытным путём, запрещает прохождение импульсов на выход микросхемы.
По мере заряда конденсатора, зарядный ток уменьшается и соответственно уменьшается и падение напряжения на резисторе. Напряжение на выводе «4» также уменьшается и на выходе микросхемы начинают появляться импульсы, длительность которых постепенно увеличивается (по мере заряда конденсатора). Когда конденсатор зарядится полностью — зарядный ток прекращается, напряжение на выводе «4» становится близко к нулю, и вывод «4» больше не оказывает влияния на длительность выходных импульсов. Блок питания выходит на свой рабочий режим.
Естественно Вы догадались, что время запуска БП (выхода его на рабочий режим) будет зависеть от величины резистора и конденсатора, и их подбором можно будет регулировать это время.

Ну вот, это кратко вся теория и практика, и ничего здесь особо сложного нет, и если Вы поймёте и разберётесь в работе этого ШИМ-а, то Вам не составит никакого труда разобраться и понять работу других ШИМ-ов.

Желаю всем удачи.

Корпус TL494

Состав.

В её составе имеется:
   — генератор пилообразного напряжения (ГПН);
   — компаратор регулировки мертвого времени (DA1);
   — компаратор регулировки ШИМ (DA2);
   — усилитель ошибки 1 (DA3), используется в основном по напряжению;
   — усилитель ошибки 2 (DA4), используется в основном по сигналу ограничения тока;
   — стабильный источник опорного напряжения (ИОН) на 5В с внешним выводом 14;
   — схема управления работой выходного каскада.

Потом все её составные части мы конечно рассмотрим и постараемся разобраться, для чего всё это нужно и как всё это работает, но для начала необходимо будет привести её рабочие параметры (характеристики).

Рекомендуемые рабочие параметры.

Параметры Мин. Макс. Ед. Изм.
 VCC    Напряжение питания 7 40 В
 VI       Напряжение на входе усилителя -0,3 VCC – 2 В
 VO     Напряжение на коллекторе   40 В
 Ток коллектора (каждого транзистора)   200 мА
 Ток обратной связи   0,3 мА
 fOSC Частота генератора 1 300 кГц
 CT     Емкость конденсатора генератора 0,47 10000 нФ
 RT  Сопротивление резистора генератора 1,8 500 кОм
TA       Рабочая температура TL494C
TL494I
0 70 °C
-40 85 °C

Предельные её характеристики следующие;

Напряжение питания……………………………………………..41В

Входное напряжение усилителя………………………………(Vcc+0.3)В

Выходное напряжение коллектора…………………………..41В

Выходной ток коллектора………………………………………250мА

Общая мощность рассеивания в непрерывном режиме….1Вт

Расположение и назначение выводов микросхемы.

Цоколевка TL494

Вывод 1

Это не инвертирующий (положительный) вход усилителя ошибки 1.
Если входное напряжение на нём будет ниже, чем напряжение на выводе 2, то на выходе этого усилителя ошибки 1, напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если на этом выводе напряжение будет выше, чем на выводе 2, то на выходе этого усилителя 1, появится напряжение (выход усилителя 1, будет иметь высокий уровень) и ширина (скважность) выходных импульсов будет уменьшаться тем больше, чем выше выходное напряжение этого усилителя (максимум 3,3 вольта).

Вывод 2

Это инвертирующий (отрицательный) вход усилителя сигнала ошибки 1.
Если входное напряжение на этом выводе выше, чем на выводе 1, на выходе усилителя ошибки напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если же напряжение на этом выводе ниже, чем на выводе 1, выход усилителя будет иметь высокий уровень.

Усилитель ошибки, это обычный ОУ с коэффициентом усиления порядка = 70..95дБ по постоянному напряжению, (Ку = 1 на частоте 350 кГц). Диапазон входных напряжений ОУ простирается от -0.3В и до напряжения питания, минус 2В. То есть максимальное входное напряжение должно быть ниже напряжения питания минимум на два вольта.

Вывод 3

Это выходы усилителей ошибки 1 и 2, соединённых с этим выводом через диоды (схема ИЛИ). Если напряжение на выходе какого-либо усилителя меняется с низкого на высокий уровень, то на выводе 3 оно также переходит в высокий.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе микросхемы пропадают (нулевая скважность).
Если напряжение на этом выводе близко к 0 В, тогда длительность выходных импульсов (скважность) будет максимальна.

Вывод 3 обычно используется для обеспечения ОС усилителей, но если это необходимо, то вывод 3 может быть использован и в качестве входного, для обеспечения изменения ширины импульсов.
Если напряжение на нем высокое (> ~ 3,5 В), то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.

Вывод 4

Он управляет диапазоном изменения «мёртвого» времени (англ. Dead-Time Control), в принципе это та же самая скважность.
Если напряжение на нем будет близко к 0 В, то на выходе микросхемы будут, как минимально возможные, так и максимальные по ширине импульсы, что соответственно может задаваться другими входными сигналами (усилители ошибок, вывод 3).
Если напряжение на этом выводе будет около 1,5 В, то ширина выходных импульсов будет в районе 50% от их максимальной ширины.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.
Но стоит не забывать, что при увеличении «мёртвого» времени, диапазон регулировки ШИМ будет уменьшаться.

Изменяя напряжение на выводе 4, можно задавать фиксированную ширину «мёртвого» времени (R-R делителем), осуществить в БП режим мягкого старта (R-C цепочкой), обеспечить дистанционное выключение МС (ключ), а также можно использовать этот вывод, как линейный управляющий вход.

Давайте рассмотрим (для тех, кто не знает), что такое «мёртвое» время и для чего оно нужно.
При работе двухтактной схемы БП, импульсы поочерёдно подаются с выходов микросхемы на базы (затворы) выходных транзисторов. Так как любой транзистор — элемент инерционный, он не может мгновенно закрыться (открыться) при снятии (подаче) сигнала с базы (затвора) выходного транзистора. И если на выходные транзисторы подавать импульсы без «мёртвого» времени (то есть с одного импульс снять и на второй сразу подать), может наступить такой момент, когда один транзистор не успеет закрыться, а второй уже открылся. Тогда весь ток (называется сквозной ток) потечёт через оба открытых транзистора минуя нагрузку (обмотку трансформатора), и так как он ни чем не будет ограничен, выходные транзисторы мгновенно выйдут из строя.
Чтобы такое не произошло, необходимо после окончания одного импульса и до начала следующего — прошло какое-то определённое время, достаточное для надёжного закрытия того выходного транзистора, со входа которого снят управляющий сигнал.
Это время и называется «мёртвым» временем.

Да, ещё если посмотреть рисунок с составом микросхемы, то мы видим, что вывод 4 соединён со входом компаратора регулировки мертвым временем (DA1) через источник напряжения, величиной 0,1-0,12 В. Для чего это сделано?
Это как раз и сделано для того, чтобы максимальная ширина (скважность) выходных импульсов никогда не была равна 100%, для обеспечения безопасной работы выходных (выходного) транзисторов.
То есть если «посадить» вывод 4 на общий провод, то на входе компаратора DA1 всё равно не будет нулевого напряжения, а будет напряжение как раз этой величины (0,1-0,12 В) и импульсы с генератора пилообразного напряжения (ГПН) появятся на выходе микросхемы только тогда, когда их амплитуда на выводе 5, превысит это напряжение. То есть микросхема имеет фиксированный максимальный порог скважности выходных импульсов, который не превысит для однотактного режима работы выходного каскада 95-96%, и для двухтактного режима работы выходного каскада — 47,5-48%.

Вывод 5

Это вывод ГПН, он предназначен для подключения к нему времязадающего конденсатора Ct, второй конец которого подсоединяется к общему проводу. Ёмкость его выбирается обычно от 0,01 мкФ до 0,1 мкФ, в зависимости от выходной частоты ГПН импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества.
Выходную частоту ГПН можно как раз контролировать на этом выводе. Размах выходного напряжения генератора (амплитуда выходных импульсов) где-то в районе 3-х вольт.

Вывод 6

Тоже вывод ГПН, предназначенный для подключения к нему врямя-задающего резистора Rt, второй конец которого подсоединяется к общему проводу.
Величины Rt и Ct определяют выходную частоту ГПН, и рассчитываются по формуле для однотактного режима работы;

формула1

Где F, R, C — кГц, кОм, мкФ. Для двухтактного режима работы формула имеет следующий вид;

формула2

Для ШИМ-контроллеров других фирм, частота рассчитывается по такой же формуле, за исключением — цифру 1 необходимо будет поменять на 1,1.

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 8

В составе микросхемы имеется выходной каскад с двумя выходными транзисторами, которые являются ее выходными ключами. Выводы коллекторов и эмиттеров этих транзисторов свободные, и поэтому в зависимости от необходимости, эти транзисторы можно включать в схему для работы как с общим эмиттером, так и с общим коллектором.
В зависимости от напряжения на выводе 13, этот выходной каскад может работать как в двухтактном режиме работы, так и в однотактном. В однотактном режиме работы эти транзисторы можно соединять параллельно для увеличения тока нагрузки, что обычно и делают.
Так вот, вывод 8, это вывод коллектора транзистора 1.

Вывод 9

Это вывод эмиттера транзистора 1.

Вывод 10

Это вывод эмиттера транзистора 2.

Вывод 11

Это коллектор транзистора 2.

Вывод 12

К этому выводу подсоединяется «плюс» источника питания TL494CN.

Вывод 13

Это вывод выбора режима работы выходного каскада. Если этот вывод подсоединить к общему проводу, выходной каскад будет работать в однотактном режиме. Выходные сигналы на выводах транзисторных ключей будут одинаковыми.
Если подать на этот вывод напряжение +5 В (соединить между собой выводы 13 и 14), то выходные ключи будут работать в двухтактном режиме. Выходные сигналы на выводах транзисторных ключей будут противофазны и частота выходных импульсов будет в два раза меньше.

Вывод 14

Это выход стабильного Источника Опорного Напряжения (ИОН), С выходным напряжением +5 В и выходным током до 10 мА, которое может быть использовано в качестве образцового для сравнения в усилителях ошибки, и в других целях.

Вывод 15

Он работает точно так же, как и вывод 2. Если второй усилитель ошибки не используется, то вывод 15 просто подключают к 14-му выводу (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и вывод 1. Если второй усилитель ошибки не используется, то его обычно подключают к общему проводу (вывод 7).
С выводом 15, подключенным к +5 В и выводом 16, подключенным к общему проводу, выходное напряжение второго усилителя отсутствует, поэтому он не оказывает никакого влияния на работу микросхемы.

Принцип работы микросхемы.

Так как же работает ШИМ-контроллер TL494.
Выше мы подробно рассмотрели назначение выводов этой микросхемы и какую функцию они выполняют.
Если всё это тщательно проанализировать, то из всего этого становится ясно, как работает эта микросхема. Но я ещё раз очень кратко опишу принцип её работы.

При типовом включении микросхемы и подаче на неё питания (минус на вывод 7, плюс на вывод 12), ГПН начинает вырабатывать пилообразные импульсы, амплитудой около 3-х вольт, частота которых зависит от подключенных С и R к выводам 5 и 6 микросхемы.
Если величина управляющих сигналов (на выводе 3 и 4) меньше 3-х вольт, то на выходных ключах микросхемы появляются прямоугольные импульсы, ширина которых (скважность) зависит от величины управляющих сигналов на выводе 3 и 4.
То есть в микросхеме идёт сравнение положительного пилообразного напряжения с конденсатора Ct (C1) с любым из двух управляющих сигналов.
Логические схемы управления выходными транзисторами VT1 и VT2, открывают их только тогда, когда напряжение пилообразных импульсов выше сигналов управления. И чем больше эта разница, тем шире выходной импульс (больше скважность).
Управляющее напряжение на выводе 3 в свою очередь зависит от сигналов на входах операционных усилителей (усилителей ошибок), которые в свою очередь могут контролировать выходное напряжение и выходной ток БП.

Таким образом, увеличение или уменьшение величины какого либо управляющего сигнала, вызывает соответственно линейное уменьшение или увеличение ширины импульсов напряжения на выходах микросхемы.
В качестве управляющих сигналов, как уже было сказано выше, может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи непосредственно с вывода 3.

Теория, как говорится теорией, но гораздо будет лучше всё это посмотреть и «пощупать» на практике, поэтому соберём на макетной плате следующую схемку и посмотрим воочию, как всё это работает.

схема

Самый простой и быстрый способ — собрать всё это на макетной плате. Да, микросхему я поставил КА7500. Вывод «13» микросхемы посадил на общий провод, то есть у нас выходные ключи будут работать в однотактном режиме (сигналы на транзисторах будут одинаковыми), а частота повторения выходных импульсов, будет соответствовать частоте пилообразного напряжения ГПН.

макетная плата

Осциллограф я подключил к следующим контрольным точкам:
   — Первый луч к выводу «4», для контроля постоянного напряжения на этом выводе. Находится в центре экрана на нулевой линии. Чувствительность — 1 вольт на деление;
   — Второй луч к выводу «5», для контроля пилообразного напряжения ГПН. Находится он так же на нулевой линии (совмещены оба луча) в центре осциллографа и с такой же чувствительностью;
   — Третий луч на выход микросхемы к выводу «9», для контроля импульсов на выходе микросхемы. Чувствительность луча 5 вольт на деление (0,5 вольт, плюс делитель на 10). Находится в нижней части экрана осциллографа.

Осциллограмма 1

Забыл сказать, выходные ключи микросхемы подключены с общим коллектором. По другому сказать — по схеме эмиттерного повторителя. Почему повторителя? Потому что сигнал на эмиттере транзистора в точности повторяет сигнал базы, чтобы нам всё было хорошо видно.
Если снимать сигнал с коллектора транзистора, то он будет инвертирован (перевёрнут) по отношению к сигналу базы.
Подаём питание на микросхему и смотрим что у нас имеется на выводах.

Осциллограмма 2

На четвёртой ножке у нас ноль (бегунок подстроечного резистора в крайнем нижнем положении), первый луч находится на нулевой линии в центре экрана. Усилители ошибки тоже не работают.
На пятой ножке мы видим пилообразное напряжение ГПН (второй луч), амплитудой чуть больше 3-х вольт.
На выходе микросхемы (вывод 9) мы видим прямоугольные импульсы, амплитудой около 15-ти вольт и максимальной ширины (96%). Точки в нижней части экрана — это как раз фиксированный порог скважности и есть. Чтобы его было лучше видно, включим растяжку на осциллографе.

Осциллограмма 3

Ну вот, сейчас видно лучше. Это как раз и есть время, когда амплитуда импульса падает до нуля и выходной транзистор закрыт это короткое время. Уровень нуля для этого луча в нижней части экрана.
Ну что, давайте добавим напряжение на вывод «4» и посмотрим что у нас получается.

Осциллограмма 4

На выводе «4» подстроечным резистором я установил постоянное напряжение величиной 1 вольт, первый луч поднялся на одно деление (прямая линия на экране осциллографа). Что мы видим? Мёртвое время увеличилось (уменьшилась скважность), это пунктирная линия в нижней части экрана. То есть выходной транзистор закрыт на время уже примерно на половину длительности самого импульса.
Добавим ещё один вольт подстроечным резистором на вывод «4» микросхемы.

Осциллограмма 5

Мы видим, что первый луч поднялся ещё на одно деление вверх, длительность выходных импульсов стала ещё меньше (1/3 от длительности всего импульса), а мёртвое время (время закрытия выходного транзистора) увеличилось до двух третьей. То есть наглядно видно, что логика микросхемы сравнивает уровень сигнала ГПН с уровнем управляющего сигнала, и пропускает на выход только тот сигнал ГПН, уровень которого выше управляющего сигнала.

Чтобы стало ещё понятней — длительность (ширина) выходных импульсов микросхемы будет такой, какой является длительность (ширина) выходных импульсов пилообразного напряжения находящихся выше уровня управляющего сигнала (выше прямой линии на экране осциллографа).

Осциллограмма 6

Идём дальше, добавляем ещё один вольт на вывод «4» микросхемы. Что мы видим? На выходе микросхемы очень короткие импульсы, по ширине примерно такие же, как и выступающие выше прямой линии верхушки пилообразного напряжения. Включим растяжку на осциллографе, чтобы импульс было лучше видно.

Осциллограмма 7

Вот, мы видим короткий импульс, в течении которого выходной транзистор будет открыт, а всё остальное время (нижняя линия на экране) будет закрыт.
Ну что, попробуем поднять напряжение на выводе «4» ещё больше. Ставим подстроечным резистором напряжение на выводе выше уровня пилообразного напряжения ГПН.

Осциллограмма 8

Ну всё, БП у нас перестанет работать, так как на выходе полный «штиль». Выходных импульсов нет, так как на управляющем выводе «4» у нас постоянное напряжение уровнем больше 3,3 вольта.
Абсолютно то же самое будет, если подавать управляющий сигнал и на вывод «3», или на какой либо усилитель ошибки. Кому интересно, можете сами проверить опытным путём. Притом, если управляющие сигналы будут сразу на всех управляющих выводах, управлять микросхемой (преобладать), будет сигнал с того управляющего вывода, амплитуда которого больше.

Ну что, давайте попробуем отключить вывод «13» от общего провода и подсоединить его к выводу «14», то есть переключить режим работы выходных ключей из однотактного в двухтактный. Посмотрим, что у нас получится.

Осциллограмма 9

Подстроечным резистором выводим опять напряжение на выводе «4» на ноль. Включаем питание. Что мы видим?
На выходе микросхемы так же присутствуют прямоугольные импульсы максимальной длительности, но их частота следования стала в два раза меньше частоты пилообразных импульсов.
Такие же самые импульсы будут и на втором ключевом транзисторе микросхемы (вывод 10), с той лишь разницей, что они будут сдвинуты по времени относительно этих на 180 градусов.
Здесь так же присутствует максимальный порог скважности (2%). Сейчас его не видно, нужно подключать 4-й луч осциллографа и совмещать вместе два выходных сигнала. Щупа четвёртого нет под рукой, поэтому этого не сделал. Кто хочет, проверьте практически сами, чтобы в этом удостовериться.

В таком режиме микросхема работает точно так же, как и в однотактном режиме, лишь с той разницей, что максимальная длительность выходных импульсов здесь не будет превышать 48% от общей длительности импульса.
Так что долго рассматривать этот режим мы не будем, а просто посмотрим, какие у нас будут импульсы при напряжении на выводе «4» в два вольта.

Осциллограмма 10

Поднимаем напряжение подстроечным резистором. Ширина выходных импульсов уменьшилась до 1/6 общей длительности импульса, то есть тоже ровно в два раза, чем в однотактном режиме работы выходных ключей (там в 1/3 раза).
На выводе второго транзистора (вывод 10) будут такие же импульсы, только сдвинутые по времени на 180 градусов.
Ну вот в принципе мы и разобрали работу ШИМ контроллера.

Ещё по выводу «4». Как говорилось раньше, этот вывод можно использовать для «мягкого» старта блока питания. Как это организовать?
Очень просто. Для этого подключаем к выводу «4» RC цепочку. Вот например фрагмент схемы:

Фрагмент схемы

Как здесь работает «мягкий старт»? Смотрим схему. Конденсатор С1 через резистор R5 подключен к ИОН (+5 вольт).
При подаче питания на микросхему (вывод 12), на выводе 14 появляется +5 вольт. Начинает заряжаться конденсатор С1. Через резистор R5 протекает зарядный ток конденсатора, в момент включения он максимальный (конденсатор разряжен) и на резисторе возникает падение напряжения 5 вольт, которое подаётся на вывод «4». Это напряжение, как мы уже выяснили опытным путём, запрещает прохождение импульсов на выход микросхемы.
По мере заряда конденсатора, зарядный ток уменьшается и соответственно уменьшается и падение напряжения на резисторе. Напряжение на выводе «4» также уменьшается и на выходе микросхемы начинают появляться импульсы, длительность которых постепенно увеличивается (по мере заряда конденсатора). Когда конденсатор зарядится полностью — зарядный ток прекращается, напряжение на выводе «4» становится близко к нулю, и вывод «4» больше не оказывает влияния на длительность выходных импульсов. Блок питания выходит на свой рабочий режим.
Естественно Вы догадались, что время запуска БП (выхода его на рабочий режим) будет зависеть от величины резистора и конденсатора, и их подбором можно будет регулировать это время.

Ну вот, это кратко вся теория и практика, и ничего здесь особо сложного нет, и если Вы поймёте и разберётесь в работе этого ШИМ-а, то Вам не составит никакого труда разобраться и понять работу других ШИМ-ов.

Желаю всем удачи.

Корпус TL494

1 Характеристики

  • Готовый ШИМ — контроллер
  • Незадействованные выводы для 200 мА приемника или источника тока
  • Выбор однотактного или двухтактного режима работы
  • Внутренняя схема запрещает двойной импульс на выходе
  • Изменяемое время задержки обеспечивает контроль всего спектра
  • Встроенный  стабилизатор выдает 5 В опорного напряжения с допуском 5%
  • Архитектура микросхемы позволяет легко синхронизироваться

2 Применение

  • Настольные ПК
  • Микроволновые печи
  • Источники питания: AC/DC; изолированный; с коррекцией коэффициента мощности; >90 Вт
  • Серверы БП
  • Солнечные микро-преобразователи
  • Стиральные машины классов : Low-End и High-End
  • Электровелосипеды
  • Источники питания: AC/DC; изолированный; без коррекции коэффициента мощности; <90 Вт
  • Датчики дыма
  • Преобразователи в солнечной энергетике

3 Описание

TL 494 включает в себя все функции необходимые для построения  схемы управления широтно-импульсной модуляцией (ШИМ) на одном кристалле. Предназначенная в основном для управления питанием, она  позволяет адаптировать схему к конкретному применению. TL 494 содержит два усилителя ошибки, внутренний регулируемый генератор, компаратор управления длительностью мертвого времени (DTC),  импульсно управляемый переключатель, источник опорного напряжения 5В ± 5%, контроль выходной цепи.

Усилители ошибки выдают синфазное напряжение в диапазоне -0.3 В до Vcc — 2 В. Компаратор мертвого времени имеет фиксированное смещение, что дает 5% временную задержку. Внутренний генератор можно обойти путем отключения вывода RT и подключения пилообразного напряжения к CT, что применяется для общих цепей в синхронизации источников питания.

Независимые выходные формирователи на транзисторах дают возможность подключать нагрузку по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. TL494 может работать в однотактном и двухтактном режиме. Архитектура устройства не дает возможности подачи двойного импульса в двухтактном режиме.

TL494C  может работать в диапазоне температур от 0°C до 70°C. TL494I работает в диапазоне температур от –40°C до 85°C.

Серийный номер Корпус(кол-во выводов) Размеры
TL 494 SOIC (16) 9.90 мм × 3.91 мм
PDIP (16) 19.30 мм × 6.35 мм
SOP (16) 10.30 мм × 5.30 мм
TSSOP (16) 5.00 мм × 4.40 мм

4 Расположение и назначение выводов

Цоколевка TL494

Цоколевка TL494
Вывод Тип Описание
Название Номер
1IN+ 1 I Неинвертирующий вход усилителя ошибки 1
1IN- 2 I Инвертирующий вход усилителя ошибки 1
2IN+ 16 I Неинвертирующий вход усилителя ошибки 2
2IN- 15 I Инвертирующий вход усилителя ошибки 2
C1 8 O Коллектор Биполярного Плоскостного Транзистора (БПТ) 1
C2 11 O Коллектор БПТ 2
CT 5 Вывод для подключения конденсатора для установки частоты генератора
DTC 4 I Вход компаратора мертвого времени
E1 9 O Эмиттер БПТ 1
E2 10 O Эмиттер БПТ 2
FEEDBACK 3 I Вывод для обратной связи
GND 7 Общий
OUTPUT CTRL 13 I Выбор режима работы
REF 14 O Опорное напряжение 5В
RT 6 Вывод для подключения резистора для установки частоты генератора
VCC 12 Напряжение питания (+)

5 Спецификация

5.1 Абсолютные максимальные значения

  Мин. Макс. Ед. Изм.
VCC  Напряжение питания   41 В
VI       Напряжение на входе усилителя   VCC + 0.3 В
VO     Напряжение на коллекторе   41 В
IO       Ток коллектора   250 мА
        Температура припоя 1,6 мм в течении 10 сек.   260 °C
Tstg   Температура хранения –65 150 °C

5.2 Значения электростатического заряда

  Макс. Ед. изм.
V(ESD) Электростатический заряд Модель человеческого тела (HBM), посредством ANSI/ESDA/JEDEC JS-001, все выводы 500 В
Модель заряда на устройстве (CDM), посредством JEDEC спецификации JESD22-C101, все выводы 200 В

5.3 Рекомендуемые рабочие значения

  Мин. Макс. Ед. Изм.
VCC  Напряжение питания 7 40 В
VI       Напряжение на входе усилителя -0,3 VCC – 2 В
VO     Напряжение на коллекторе   40 В
        Ток коллектора (каждого транзистора)   200 мА
        Ток обратной связи   0,3 мА
 fOSC Частота генератора 1 300 кГц
CT       Емкость конденсатора генератора 0,47 10000 нФ
RT     Сопротивление резистора генератора 1,8 500 кОм
TA       Рабочая температура на открытом воздухе 0 70 °C
-40 85 °C

5.4 Тепловые характеристики

В рабочем диапазоне температур на открытом воздухе

Параметр TL494 Ед. изм.
D DB N NS PW
RθJA Полное тепловое сопротивление для корпуса 73 82 67 64 108 °C/Вт

5.5 Электрические характеристики

В рабочем диапазоне температур на открытом воздухе, VCC = 15 В, f = 10 кГц

Параметр Условия испытаний(1) TL494C, TL494I Ед. изм
Мин. Тип.(2) Макс.
Выходное напряжение (REF) IO = 1 мА 4.75 5 5.25 В
Стабилизация на входе VCC от 7 В до 40 V   2 25 мВ
Стабилизация на выходе IO от 1 мА до 10 мА   1 15 мВ
Изменение выходного напряжения при температуре ΔTA от MIN до MAX   2 10 мВ/В
Выходной ток короткого замыкания(3) REF = 0 V   25   мА

(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.

(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

(3) Продолжительность короткого замыкания не должна превышать одну секунду.

5.6 Электрические характеристики генератора

C= 0,01 мкФ, R= 12 кОм

Параметр Условия испытаний(1) TL494C, TL494I Ед. изм.
Мин. Тип.(2) Макс.
Частота     10   кГц
Стандартное отклонение частоты(3) Все значения VCC, CT, RT, и Tпостоянны   100   Гц/кГц
Изменение частоты от напряжения VCC от 7 В до 40 В, TA = 25°C   1   Гц/кГц
Изменение частоты от температуры(4) ΔTA  —  от MIN до MAX     10 Гц/кГц

(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.

(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

(3) Стандартное отклонение является мерой статистического распределения относительно среднего рассчитанного по формуле:

Стандартное отклонение частоты

(4) Температурный коэффициент конденсатора и резистора не учитываются.

5.7 Электрические характеристики усилителя ошибки

Параметр Условия испытаний TL494C, TL494I Ед. изм.
Мин. Тип.(1) Макс.
Входное напряжение смещения VO (FEEDBACK) = 2.5 В   2 10 мВ
Входной ток смещения VO (FEEDBACK) = 2.5 В   25 250 нА
Входной ток смещения VO (FEEDBACK) = 2.5 В   0.2 1 мкА
Диапазон входного напряжения VCC от 7 В до 40 В -0.3 до VCC – 2     В
Коэффициент усиления разомкнутой цепи ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм 70 95   dB
Полоса пропускания ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм   800   кГц
Коэффициент подавления синфазных сигналов ΔVO = 40 В, TA = 25°C 65 80   dB
Выходной ток приемника(FEEDBACK) VID = –15 мВ до –5 В, V (FEEDBACK) = 0.7 В 0.3 0.7   мА
Выходной ток источника(FEEDBACK) VID = 15 мВ до  5 В, V (FEEDBACK) = 3.5 В -2     мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

5.8 Выходные электрические характеристики

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Ток коллектора в закрытом состоянии VCE = 40 В, VCC = 40 В   2 100 мкА
Ток эмиттера в закрытом состоянии VCC = VC = 40 В, VE = 0     -100 мкА
Напряжение насыщения коллектор — эмиттер Общий эмиттер VE = 0,  IC = 200 мА   1.1 1.3 В
Эмиттерный повторитель VO(C1 или C2) = 15 В, IE = –200 мА   1.5 2.5
Выходной контроль входного тока VI = Vref     3.5 мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

5.9 Электрические характеристики управления длительностью мертвого времени

См. Рисунок 5

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Входной ток смещения (DEAD-TIME CTRL) VI от 0 до 5.25 В   -2 -10 мкА
Максимальная скважность импульсов на каждом выходе VI (DEAD-TIME CTRL) = 0, CT = 0.01 мкФ, RT = 12 кОм   45%  
Входное пороговое напряжение (DEAD-TIME CTRL) Нулевой коэффициент заполнения   3 3.3 В
Максимальный коэффициент заполнения 0    

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

5.10 Электрические характеристики ШИМ — компаратора

См. Рисунок 5

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Входное пороговое напряжение (FEEDBACK) Нулевой коэффициент заполнения   4 4.5 В
Входной ток приемника (FEEDBACK) V (FEEDBACK) = 0.7 В 0.3 0.7   мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

5.11 Общие электрические характеристики устройства

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Ток потребляемый в режиме ожидания RT = Vref, Все остальные входы и выходы отключены VCC = 15 В   6 9 мА
VCC = 40 В   10 15
Средний потребляемый ток VI (DEAD-TIME CTRL) = 2 В,   7.5   мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

5.12 Коммутационные характеристики

TA = 25°C

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Время нарастания Схема с общим эмиттером   100 200 нс
Время спада   25 100 нс
Время нарастания Схема эмиттерного повторителя   100 200 нс
Время спада   40 100 нс

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

5.13 Типовые характеристики

Частота генератора

Рис. 1 Частота колебаний генератора и ее отклонение от сопротивления резистора генератора

Усиление напряжения

Рис. 2 Усиление напряжения от частоты

Передаточные характеристики

Рис. 3 Усилитель ошибки — передаточные характеристики

График Боде

Рис. 4 Усилитель ошибки — график Боде

6 Измеряемые параметры

Испытательная схема для tl494

Графики напряжения на выводах

Рис. 5 Проверка работы цепи и осциллограммы

Характеристики усилителя

Рис. 6 Характеристики усилителя

Схема включения с общим эмиттером

Прим. А: Cвключает датчик и управляющую емкость

Рис. 7 Схема включения с общим эмиттером

Схема включения эмиттерного повторителя

Прим. А: Cвключает датчик и управляющую емкость

Рис. 8 Схема включения эмиттерного повторителя

Описание работы

Обзор

TL494 не только включает в себя основные блоки, необходимые для управления импульсным источником питания, но также решает многие основные проблемы и уменьшает количество дополнительных схем, требуемых при проектировании устройства. TL494 — это схема управления с фиксированной частотой и широтно-импульсной модуляцией (ШИМ). Модуляция выходных импульсов осуществляется путем сравнения пилообразного сигнала, создаваемого внутренним генератором на синхронизирующем конденсаторе (CT), с любым из двух управляющих сигналов. Выходной каскад включается в то время, когда пилообразное напряжение больше сигналов управления напряжением. По мере увеличения управляющего сигнала время, в течение которого пилообразный вход больше, уменьшается; следовательно, длительность выходного импульса уменьшается. D-триггер управления импульсом поочередно направляет модулированный импульс на каждый из двух выходных транзисторов. Для получения дополнительной информации о работе TL494 см. Примечания по применению, расположенные на ti.com.

Функциональная блок-схема

Блок-схема tl494

Блок-схема tl494

Источник опорного напряжения

TL494 имеет внутренний источник опорного напряжения 5 В на выводе REF. Помимо получения опорного напряжения он дает питание логике управления, D-триггеру, генератору, компаратору мертвого времени, компаратору ШИМ. В стабилизаторе используется схема с плавно изменяющейся запрещенной зоной в качестве основного эталона для поддержания тепловой стабильности на уровне менее 100 мВ в рабочем диапазоне температур воздуха от 0 ° C до 70 ° C. Защита от короткого замыкания нужна, чтобы защитить источник опорного напряжения; для дополнительных цепей смещения доступен ток нагрузки 10 мА. Значение внутренне запрограммировано на начальную точность ± 5% и поддерживает стабильность изменения менее 25 мВ в диапазоне входного напряжения от 7 В до 40 В. Для входных напряжений менее 7 В стабилизатор насыщается в пределах 1 В на входе и отслеживает его.

Генератор

Генератор обеспечивает положительную пилообразную форму волны компараторам мертвого времени и ШИМ для сравнения с различными управляющими сигналами.

Частота сигнала выдаваемого генератором задается значениями сопротивления и емкости компонентов RT и СТ. Генератор заряжает конденсатор СТ постоянным током, величина которого задается сопротивлением резистора RT. Когда напряжение на конденсаторе СТ достигнет 3 В, схема генератора разряжает его, и цикл зарядки возобновляется. Зарядный ток определяется по формуле:

Icharge = 3 В/ RT                                                  (1)

Период пилообразного сигнала можно рассчитать по формуле :

Т = (3 В×СТ)/Icharge                                     (2)

Частота сигнала от генератора:

fOSC = 1/(RT×CT)                                            (3)

В двухтактном режиме частота на выходе будет равняться половине частоты генератора.

Однотактный режим:

f = 1/(RT×CT)

Двухтактный режим:

f = 1/(2RT×CT)

Управление временем задержки (мертвым временем)

Вход управления мертвым временем задает минимальное мертвое время (время отключения). Выход компаратора запрещает переключение транзисторов Q1 и Q2, когда напряжение на входе больше, чем линейное напряжение генератора. Внутреннее смещение 110 мВ обеспечивает минимальное мертвое время ~ 3%, когда вывод DTC подключен к земле. При подаче напряжения на вывод DTC длительность мертвого времени увеличивается. Это дает возможность линейно изменять длительность мертвого времени от минимума 3% до 100% при изменении входного напряжения от 0 В до 3,3 В соответственно. Благодаря полнодиапазонному управлению выходом можно управлять от внешних источников без нарушения работы усилителей ошибок. Вход управления мертвым временем DTC является входом с относительно высоким импедансом (II < 10 мкА) и должен использоваться там, где требуется дополнительное управление коэффициентом заполнения. Для правильного управления этот вывод должен быть подключен для управления либо подтянут к плюсу питания либо к земле. Обрыв цепи в таком случае даст неопределенное состояние.

Компаратор

Компаратор имеет смещение относительно источника опорного напряжения. Это обеспечивает изоляцию от входного источника питания для повышения стабильности. Вход компаратора не имеет гистерезиса, поэтому должна быть предусмотрена защита от ложного срабатывания вблизи порога переключения. Компаратор имеет время отклика 400 нс от любого из входов управляющего сигнала к выходным транзисторам с перегрузкой всего 100 мВ. Это обеспечивает положительный контроль выхода в пределах половины цикла для работы в рекомендованном диапазоне 300 кГц.

Широтно-импульсная модуляция ШИМ

Компаратор также управляет шириной выходного импульса. Для этого линейно нарастающее напряжения на синхронизирующем конденсаторе CT сравнивается с управляющим сигналом, присутствующим на выходе усилителей ошибки. Вход CT подключается через последовательный диод, который отсутствует на входе управляющего сигнала. Для этого требуется, чтобы управляющий сигнал (выход усилителя ошибки) был на ~ 0,7 В больше, чем напряжение на выводе CT, чтобы подавить выходную логику, и обеспечить работу с максимальным коэффициентом заполнения, не требуя понижения управляющего напряжения до истинного потенциала земли. Ширина выходного импульса изменяется от 97% периода до 0, так как напряжение на выходе усилителя ошибки изменяется от 0,5 В до 3,5 В соответственно.

Усилители ошибки

Оба усилителя ошибки с высоким коэффициентом усиления получают напряжение смещения от шины питания VI. Это позволяет использовать синфазное входное напряжение в диапазоне от –0,3 В до 2 В ниже VI. Оба усилителя ведут себя как несимметричные усилители с однополярным питанием, поскольку каждый выход активен только на высоком уровне. Это позволяет каждому усилителю работать независимо при уменьшении требуемой ширины выходного импульса. Когда оба выхода соединены по логике ИЛИ на инвертирующем входе компаратора ШИМ, доминирует усилитель, требующий минимального выходного импульса. Выходы усилителя подтянуты к низкому уровню генератором тока, чтобы обеспечить максимальную ширину импульса, когда оба усилителя отключены.

Управление выходом (OUTPUT CTRL)

Вывод OUTPUT CTRL определяет, работают ли выходные транзисторы параллельно или в в двухтактном режиме. Этот вход является источником питания для D-триггера. Вывод OUTPUT CTRL является асинхронным и управляет напрямую выходом, независимо от генератора или D-триггера. Входные условия должны быть четко зафиксированы, определяемым применением. Для параллельной работы выходных транзисторов OUTPUT CTRL должен быть заземлен. При этом отключается D-триггер и его выходы. В этом режиме импульсы, наблюдаемые на выходе компаратора мертвого времени / ШИМ, передаются обоими выходными транзисторами параллельно. Для двухтактного режима вывод OUTPUT CTRL должен быть соединен с источником опорного напряжения 5 В. В этом состоянии каждый из выходных транзисторов поочередно активируется D-триггером.

Выходные транзисторы

В TL494 имеются два выходных транзистора. Оба транзистора сконфигурированы как открытый коллектор / открытый эмиттер, и каждый может потреблять или потреблять до 200 мА. Транзисторы имеют напряжение насыщения менее 1,3 В в конфигурации с общим эмиттером и менее 2,5 В в конфигурации эмиттерного повторителя. Выходы защищены от перегрузки, чтобы предотвратить выход из строя, но не имеют достаточного ограничения тока, чтобы позволить им работать как выходы источника тока.

Функциональные режимы устройства

Когда вывод OUTPUT CTRL подключен к земле, TL494 работает в однотактном или параллельном режиме. Когда вывод OUTPUT CTRL подтянут к VREF, TL494 работает в обычном двухтактном режиме.

Применение

В следующем примере TL494 используется для создания источника питания 5 В / 10 А. Эта схема была взята из примечания к приложению SLVA001.

Схема включения для коммутации и управления

Рис. 9 Схема включения для коммутации и управления
  • VI = 32 В
  • VO = 5 В
  • IO = 10 A
  • fOSC = 20 кГц частота генератора
  • VR = 20 мВ размах напряжения (VRIPPLE)
  • ΔIL = 1.5 A изменение тока индуктивности

Этапы проектирования подробно

Источник питания

В источнике постоянного тока 32 В для этого блока питания используется трансформатор с входным напряжением на 120 В и выходным на 24 В номинальной мощностью 75 ВА. Вторичная обмотка 24 В питает двухполупериодный мостовой выпрямитель, за которым следует токоограничивающий резистор (0,3 Ом) и два фильтрующих конденсатора (см. Рисунок 10).

Источник питания

Рисунок 10. Источник питания

Выходной ток определяется по формулам 6 и 7:

VRECTIFIER = VSECONDARY × √2 = 24 В × √2 = 34 В      (6)

IRECTIFIER(AVG) ≈ (VO × IO)/ VI ≈ (5 В × 10 А)/ 32 В = 1.6 А              (7)

Двухполупериодный мостовой выпрямитель 3 A / 50 В удовлетворяет этим расчетным условиям. На Рисунке 9 показаны секции переключения и управления.

Цепи управления

Генератор

Подключение внешнего конденсатора и резистора к выводам 5 и 6 задает частоту генератора TL494. Генератор настроен на работу на частоте 20 кГц с использованием значений компонентов, рассчитанных по формулам 8 и 9:

fOSC = 1/(RT×CT)                                                  (8)

Выберем CT = 0,001 мкФ и рассчитаем RT:

RT = 1/(fOSC×CT)   = 1/((20 × 103)×(0,001 × 10-6)) = 50 кОм               (9)

Усилитель ошибки

Усилитель ошибки сравнивает сигнала с эталоном от источника опорного напряжения 5В и регулирует ШИМ для поддержания постоянного выходного тока (см. Рисунок 11).

Рисунок. 11 Подключение усилителя ошибки

Напряжение в 2,5 В формируется делителем на резисторах R3 и R4 от источника опорного напряжения VREF = 5 В. Сигнал ошибки  выходного напряжения в 2,5 В также формируется делителем на резисторах R8 и R9. Если выходной сигнал должен быть установлен точно на уровне 5,0 В, для регулировки можно использовать потенциометр 10 кОм вместо резистора R8.

Чтобы повысить стабильность схемы усилителя ошибки, выходной сигнал усилителя ошибки подается обратно на инвертирующий вход через через резистор R7, уменьшая коэффициент усиления до 101.

Токоограничивающий усилитель

Источник питания был рассчитан на ток нагрузки 10 А и реактивный ток IL 1,5 А, поэтому ток короткого замыкания должен быть:

ISC = IO + IL/2 = 10,75 А                                                        (10)

Схема ограничения тока показана на Рисунке 12.

Рисунок 12. Схема ограничения тока

Резисторы R1 и R2 задают опорное напряжение приблизительно 1 В на инвертирующем входе усилителя ограничения тока. Резистор R13, включенный последовательно с нагрузкой, подает 1 В на неинвертирующий вход токоограничивающего усилителя, когда ток нагрузки достигает 10 А. Ширина выходного импульса соответственно уменьшается. Значение R13 рассчитывается по формуле 11.

R13 = 1В / 10А = 0,1 Ом                             (11)

Плавный пуск и мертвое время

Чтобы снизить нагрузку на переключающие транзисторы во время запуска, необходимо уменьшить пусковой выброс, возникающий при заряде конденсатора выходного фильтра. Наличие управления мертвым временем делает реализацию схемы плавного пуска относительно простой (см. Рисунок 13).

Схема плавного пуска tl494

Рисунок 13. Схема плавного пуска

Схема плавного пуска позволяет медленно увеличивать ширину импульса на выходе (см. Рисунок 13), подавая сигнал с отрицательной крутизной на вход DTC (вывод 4).

В момент включения конденсатор C2 имеет минимальное сопротивление поэтому подтягивает вход DTC к источнику опорного напряжения 5 В, который отключает выходы (100% мертвое время). По мере того как конденсатор заряжается через R6, ширина выходного импульса медленно увеличивается, пока контур управления не примет команду. При соотношении резисторов 1:10 для R6 и R7 напряжение на выводе 4 после запуска составляет 0,1 × 5 В,
или 0,5 В.

Время плавного пуска обычно находится в диапазоне от 25 до 100 тактов. Если выбрано 50 тактов при частоте переключения 20 кГц, время плавного пуска будет:

t = 1/f = 1 / 20 кГц = 50 мкс на такт                            (12)

С2 = (время плавного пуска) / R6 = (50 мкс × 50 тактов) / 1 кОм = 2,5 мкФ (13)

Это помогает устранить любые ложные сигналы, которые могут создаваться схемой управления при подаче питания.

Расчет индуктивности

Используемая схема подключения показана на рисунке 14.

Схема переключения

Рисунок 14. Схема переключения

Необходимое значение индуктивности L рассчитывается по формулам:

d = коэффициент заполнения = VO/VI = 5 В/32 В = 0.156 

f = 20 кГц (цель проектирования)

ton = время включения (S1 замкнут) = (1/f) × d = 7.8 мкс

toff = время выключения (S1 разомкнут) = (1/f) – ton = 42.2 мкс

L ≈ (VI – VO ) × ton/ΔIL ≈ [(32 В – 5 В) × 7.8 мкс ]/1.5 A ≈ 140.4 мкГн

Расчет выходной емкости

После расчета индуктивности фильтра рассчитывается емкость конденсатора выходного фильтра для удовлетворения требований к пульсациям на выходе. Электролитический конденсатор можно смоделировать как последовательно соединенные индуктивность, сопротивление и емкость. Чтобы обеспечить хорошую фильтрацию, частота пульсаций должна быть намного ниже частот, при которых последовательно подключенная индуктивность становится значимой. Итак, два интересующих компонента — это емкость и эквивалентное последовательное сопротивление (ESR). Максимальное значение ESR рассчитывается в соответствии с соотношением между заданным размахом пульсаций напряжения и размахом пульсаций тока.

ESR(max) = ΔVO(ripple) / ΔIL = 0.1 В / 1.5 A ≈ 0.067 Ом     (14)

Минимальная емкость C3, необходимая для поддержания пульсаций напряжения VO на уровне менее 100 мВ, рассчитывается в соответствии с уравнением 15:

C3 = ΔIL / 8fΔV= 1.5 А / (8 × 20 × 103 × 0.1 В) = 94 мкФ    (15)

Выбран конденсатор на 220 мФ, 60 В, потому что он имеет максимальное значение ESR 0,074 Ом и максимальный ток пульсаций 2,8 А.

Расчет мощности для транзисторного ключа

Мощный транзисторный ключ был построен с применением в качестве управляющего транзистора NTE153 pnp и выходного транзистора npn NTE331. Они образуют собой составной транзистор Дарлингтона (см. Рисунок 15).

Мощный выходной ключ

Рисунок 15. Мощный выходной ключ

hFE (Q1) при I от 3 A = 15                    (16)

hFE (Q2) при I от 10 A = 5                    (16)

     (18)

Значение R10 рассчитывается по формуле:

(19)

R10 ≤  207 Ом 

На основании этих расчетов для R10 было выбрано ближайшее стандартное сопротивление резистора 220 Ом. Резисторы R11 и R12 позволяют разрядить носители зарядов в ключах транзисторах, когда они выключены.

Описанный источник питания демонстрирует гибкость схемы управления ШИМ на TL494. Эта конструкция блока питания демонстрирует многие методы управления блоком питания, обеспечиваемые TL494, а также универсальность схемы управления.

График выходных характеристик

Опорное напряжение от входного напряжения

Рисунок 16. Опорное напряжение от входного напряжения

Рекомендации по источнику питания

TL494 спроектирован для работы от питающего напряжения в диапазоне от 7 В до 40 В. Это напряжение должно хорошо стабилизироваться. Если источник питания расположен на расстоянии более нескольких дюймов от устройства, может потребоваться дополнительный конденсатор большой емкости в дополнение к керамическим байпасным конденсаторам. Танталовый конденсатор емкостью 47 мкФ будет в этом случае типовым решением, однако он может варьироваться в зависимости от выдаваемой выходной мощности.

Печатная плата

Рекомендации по проектированию печатной платы

Всегда старайтесь использовать индуктивность с низким уровнем электромагнитных помех с ферритовым сердечником закрытого типа. Такими примерами могут быть индуктивности с тороидальным сердечником и сердечником типа E. Открытые сердечники могут использоваться, если они имеют низкие характеристики электромагнитных помех и расположены немного дальше от трасс и компонентов с низким энергопотреблением. Также старайтесь расположить полюса перпендикулярно печатной плате, если используете открытый сердечник. Цилиндрические сердечники обычно издают самый нежелательный шум.

Обратная связь

Постарайтесь проложить трассу обратной связи как можно дальше от катушки индуктивности и зашумленных цепей питания. Старайтесь, чтобы трасса обратной связи была как можно более прямой и широкой. Эти два требования иногда требуют компромисса, но требование держаться подальше от электромагнитных помех катушки индуктивности и других источников шума является более важным из них. Прокладывайте трассу обратной связи на стороне печатной платы, противоположной катушке индуктивности, с земляным полигоном разделяющим их.

Входные / выходные конденсаторы

При использовании небольшого керамического конденсатора для входного фильтра его следует располагать как можно ближе к выводу VCC микросхемы. Это устранит как можно больше эффектов индуктивности дорожек и обеспечит более чистое напряжение питания внутренней шины микросхемы. Некоторые проекты требуют использования проходного конденсатора, подключенного от выхода к выводу «feedback», как правило, из-за требований к стабильности. В этом случае его также следует расположить как можно ближе к микросхеме. Использование конденсаторов для поверхностного монтажа также уменьшает длину проводов и снижает вероятность попадания шума в действующую антенну, создаваемую выводными компонентами.

Компоненты сглаживающего фильтра

Компоненты сглаживающего фильтра для стабильности также следует размещать рядом с микросхемой. Компоненты для поверхностного монтажа здесь также предпочтительнее по тем же причинам, что и конденсаторы фильтра. Они также не должны располагаться очень близко к катушке индуктивности.

Трассы и земляные полигоны

Сделайте все силовые (сильноточные) трассы как можно более короткими, прямыми и толстыми. На стандартной печатной плате хорошей практикой является создание дорожек с абсолютным минимумом 15 мил (0,381 мм) на ампер. Катушка индуктивности, выходные конденсаторы и выходной диод должны располагаться как можно ближе друг к другу. Это помогает уменьшить электромагнитные помехи, излучаемые цепями питания из-за высоких коммутируемых токов через них. Это также снизит индуктивность и сопротивление выводов, что, в свою очередь, уменьшит всплески шума, звон и резистивные потери, которые вызывают ошибки напряжения. Заземление микросхемы, входные конденсаторы, выходные конденсаторы и выходной диод (если он есть) должны быть подключены как можно ближе друг к другу и непосредственно к шине земли. Также было бы неплохо иметь слой земли с обеих сторон печатной платы. Это также снизит шум за счет уменьшения ошибок контура заземления, а также за счет поглощения большего количества электромагнитных помех, излучаемых катушкой индуктивности. Для многослойных плат с более чем двумя слоями земляной слой может использоваться для разделения слоя питания (где находятся трассы питания и компоненты) и сигнального слоя (где располагаются обратная связь, фильтр и компоненты) для повышения производительности. На многослойных платах потребуется использование переходных отверстий для соединения дорожек и различных слоев. Хорошей практикой является использование одного стандартного перехода на 200 мА тока, если трассе потребуется провести значительный ток от одного слоя к другому. Расположите компоненты так, чтобы петли тока переключения изгибались в одном направлении. В зависимости от способа работы импульсных регуляторов существует два состояния питания. Одно состояние, когда переключатель включен, и одно состояние, когда переключатель выключен. Во время каждого состояния будет токовая петля, созданная силовыми компонентами, которые в это время проводят ток. Расположите силовые компоненты так, чтобы во время каждого из двух состояний токовая петля имелась в одном направлении. Это предотвращает инверсию магнитного поля, полученную от трасс между двумя полупериодами и
снижает излучаемые электромагнитные помехи.

Пример трассировки печатной платы

Пример печатной платы при использовании ОУ по неинвертирующей схеме

Рисунок 17. Пример печатной платы при использовании ОУ по неинвертирующей схеме

Купить TL494 на Алиэкспресс

Купить TL494 на Алиэкспресс

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Импульсные блоки питания (ИБП) очень распространены. Компьютер, который вы используете сейчас, имеет ИБП с несколькими выходными напряжениями (+12, -12, +5, -5 и + 3,3 В, по крайней мере). Практически все такие блоки имеют специальную микросхему ШИМ-контроллера, как правило, типа TL494CN. Аналог ее – отечественная микросхема М1114ЕУ4 (КР1114ЕУ4).

Производители

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, – словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Документация

Анализ описаний рассматриваемого типа микросхемы от разных производителей показывает практическую идентичность ее характеристик. Объем сведений, приводимых разными фирмами, практически одинаков. Более того, TL494CN datasheet от таких брендов, как Motorola, Inc и ON Semiconductor повторяют друг друга в своей структуре, приводимых рисунках, таблицах и графиках. Несколько отличается от них изложение материала у фирмы Texas Instruments, однако при внимательном его изучении становится ясно, что имеется в виду идентичное изделие.

Назначение микросхемы TL494CN

Описание ее по традиции начнем с назначения и перечня внутренних устройств. Она представляет собой ШИМ-контроллер с фиксированной частотой, предназначенный преимущественно для применения в ИБП, и содержащий следующие устройства:

  • генератор пилообразного напряжения (ГПН);
  • усилители ошибки;
  • источник эталонного (опорного) напряжения +5 В;
  • схема регулировки «мертвого времени»;
  • выходные транзисторные ключи на ток до 500 мА;
  • схема выбора одно- или двухтактного режима работы.

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от — 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от –25 до +85 °С.

Конструкция микросхемы TL494CN

Описание на русском языке выводов ее корпуса приведено на рисунке, расположенном ниже.

tl494 описание на русском

Микросхема помещена в пластиковый (на это указывает литера N в конце ее обозначения) 16-контактный корпус с выводами pdp-типа.

Внешний вид ее показан на фото ниже.

микросхема tl494cn

Микросхема помещена в пластиковый (на это указывает литера N в конце ее обозначения) 16-контактный корпус с выводами pdp-типа.

Внешний вид ее показан на фото ниже.

микросхема tl494cn

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок. Контакт № 4 – это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА). Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми транзисторами (MOSFET-транзисторов) с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

tl494 схема

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания – первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

  • Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е. не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1 : (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

Вывод 8

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод – коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Вывод 9

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Вывод 10

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше ~ 3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Вывод 11

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание: В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Вывод 14

Это выход ИОН, также описанный выше.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал тактовой частоты, то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

tl494cn схема включения

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания – первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

  • Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е. не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1 : (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

Вывод 8

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод – коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Вывод 9

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Вывод 10

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше ~ 3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Вывод 11

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание: В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Вывод 14

Это выход ИОН, также описанный выше.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал тактовой частоты, то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

tl494cn схема включения

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН – на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи ( № 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить — из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При этом МОП-транзистор может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

усилитель tl494cn

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая – на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

tl494cn проверка

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая – на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

tl494cn проверка

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность — если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.

tl494cn схема включения и разводки

Она работает от напряжения постоянного тока, и ей необходимо около 160 В, чтобы засветиться. (Питание всего устройства составляет около 15 В – на порядок ниже.)

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для гальванической развязки низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

tl494cn схема преобразователя

Она работает от напряжения постоянного тока, и ей необходимо около 160 В, чтобы засветиться. (Питание всего устройства составляет около 15 В – на порядок ниже.)

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для гальванической развязки низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

tl494cn схема преобразователя

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 — это диод Шоттки от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 – конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 — еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость — до нескольких сотен пикофарад.

Производители

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, – словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Документация

Анализ описаний рассматриваемого типа микросхемы от разных производителей показывает практическую идентичность ее характеристик. Объем сведений, приводимых разными фирмами, практически одинаков. Более того, TL494CN datasheet от таких брендов, как Motorola, Inc и ON Semiconductor повторяют друг друга в своей структуре, приводимых рисунках, таблицах и графиках. Несколько отличается от них изложение материала у фирмы Texas Instruments, однако при внимательном его изучении становится ясно, что имеется в виду идентичное изделие.

Описание ее по традиции начнем с назначения и перечня внутренних устройств. Она представляет собой ШИМ-контроллер с фиксированной частотой, предназначенный преимущественно для применения в ИБП, и содержащий следующие устройства:

  • генератор пилообразного напряжения (ГПН);
  • усилители ошибки;
  • источник эталонного (опорного) напряжения +5 В;
  • схема регулировки «мертвого времени»;
  • выходные транзисторные ключи на ток до 500 мА;
  • схема выбора одно- или двухтактного режима работы.

Состав.

В её составе имеется:

— генератор пилообразного напряжения (ГПН); — компаратор регулировки мертвого времени (DA1); — компаратор регулировки ШИМ (DA2); — усилитель ошибки 1 (DA3), используется в основном по напряжению; — усилитель ошибки 2 (DA4), используется в основном по сигналу ограничения тока; — стабильный источник опорного напряжения (ИОН) на 5В с внешним выводом 14; — схема управления работой выходного каскада.

Потом все её составные части мы конечно рассмотрим и постараемся разобраться, для чего всё это нужно и как всё это работает, но для начала необходимо будет привести её рабочие параметры (характеристики).

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от — 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от –25 до +85 °С.

Рекомендуемые рабочие параметры.

Параметры Мин. Макс. Ед. Изм.
VCC Напряжение питания 7 40 В
VI Напряжение на входе усилителя -0,3 VCC – 2 В
VO Напряжение на коллекторе 40 В
Ток коллектора (каждого транзистора) 200 мА
Ток обратной связи 0,3 мА
fOSC Частота генератора 1 300 кГц
CT Емкость конденсатора генератора 0,47 10000 нФ
RT Сопротивление резистора генератора 1,8 500 кОм
TA Рабочая температура TL494C TL494I 0 70 °C
-40 85 °C

Предельные её характеристики следующие;

Напряжение питания……………………………………………..41В

Входное напряжение усилителя………………………………(Vcc+0.3)В

Выходное напряжение коллектора…………………………..41В

Выходной ток коллектора………………………………………250мА

Общая мощность рассеивания в непрерывном режиме….1Вт

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок. Контакт № 4 – это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА). Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми транзисторами (MOSFET-транзисторов) с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

tl494 схема

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания – первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Микросхема типа TL494CN, выпускае­мая фирмой TEXAS INSTRUMENT (США), выпускается так же фирмой SHARP (Япония) под названием IR3M02, фирмой SAMSUNG (Корея) — КА7500, фирмой FUJITSU (Япония) — МВ3759, так же есть и отечественный аналог — КР1114ЕУ4.

Микросхема широко применяется в импульсных блоках питания, в частности, в блоках питания персональных компью­теров, а так же в DC/DC преобразова­телях.

На рисунке 1 показана цоколевка микросхемы.

Рис. 1

Микросхема специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.2):

Рис. 2

  • генератор пилообразного напряжения Oscillator; частота которого определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и рассчитывается по формуле: F=1,1/RtCt
  • источник опорного стабилизированного напряжения Reference Regulator (Uref=+5B) с внешним выходом на выводе 14;
  • компаратор «мертвой зоны» Deadtime Comparator;
  • компаратор ШИМ PWM Comparator;
  • усилитель ошибки по напряжению 1;
  • усилитель ошибки по сигналу ограни­чения тока 2;
  • два выходных транзистора Q1 и Q2 с открытыми коллекторами и эмиттерами;
  • динамический двухтактный D-триггер в режиме деления частоты на 2 — Flip-Flop;
  • вспомогательные логические элементы;
  • источник постоянного напряжения с номиналом 12V;
  • источник постоянного тока с номиналом 0,7mA.

ИМС запускается в том случае если на 12-вывод поступает питающее напряже­ние в пределах от +7 до 40V. Выводы 1 и 2 — соответственно прямой и инвертиру­ющий входы усилителя ошибки по сигналу обратной связи. Вывод 4 — вход регули­ровки «мертвой зоны» (это время, когда оба выходных транзистора микросхемы закрыты даже при максимальной потребляемой мощности). Выводы 5 и 6 служат для подключения внешних элемен­тов внутреннего генератора пилообраз­ного напряжения. Вывод 7 — общий, выводы 8 и 9 — коллектор и эмиттер первого транзистора, выводы 11 и 10 — коллектор и эмиттер второго транзистора. Вывод 13 — выбор режима работы (однотактный или двухтактный). Если на этом выводе положительное напряжение 2,4…5V двухтактный режим работы, тран­зисторы Q1 и Q2 открываются поочеред­но, выходные импульсы следуют друг относительно друга со сдвигом по фазе. Если на этом выводе напряжение состав­ляет 0…0,4 V — однотактный режим, при этом транзисторы можно включать парал­лельно для увеличения выходного тока. Вывод 14 — выход опорного напряжения (+5 V) от встроенного стабилизированного источника опорного напряжения, выводы 16 и 15 — соответственно, прямой и инвер­тирующий входы усилителя ошибки по сигналу ограничения тока.

По функциональным узлам, входящим в состав микросхемы, ее можно разделить на аналоговую и цифровую составляю­щие.

К аналоговой составляющей относятся усилители ошибок, компараторы, генера­тор пилообразного напряжения и вспомо­гательные источники.

Все остальные элементы, в том числе и выходные транзисторы следует отнести к цифровой части.

Из временных диаграмм приведенных на рис. 3 видно, что моменты появления выходных управляющих импульсов, а также их длительность определяется состоянием выхода логического элемента D1. Остальная логика выполняет лишь вспомогательную функцию, разделения выходных импульсов на два канала. Оба транзистора имеют открытые коллекторы и эмиттеры, поэтому их можно подключать двояко, как с общим эмиттером, так и с общим коллектором. Триггер Flip-Flop является двухтактным динамическим D-триггером. Принцип его работы в следую­щем. Каждый из выходных импульсов элемента D1 своим отрицательным фронтом переключает триггер и этим меняет канал прохождения следующего импульса, т. е . исключает появление двух отпирающих импульсов за один период работы.

Рис. 3

Типовая схема импульсного DC/DC преобразователя на основе TL494 показа­на на рисунке 4.

Рис. 4

Основные технические характеристики:

  1. Диапазон напряжения питания……… ..42V;
  2. Максимальное напряжение коллекторов выходных транзисторов………. 42V;
  3. Максимальный ток коллектора выходных транзисторов…….. 0,2А;
  4. Опорное напряжение…… 4,5…5,5V;
  5. Мощность рассевания в непрерывном режиме в корпусе DIP-16 при температуре окружающей среды ниже 45°С…….. 1W;
  6. Ток потребления не более…….. 10mA;
  7. Частота генератора может быть задана в пределах……… 1…200 kHz;
  8. Длительность фронта импульса выходного тока не более….. 200nS;
  9. Длительность спада импульса выходного тока не более……. 100nS;
  10. Сопротивление резистора RT может быть в пределах……. 1,8… 500 kOm;
  11. Емкость конденсатора СТ может быть в пределах…… 0,0047…10 мкФ;
  12. Рабочий диапазон температуры:
  • TL494B…….. -40…+125°С;
  • TL494C…….. 0…+70°С;
  • TL494I ……… -40…+85°С.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

  • Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е. не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1 : (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат. Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант — это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт. Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное — микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео

Печатная плата тут

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

Вывод 8

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод – коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Вывод 9

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Вывод 10

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше ~ 3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Вывод 11

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание: В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Вывод 14

Это выход ИОН, также описанный выше.

Зарядка из блока АТХ на TL494 и TPS3510 – ISO-450PP

При переделке в зарядное устройство АТХ блока на основе ШИМ TL494, можно столкнуться со схемами, у которых для контроля выходных напряжений используется отдельный супервизор TPS3510; WT7510 или др. Сегодня мы покажем пример того, как отключать подобный супервизор, что бы он никак не влиял на работу ШИМ. И так, зарядка из блока АТХ CWT ATX-300 (ISO-450PP), поехали!

Зарядка из блока АТХ на TL494 и TPS3510

Микросхемы на подобии TPS3510; WT7510 отслеживают напряжение сразу на нескольких шинах блока, в случае отклонения напряжения хоть на одной из них этот супервизор останавливает работу блока.

При изготовлении самодельного зарядного устройства на основе такого компьютерного блока питания основная переделка заключается в поднятии напряжения по шине +12 до 14В.

Если не отключать супервизор – блок будет работать крайне нестабильно, будут наблюдаться сбои в работе при нагрузке или проблемы со стартом.

Типовые схемы блоков на основе TL494 и TPS3510; WT7510. На схемах уже обозначены некоторые важные элементы, о них речь пойдет ниже.

Отключение супервизора и организация автостарта блока

В зарядное устройство будем переделывать блок CWT ATX-300.

На плате находятся TL494 и TPS3510.

Удаляем диод D15, он выделенный на схеме красной рамкой. Если в блоке используется другая нумерация деталей или другая схема, ищем диод, который соединяет 4-ю ножку Tl494 (DTC) и 3-ю ножку TPS3510 (FPO).

После удаления диода, блок будет запускаться автоматически при включении в сеть, а TPS3510 уже не будет влиять на работу БП.

Как поднять напряжение в блоке питания компьютера?

Оптимальным для зарядки автомобильного АКБ считается напряжение 14-14,5В. Для поднятия напряжения нужно установить подстроечный резистор вместо резистора, соединяющего 1-ю ножку TL494 с шиной +12В.

На схеме он выделенный зеленой рамкой. Подстроечный резистор можно брать на 100-200кОм (желательно многооборотный).

Перед установкой его на плату его нужно настроить на такое же сопротивление, какое было у резистора, вместо которого его ставим.

После удачного старта корректируем выходное напряжение с помощью подстроечника.

При желании можно дополнительно изготовить защиту от переполюсовки и зарядка из блока АТХ готова!

Источник: https://diodnik.com/en/zaryadka-iz-bloka-atx-na-tl494-i-tps3510/

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал тактовой частоты, то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

TL494

TL494
– замечательная, универсальная микросхема, созданная достаточно давно, до сих пор не потеряла своей актуальности. (источник wyst.at.ua)

Только самое главное.

Напряжение питания 8-35в (вроде можно до 40в, но не испытывал) Возможность работать в однотактном и двухтактном режиме. Для однотактного режима максимальная длительность импульса составляет 96% (не меньше 4% мертвого времени). Для двухтактного варианта – длительность мертвого времени не может быть меньше 4%.

Подавая на вывод 4 напряжение 0…3,3в можно регулировать мертвое время. И осуществлять плавный запуск. Имеется встроенный стабилизированный источник опорного напряжения 5в и током до 10ма. Имеется встроенная защита от пониженного напряжения питания, выключаясь ниже 5,5…7в (чаще всего 6,4в).

Беда в том, что при таком напряжении мосфеты уже переходят в линейный режим и сгорают… Имеется возможность выключит генератор микросхемы замкнув ключом вывод Rt (6) вывод опорного напряжения (14) или вывод Ct (5) на землю. Рабочая частота 1…300кГц. Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб.

Входы – выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Обратите внимание

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер. Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 – задают частоту внутреннего генератора микросхемы.

В двухтактном режиме она делиться на 2. Есть возможность синхронизации, запуск входными импульсами.

Однотактный генератор с регулировкой частоты и скважности

Однотактный генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы). С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)

Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться. Цепь С6; R11, на (3) ногу, ставят для большей устойчивости, даташит просит, но работает и без нее.

Транзистор можно взять и npn структуры.

Схема (2)

Схема (3)

Однотактный генератор с регулировкой частоты и скважности. С двух транзисторным выходным драйвером (комплементарный повторитель).

Что могу сказать? Форма сигнала лучше, сокращаются переходные процессы в моменты переключения, выше нагрузочная способность, меньше тепловые потери. Хотя может быть это субъективное мнение. Но. Сейчас я использую только двух транзисторный драйвер. Да, резистор в цепи затвора ограничивает скорость переходных процессов при переключении.

Схема (4)

А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя, с регулировкой напряжения и ограничением тока. Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются…

Саму катушку можно мотать на чем угодно. Размер – в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из “рапыленного железа” зазор уже предусмотрен.

Важно

Если сердечник Ш-образный – ставим не магнитный зазор, бывают с коротким средним керном – эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности.

Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал – берем вольтметр и осцилограф… Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке. Дроссель Др1 – 5…10 витков толстым проводом на любом сердечнике.

Видел даже варианты, где L1 и Др1 намотаны на одном сердечнике. Сам не проверял.

Схема (5)

Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора. Компаратор по входам (15);(16) следит за напряжением аккумулятора “донора” и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

Цепь С8; R12; VD2 – так называемый Снаббер, предназначен для подавления индуктивных выбросов. Спасает низковольтный МОСФЕТ, например IRF3205 выдерживает, если не ошибаюсь, (сток – исток) до 50в. Однако здорово уменьшает КПД. И диод и резистор прилично греются. За то увеличивается надежность. В некоторых режимах (схемах) без него просто сразу сгорает мощный транзистор.

А бывает работает и без всего этого…Надо смотреть осциллограф…

Схема (6)

Двухтактный задающий генератор.

Различные варианты исполнения и регулировок. На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу “хитрую” схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально. Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые “корифеи” говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения. Кстати оно удачно использовалось в сварочном инверторе.

Схема (7)

А это полный мост на комплементарных транзисторах. На выход можно подключать самую разнообразную нагрузку. Правда с осторожностью, защит от перегрузок нет. Включать нужно при минимальной длительности импульса. Ограничение по напряжению питания накладывают низковольтные выходные транзисторы
Схема (8)
Тоже самое но с ограничением потребляемого тока и кое-какой стабилизацией выходного напряжения.

Схема (9)

Повышающий, на небольшой ток, со стабилизацией напряжения и ограничением тока по выходу. Сам не делал, но вроде должен работать.

Схема (10)

Примеры реализации регулировок (стабилизации) тока и напряжения. То, что на рисунке №12 делал сам, – понравилось. Синие конденсаторы наверное можно не устанавливать, но лучше пусть будут.

Схема (11)

Схема (12)

Источник: https://96kw.blogspot.com/2015/07/tl494.html

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

tl494cn схема включения

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН – на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи ( № 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Микросхема TL494, она же KA7500B и КР1114ЕУ4

Микросхема TL494 представляет собой ШИМ – контроллер, отлично подходящий для построения импульсных блоков питания различной топологии и мощности. Может работать как в однотактном, так и в двухтактном режиме.

Отечественным ее аналогом является микросхема КР1114ЕУ4. Texas Instruments, International Rectifier, ON Semiconductor, Fairchild Semiconductor – многие производители выпускают данный ШИМ-контроллер. У Fairchild Semiconductor он называется, например, KA7500B.

микросхема TL494 с обозначением выводов

Если просто посмотреть на обозначения выводов, становится ясно, что данная микросхема имеет довольно широкие возможности для регулировки.

Рассмотрим обозначения всех выводов:

  • неинвертирующий вход первого компаратора ошибки
  • инвертирующий вход первого компаратора ошибки
  • вход обратной связи
  • вход регулировки мертвого времени
  • вывод для подключения внешнего времязадающего конденсатора
  • вывод для подключения времязадающего резистора
  • общий вывод микросхемы, минус питания
  • вывод коллектора первого выходного транзистора
  • вывод эмиттера первого выходного транзистора
  • вывод эмиттера второго выходного транзистора
  • вывод коллектора второго выходного транзистора
  • вход подачи питающего напряжения
  • вход выбора однотактного или же двухтактного режима работы микросхемы
  • вывод встроенного источника опорного напряжения 5 вольт
  • инвертирующий вход второго компаратора ошибки
  • неинвертирующий вход второго компаратора ошибки

На функциональной диаграмме можно видеть внутреннюю структуру микросхемы. Два верхних вывода слева предназначены для настройки параметров внутреннего генератора пилообразного напряжения, который здесь обозначен как «Oscillator». Для нормальной работы микросхемы, производитель рекомендует применять времязадающий конденсатор емкостью из диапазона от 470пф до 10мкф, а времязадающий резистор из диапазона от 1,8кОм до 500кОм. Рекомендуемый диапазон рабочих частот – от 1кГц до 300кГц. Частоту можно вычислить по формуле f = 1.1/RC. Так, в рабочем режиме на выводе 5 будет присутствовать пилообразное напряжение амплитудой около 3 вольт. У разных производителей она может отличаться в зависимости от параметров внутренних цепей микросхемы.

Для примера, если применить конденсатор емкостью 1нФ, а резистор на 10кОм, то частота пилообразного напряжения на выходе 5 составит примерно f = 1.1/(10000*0.000000001) = 110000Гц. Частота может отличаться, по данным производителя, на +-3% в зависимости от температурного режима компонентов.

частота пилообразного напряжения на выходе 110000Гц

Вход регулировки мертвого времени 4 предназначен для определения паузы между импульсами. Компаратор мертвого времени, обозначенный на схеме «Dead-time Control Comparator», даст разрешение выходным импульсам, если напряжение пилы выше напряжения, подаваемого на вход 4. Так, подавая на вход 4 напряжение от 0 до 3 вольт, можно регулировать скважность выходных импульсов, при этом максимальная длительность рабочего цикла может составлять 96% в однотактном режиме и 48%, соответственно, в двухтактном режиме работы микросхемы. Минимальная пауза здесь ограничена значением 3%, которое обеспечивается встроенным источником с напряжением 0.1 вольта. Вывод 3 также имеет значение, и напряжение на нем так же играет роль для разрешения импульсов на выходе.

Выводы 1 и 2, а так же выводы 15 и 16 компараторов ошибки могут быть использованы для защиты проектируемого устройства от перегрузок по току и по напряжению. Если напряжение, подаваемое на вывод 1, станет выше, чем подаваемое на вывод 2, или напряжение, подаваемое на вывод 16, станет выше, чем напряжение, подаваемое на вывод 15, то вход ШИМ-компаратора «PWM Comparator» (вывод 3) получит сигнал для запрета импульсов на выходе. Если данные компараторы использовать не планируется, то их можно заблокировать, замкнув на землю неинвертирущие входы, а инвертирующие подключив к источнику опорного напряжения (вывод 14). Вывод 14 является выходом встроенного в микросхему стабилизированного источника опорного напряжения 5 вольт. К этому выводу можно подключать цепи, потребляющие ток до 10 мА, которыми могут быть делители напряжения для настройки цепей защиты, мягкого пуска, или установки фиксированной или регулируемой длительности импульсов. К выводу 12 подается напряжение питания микросхемы от 7 до 40 вольт. Как правило, применяют 12 вольт стабилизированного напряжения. Важно исключить любые помехи в цепи питания. Вывод 13 отвечает за режим работы микросхемы. Если на него подать опорное напряжение 5 вольт, (с вывода 14) то микросхема будет работать в двухтактном режиме, и выходные транзисторы будут открываться в противофазе, по очереди, причем частота включения каждого из выходных транзисторов будет равна половине частоты пилообразного напряжения на выводе 5. Но если замкнуть вывод 13 на минус питания, то выходные транзисторы станут работать параллельно, а частота будет равна частоте пилы на выводе 5, то есть частоте генератора.

Максимальный ток для каждого из выходных транзисторов микросхемы (выводы 8,9,10,11) составляет 250мА, однако производитель не рекомендует превышать 200мА. Соответственно, при параллельной работе выходных транзисторов (вывод 9 соединен с выводом 10, а вывод 8 соединен с выводом 11) максимально допустимый для ток составит 500мА, но лучше не превышать 400мА.

Выходные транзисторы могут быть включены по-разному, в соответствии с целью разработчика, по схеме с общим эмиттером, либо по схеме эмиттерного повторителя.

  • Начинаем работать со звуковой микросхемой аР89хх
  • Принцип работы МДП-структур
  • MOSFET транзисторы для усилителя
  • Биполярные NPN транзисторы для усилителя
  • Каскодные транзисторные усилители и их схемы
  • Режимы работы усилителя на транзисторах класс: A, B, A/B, C, D
  • Режим работы транзистора и усилителя класс A
  • Режим работы транзистора и усилителя класс В, A/B
  • Режим работы транзистора и усилителя класс С, D — ШИМ

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить — из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При этом МОП-транзистор может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

усилитель tl494cn

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

Мощный инвертор 12-220 500 ватт

Очень часто возникает необходимость получения сетевого напряжения в автомобиле. Для таких случаев в продаже имеются готовые преобразователи напряжения 12-220. Штатные (более дешевые) инверторы с ценой 20-30$ развивают мощность до 300 ватт и то в пиках, иногда такой мощности недостаточно. Данный инвертор я собрал для питания мощного усилителя, но замена вторичной обмотки позволяет получить любое выходное напряжение. В моем случае мощность инвертора 400 ватт, но его можно поднять до 600 ватт и это реальная мощность! Повысить мощность можно несколькими способами.

1) Заменой мощных биполярных ключей на IRF3205, в этом случае мощность возрастет до 600 ватт и это не предел. Схематические особенности данного инвертора позволяют параллельно подключить сразу 4 пары выходных транзисторов, что дает возможность получить выходную мощность до 1200-1300 ватт, промышленные китайские инверторы такой мощности стоят в районе 100-130$

Схема инвертора лишена защит от перегрева, КЗ, перегрузки на выходе, голый инвертор по традиционной двухтактной схеме.

Генератор построен на микросхеме ТЛ494 с дополнительным драйвером на маломощных биполярных транзисторах. Транзисторы можно заменить на отечественные – КТ3107. В инверторе реализована схема ремоут контроля, чтобы не пришлось использовать мощные переключатели для подачи питания на схему.

Диоды в задающей части использованы ШОТТКИ типа 4148 или наш КД522, особой разницы нету. В схеме ремоут контроля транзистор может быть заменен на отечественный КТ3102. Трансформатор – самая ответственная часть нашего проекта, именно от него зависит вся работа конструкции. Трансформатор в моем случае намотан на двух склеенных кольцах марки 3000НМ, размеры каждого кольца 45*28*8. Кольца ничем не склеивал, просто для плотной фиксации обмотал скотчем.

После обклейки скотчем кольца были обмотаны стекловолокно, сам рулон стекловолокна был куплен в строй магазине за 1$.

Заранее нужно нарезать полоски из стекловолокна длиной 50см, ширина 1,5-2см. Вместо стекловолокна можно использовать тканевую изоленту, волокно удобно тем, что материал термостойкий и довольно тонкий, изоляция получается более аккуратной.

Первичная обмотка – 2х5 витков, т.е. 10 витков с отводом от середины. Каждое плечо намотано 12- жилами провода 0,7-0,8мм. Фотографии намотки скажут все зам меня.

Оба плеча мотают жгутом – 5 витков растянутых по всему кольцу максимально равномерно. В итоге получаем две полностью одинаковые обмотки.

В итоге имеем 4 конца (вывода), начало первой обмотки припаиваем к концу второй обмотки именно место припоя является отводам, на который подается силовое питания +12 Вольт. После намотки первичной обмотки кольцо вновь изолируем изолируют стекловолокном и мотают вторичную обмотку.

Эта обмотка является повышающей, выходное напряжение опасное, поэтому соблюдайте все меры предосторожности, монтажные роботы делать только с выключенным питанием.

Обмотка мотается двумя параллельными жилами провода 0,7-0,8мм. Количество витков во вторичной обмотке 80. Витки опять же растянуты по всему кольцу равномерно. После намотки и эту обмотку желательно изолировать тем же способом, что и первичную.

Перед во время работы лампа НЕ ДОЛЖНА светится. Затем проверяем тепловыделение на полевых ключах – оно практически нулевое, если транзисторы БЕЗ ВЫХОДНОЙ НАГРУЗКИ перегреваются, значит есть косяк или нерабочий компонент. Позже все транзисторы можно установить на общий теплоотвод, разумеется через изоляционные прокладки.

Данное устройство можно заказать [email protected]

СКАЧАТЬ плату в формате lay МОЖНО ЗДЕСЬ…

Автор; АКА КАСЬЯН

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая – на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

tl494cn проверка

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность — если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.

tl494cn схема включения и разводки

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для гальванической развязки низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Использование ИС семейства TL494 в преобразователях питания

TL 494 и ее последующие версии — наиболее часто применяемая микросхема для построения двухтаткных преобразователей питания.

  • TL494 (оригинальная разработка Texas Instruments) — ИС ШИМ преобразователя напряжения с однотактными выходами (TL 494 IN — корпус DIP16, -25..85С, TL 494 CN — DIP16, 0..70C).
  • К1006ЕУ4 — отечественный аналог TL494
  • TL594 — аналог TL494 c улучшенной точностью усилителей ошибки и компаратора
  • TL598 — аналог TL594 c двухтактным (pnp-npn) повторителем на выходе

Настоящий материал — обобщение на тему оригинального техдока Texas Instruments (ищите документ slva001a.pdf на www.ti.com — далее ссылка «TI»), публикаций International Rectifier («Силовые полупроводниковые приборы International Rectifier», Воронеж, 1999) и Motorola, опыта друзей-самодельщиков и самого автора. Следует сразу отметить, что точностные параметры, коэффициент усиления, токи смещения и прочие аналоговые показатели улучшались от ранних серий к более поздним, в тексте — как правило — используются наихудшие, ранних серий параметры. Вкратце, у почтеннейшей микросхемы есть и недостатки, и достоинства.

  • Плюс: Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
  • Минус: Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825)
  • Минус: Недоступно токовое управление, относительно медленная петля обратной связи (не критично в автомобильных ПН)
  • Минус: Cинхронное включение двух и более ИС не так удобно, как в UC3825

1. Особенности ИС

Блок схема TL494

Цепи ИОНа и защиты от недонапряжения питания. Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого «стабилизатора» напряжение будет сильно зависеть от тока нагрузки.

Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0…+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).

Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания — в пределах 0.1% во всем допустимом диапазоне.

Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или — замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.

Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера — время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.

Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).

Усилители ошибки — фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений — от -0.3В до Vпитания-2В.

Выходы двух усилителей объединены диодным ИЛИ. Тот усилитель, на выходе которого большее напряжение, перехватывает управление логикой. При этом выходной сигнал доступен не порознь, а только с выхода диодного ИЛИ (он же вход компаратора ошибки). Таким образом, только один усилитель может быть замкнут петлей ОС в линейном режиме. Этот усилитель и замыкает главную, линейную ОС по выходному напряжению. Второй усилитель при этом может использоваться как компаратор — например, превышения выходного тока, или как ключ на логический сигнал аварии (перегрев, КЗ и т.п.), дистанционного выключения и пр. Один из входов компаратора привязывается к ИОНу, на втором организуется логическое ИЛИ аварийных сигналов (еще лучше — логическое И сигналов нормальных состояний).

При использовании RC частотнозависимой ОС следует помнить, что выход усилителей — фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз — разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).

Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.

Триггер и логика управления выходами — При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) — разрешается выход схемы. При сбросе генератора из максимума в ноль — выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 — подаются парафазно на каждый выход порознь.

Выходные транзисторы — npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) — 1.5В (типовое при 200 мА), а в схеме с общим эмиттером — чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл — 1Вт.

2. Особенности применения

Работа на затвор МДП транзистора. Выходные повторители

При работе на емкостную нагрузку, какой условно является затвор МДП транзистора, выходные транзисторы TL494 включаются эмиттерным повторителем. При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора — также неудовлетворительно медленно. Ведь напряжение на условной емкости затвора спадает по экспоненте, а для закрытия транзистора затвор надо разрядить от 10В до не более 3В. Ток разряда через резистор будет всегда меньше тока заряда через транзистор (да и греться резистор будет неслабо, и красть ток ключа при ходе вверх).

Два варианта раскачки выхода TL494

Вариант А. Цепь разряда через внешний pnp транзистор (заимствовано на сайте Шихмана — см. «Блок питания усилителя Jensen»). При зарядке затвора ток, протекающий через диод, запирает внешний pnp-транзистор, при выключении выхода ИС — заперт диод, транзистор открывается и разряжает затвор на землю. Минус — работает только на небольшие емкости нагрузки (ограниченные токовым запасом выходного транзистора ИС).

При использовании TL598 (c двухтактным выходом) функция нижнего, разрядного, плеча уже зашита на кристалле. Вариант А в этом случае нецелесообразен.

Вариант Б. Независимый комплементарный повторитель. Так как основная токовая нагрузка отрабатывается внешним транзистором, емкость (ток заряда) нагрузки практически не ограничена. Транзисторы и диоды — любые ВЧ с небольшим напряжением насыщения и Cк, и достаточным запасом по току (1А в импульсе и более). Например, КТ644+646, КТ972+973. «Земля» повторителя должна распаиваться непосредственно рядом с истоком силового ключа. Коллекторы транзисторов повторителя обязательно зашунтировать керамической емкостью (на схеме не показана).

Какую схемы выбрать — зависит прежде всего от характера нагрузки (емкость затвора или заряд переключения), рабочей частоты, временных требований к фронтам импульса. А они (фронты) должны быть как можно быстрее, ведь именно на переходных процессах на МДП ключе рассеивается большая часть тепловых потерь. Рекомендую обратится к публикациям в сборнике International Rectifier для полного анализа задачи, сам же ограничусь примером.

Мощный транзистор — IRFI1010N — имеет справочный полный заряд на затворе Qg=130нКл. Это немало, ведь транзистор имеет исключительно большую площадь канала, чтобы обеспечить предельно низкое сопротивление канала (12 мОм). Именно такие ключи и требуются в 12В преобразователях, где каждый миллиом на счету. Чтоб гарантированно открыть канал, на затворе надо обеспечить Vg=+6В относительно земли, при этом полный заряд затвора Qg(Vg)=60нКл. Чтоб гарантированно разрядить затвор, заряженный до 10В, надо рассосать Qg(Vg)=90нКл.

При тактовой частоте 100 кГц и суммарной скважности 80% каждое плечо работает в режиме 4 мкс открыто — 6 мкс закрыто. Предположим, что длительность каждого фронта импульса должна быть не более 3% открытого состояния, т.е. tф=120 нс. Иначе резко возрастают тепловые потери на ключе. Таким образом, минимально приемлемый средний ток заряда Ig+=60 нКл/120 нс = 0.5А, ток разряда Ig-= 90нКл/120нс=0.75А. И это без учета нелинейного поведения емкостей затвора!

Сопоставляя требуемые токи с предельными для TL494, видно, что ее встроенный транзистор будет работать на предельном токе, и скорее всего не справится со своевременным зарядом затвора, так что выбор делается в пользу комплементарного повторителя. При меньшей рабочей частоте или при меньшей емкости затвора ключа возможен и вариант с разрядником.

2. Реализация защиты по току, мягкого старта, ограничения скважности

Как правило, в роли датчика тока так и просится последовательный резистор в цепи нагрузки. Но он будет красть драгоценные вольты и ватты на выходе преобразователя, да и контролировать только цепи нагрузки, а КЗ в первичных цепях обнаружить не сможет. Решение — индуктивный датчик тока в первичной цепи.

Собственно датчик (трансформатор тока) — миниатюрная тороидальная катушка (внутренний ее диаметр должен, помимо обмотки датчика, свободно пропустить провод первичной обмотки главного силового трансформатора). Сквозь тор пропускаем провод первичной обмотки трансформатора (но не «земляной» провод истока!). Постоянную времени нарастания детектора задаем порядка 3-10 периодов тактовой частоты, спада — в 10 раз более, исходя из тока срабатывания оптрона (порядка 2-10 мА при падении напряжения 1.2-1.6В).

Защита по переменному току первичной обмотки

В правой части схемы — два типовых решения для TL494. Делитель Rdt1-Rdt2 задает максимальную скважность (минимальную фазу покоя). Например, при Rdt1=4.7кОм, Rdt2=47кОм на выходе 4 постоянное напряжение Udt=450мВ, что соответствует фазе покоя 18..22% (в зависимости от серии ИС и рабочей частоты).

При включении питания Css разряжен и потенциал на входе DT равен Vref (+5В). Сss заряжается через Rss (она же Rdt2), плавно опуская потенциал DT до нижнего предела, ограниченного делителем. Это «мягкий старт». При Css=47мкФ и указанных резисторах выходы схемы открываются через 0.1 с после включения, и выходят на рабочую скважность еще в течении 0.3-0.5 с.

В схеме, помимо Rdt1, Rdt2, Css присутствуют две утечки — ток утечки оптрона (не выше 10 мкА при высоких температурах, порядка 0.1-1 мкА при комнатной температуре) и вытекающий из входа DT ток базы входного транзистора ИС. Чтобы эти токи не влияли существенно на точность делителя, Rdt2=Rss выбираем не выше 5 кОм, Rdt1 — не выше 100 кОм.

Разумеется, выбор именно оптрона и цепи DT для управления непринципиален. Возможно и использование усилителя ошибки в режиме компаратора, и блокировка емкости или резистора генератора (например, тем же оптроном) — но это именно выключение, а не плавное ограничение.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

tl494cn схема преобразователя

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 — это диод Шоттки от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 – конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 — еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость — до нескольких сотен пикофарад.

Всем привет!

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.

image

Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.

image
Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494.
Давайте разберемся как же устроен ШИМ контроллер TL494.
Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

image

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

image

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь.
Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи
Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.
Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

image

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

image

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

image

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

image

Она встраивается в БП вот таким образом:

image

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper’a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

image

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

image

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга:
Куличков А.В. «Импульсные блоки питания для IBM PC»
radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

TL 494 и ее последующие версии — наиболее часто применяемая микросхема для построения двухтаткных преобразователей питания.

  • TL494 (оригинальная разработка Texas Instruments) — ИС ШИМ преобразователя напряжения с однотактными выходами (TL 494 IN — корпус DIP16, -25..85С, TL 494 CN — DIP16, 0..70C).
  • К1006ЕУ4 — отечественный аналог TL494
  • TL594 — аналог TL494 c улучшенной точностью усилителей ошибки и компаратора
  • TL598 — аналог TL594 c двухтактным (pnp-npn) повторителем на выходе

Настоящий материал — обобщение на тему оригинального техдока Texas Instruments (ищите документ slva001a.pdf на www.ti.com — далее ссылка «TI»), публикаций International Rectifier («Силовые полупроводниковые приборы International Rectifier», Воронеж, 1999) и Motorola, опыта друзей-самодельщиков и самого автора. Следует сразу отметить, что точностные параметры, коэффициент усиления, токи смещения и прочие аналоговые показатели улучшались от ранних серий к более поздним, в тексте — как правило — используются наихудшие, ранних серий параметры. Вкратце, у почтеннейшей микросхемы есть и недостатки, и достоинства.

  • Плюс: Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
  • Минус: Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825)
  • Минус: Недоступно токовое управление, относительно медленная петля обратной связи (не критично в автомобильных ПН)
  • Минус: Cинхронное включение двух и более ИС не так удобно, как в UC3825

1. Особенности ИС

Блок схема TL494

Цепи ИОНа и защиты от недонапряжения питания. Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого «стабилизатора» напряжение будет сильно зависеть от тока нагрузки.

Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0…+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).

Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания — в пределах 0.1% во всем допустимом диапазоне.

Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или — замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.

Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера — время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.

Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).

Усилители ошибки — фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений — от -0.3В до Vпитания-2В.

Выходы двух усилителей объединены диодным ИЛИ. Тот усилитель, на выходе которого большее напряжение, перехватывает управление логикой. При этом выходной сигнал доступен не порознь, а только с выхода диодного ИЛИ (он же вход компаратора ошибки). Таким образом, только один усилитель может быть замкнут петлей ОС в линейном режиме. Этот усилитель и замыкает главную, линейную ОС по выходному напряжению. Второй усилитель при этом может использоваться как компаратор — например, превышения выходного тока, или как ключ на логический сигнал аварии (перегрев, КЗ и т.п.), дистанционного выключения и пр. Один из входов компаратора привязывается к ИОНу, на втором организуется логическое ИЛИ аварийных сигналов (еще лучше — логическое И сигналов нормальных состояний).

Передаточная характеристика

При использовании RC частотнозависимой ОС следует помнить, что выход усилителей — фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз — разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).

Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.

Триггер и логика управления выходами — При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) — разрешается выход схемы. При сбросе генератора из максимума в ноль — выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 — подаются парафазно на каждый выход порознь.

Выходные транзисторы — npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) — 1.5В (типовое при 200 мА), а в схеме с общим эмиттером — чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл — 1Вт.

2. Особенности применения

Работа на затвор МДП транзистора. Выходные повторители

При работе на емкостную нагрузку, какой условно является затвор МДП транзистора, выходные транзисторы TL494 включаются эмиттерным повторителем. При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора — также неудовлетворительно медленно. Ведь напряжение на условной емкости затвора спадает по экспоненте, а для закрытия транзистора затвор надо разрядить от 10В до не более 3В. Ток разряда через резистор будет всегда меньше тока заряда через транзистор (да и греться резистор будет неслабо, и красть ток ключа при ходе вверх).

Два варианта раскачки выхода TL494

Вариант А. Цепь разряда через внешний pnp транзистор (заимствовано на сайте Шихмана — см. «Блок питания усилителя Jensen»). При зарядке затвора ток, протекающий через диод, запирает внешний pnp-транзистор, при выключении выхода ИС — заперт диод, транзистор открывается и разряжает затвор на землю. Минус — работает только на небольшие емкости нагрузки (ограниченные токовым запасом выходного транзистора ИС).

При использовании TL598 (c двухтактным выходом) функция нижнего, разрядного, плеча уже зашита на кристалле. Вариант А в этом случае нецелесообразен.

Вариант Б. Независимый комплементарный повторитель. Так как основная токовая нагрузка отрабатывается внешним транзистором, емкость (ток заряда) нагрузки практически не ограничена. Транзисторы и диоды — любые ВЧ с небольшим напряжением насыщения и Cк, и достаточным запасом по току (1А в импульсе и более). Например, КТ644+646, КТ972+973. «Земля» повторителя должна распаиваться непосредственно рядом с истоком силового ключа. Коллекторы транзисторов повторителя обязательно зашунтировать керамической емкостью (на схеме не показана).

Какую схемы выбрать — зависит прежде всего от характера нагрузки (емкость затвора или заряд переключения), рабочей частоты, временных требований к фронтам импульса. А они (фронты) должны быть как можно быстрее, ведь именно на переходных процессах на МДП ключе рассеивается большая часть тепловых потерь. Рекомендую обратится к публикациям в сборнике International Rectifier для полного анализа задачи, сам же ограничусь примером.

Мощный транзистор — IRFI1010N — имеет справочный полный заряд на затворе Qg=130нКл. Это немало, ведь транзистор имеет исключительно большую площадь канала, чтобы обеспечить предельно низкое сопротивление канала (12 мОм). Именно такие ключи и требуются в 12В преобразователях, где каждый миллиом на счету. Чтоб гарантированно открыть канал, на затворе надо обеспечить Vg=+6В относительно земли, при этом полный заряд затвора Qg(Vg)=60нКл. Чтоб гарантированно разрядить затвор, заряженный до 10В, надо рассосать Qg(Vg)=90нКл.

При тактовой частоте 100 кГц и суммарной скважности 80% каждое плечо работает в режиме 4 мкс открыто — 6 мкс закрыто. Предположим, что длительность каждого фронта импульса должна быть не более 3% открытого состояния, т.е. tф=120 нс. Иначе резко возрастают тепловые потери на ключе. Таким образом, минимально приемлемый средний ток заряда Ig+=60 нКл/120 нс = 0.5А, ток разряда Ig-= 90нКл/120нс=0.75А. И это без учета нелинейного поведения емкостей затвора!

Сопоставляя требуемые токи с предельными для TL494, видно, что ее встроенный транзистор будет работать на предельном токе, и скорее всего не справится со своевременным зарядом затвора, так что выбор делается в пользу комплементарного повторителя. При меньшей рабочей частоте или при меньшей емкости затвора ключа возможен и вариант с разрядником.

2. Реализация защиты по току, мягкого старта, ограничения скважности

Как правило, в роли датчика тока так и просится последовательный резистор в цепи нагрузки. Но он будет красть драгоценные вольты и ватты на выходе преобразователя, да и контролировать только цепи нагрузки, а КЗ в первичных цепях обнаружить не сможет. Решение — индуктивный датчик тока в первичной цепи.

Собственно датчик (трансформатор тока) — миниатюрная тороидальная катушка (внутренний ее диаметр должен, помимо обмотки датчика, свободно пропустить провод первичной обмотки главного силового трансформатора). Сквозь тор пропускаем провод первичной обмотки трансформатора (но не «земляной» провод истока!). Постоянную времени нарастания детектора задаем порядка 3-10 периодов тактовой частоты, спада — в 10 раз более, исходя из тока срабатывания оптрона (порядка 2-10 мА при падении напряжения 1.2-1.6В).

Защита по переменному току первичной обмотки

В правой части схемы — два типовых решения для TL494. Делитель Rdt1-Rdt2 задает максимальную скважность (минимальную фазу покоя). Например, при Rdt1=4.7кОм, Rdt2=47кОм на выходе 4 постоянное напряжение Udt=450мВ, что соответствует фазе покоя 18..22% (в зависимости от серии ИС и рабочей частоты).

При включении питания Css разряжен и потенциал на входе DT равен Vref (+5В). Сss заряжается через Rss (она же Rdt2), плавно опуская потенциал DT до нижнего предела, ограниченного делителем. Это «мягкий старт». При Css=47мкФ и указанных резисторах выходы схемы открываются через 0.1 с после включения, и выходят на рабочую скважность еще в течении 0.3-0.5 с.

В схеме, помимо Rdt1, Rdt2, Css присутствуют две утечки — ток утечки оптрона (не выше 10 мкА при высоких температурах, порядка 0.1-1 мкА при комнатной температуре) и вытекающий из входа DT ток базы входного транзистора ИС. Чтобы эти токи не влияли существенно на точность делителя, Rdt2=Rss выбираем не выше 5 кОм, Rdt1 — не выше 100 кОм.

Разумеется, выбор именно оптрона и цепи DT для управления непринципиален. Возможно и использование усилителя ошибки в режиме компаратора, и блокировка емкости или резистора генератора (например, тем же оптроном) — но это именно выключение, а не плавное ограничение.

Согласно техническим характеристикам TL494CN представляет собой ШИМ-контроллер. В составе микросхемы находятся два выходных биполярных NPN-транзистора с максимально возможной пропускной способностью до 250 мА, которые могут функционировать синхронно, либо асинхронно (когда один открыт, а другой закрыт и наоборот). В конструкции реализована регулировка мертвого времени (период между работой силовых ключей) для защиты от сквозных токов. В схеме имеется внутренний источник опорного напряжения 5 В (до 10 мА), с погрешностью до 5%. Производители отмечают возможность включения нескольких подобных устройств параллельно.

В соответствии с datasheet, TL494CN разработана для работы в разнообразной бытовой электронике и используется преимущественно в схемах импульсных блоков питания напряжением от 7 до 41 В, с частотой тактирования 300 кГц. Имеет функцию коррекции коэффициента мощности (PFC) до 90 Вт. Функционал микросхемы довольно обширен. Она может применяться в качестве повышающего или понижающего преобразователя напряжения, стабилизатора и др.

Содержание

  1. Описание
  2. Предельные параметры
  3. Функциональная схема
  4. Схема включения TL494CN
  5. Аналоги
  6. Производители

Описание

Обзор TL494CN начнём с описания основных параметров, назначения и расположения выводов. Устройство изготавливается в различных типах пластиковых корпусов: PDIP, SOP, SOIC, TSSOP, которые (без исключения) имеют 16 контактов. Внешний вид, габариты и образец распиновки представлены на рисунке.

Предельные параметры

Рассмотрим максимально возможные, предельные параметры контроллера. Превышения указанных значений недопустимо и может привести к выходу изделия из строя изделия. Производитель приводит данные с учётом температуры окружающей среды +25 oC.

Максимальные характеристики TL494CN:

  • напряжение: питания (VCC) до 41 В; выходное (VO) до 41 В;
  • входное напряжение усилителя (VI) до VCC + 0.3 В;
  • коллекторный ток (IO) до 250 мА;
  • температура хранения (ТSTG) – 65 … +150 oC.

Функциональная схема

Упрощённая функциональная схема TL494CN представлена на рисунке. Номера выводов соответствуют цоколевке устройства. Основными функциональными блоками являются: два усилителя ошибки, компаратор фазы покоя, генератор опорного сигнала, фазоращепляющий триггер с силовыми выходными транзисторами.

Функциональная схема TL494CN

Ножки № 5,6 (RT,CT) микросхемы соединены с генератором. Для получения необходимой частоты генерации сигнала (fOSC) к ним необходимо подсоединить соответствующие резистор (RT от 1.8 до 500 кОм) и конденсатор (CT от 0.47 до 10000 пФ). Рассчитать fOSC для несимметричных приложений можно по формуле 1/RT*CT, для двухтактных 1/2RT*CT.

Вывод регулировки задержки времени №4 (DTC) имеет внутреннее смещение порядка 110 мВ, что обеспечивает минимальную паузу между переключениями с периодом 3%. Повышая напряжение (до 3.3 В) возможно увеличить указанный период закрытия выходных транзисторов до максимума, чтобы через них гарантировано не протекал сквозной ток.

Два усилителя ошибки подключены снаружи к выводам №№ 1,2 (1IN+,1IN-) и 15,16 (2IN-,2IN+) соответственно. Внутри, через диоды, они соединены с компаратором ШИМ-сигнала. К ножке №3 (FEEDBACK) можно подсоединить резистор или конденсатор, чтобы задать необходимый коэффициент усиления или откорректировать амплитудно-частотную характеристику (АЧХ).

Выводы № 12 (VCC) и № 7 (GND) являются «плюсом» и «минусом» соответственно. Для работы микросхемы к ним необходимо подключить постоянное питание величиной от 7 до 40 В. Контакт № 14 (REF) представляет из себя выход источника опорного напряжения до 5 В. Конфигурация режима работы выходных транзисторов осуществляется с помощью вывода № 13 (OUTPUT CTRL). Если подать на него +5 В  с контакта № 14 (REF), то устройство будет работать в двухтактном режиме (асинхронном), иначе в однотактном (синхронном).

Схема включения TL494CN

Кратко рассмотрим типовую схему включения TL494CN взятую непосредственно из datasheet для источника питания в 5 В, 10 А. В ней задействованы сразу два усилителя ошибки. Один из них снимает положительный потенциал с делителя напряжения (R8, R9) на выходе, а другой с шунтирующего резистора R13. Таким образом, с помощью рассматриваемой микросхемы контролируется ток, текущий через подключённую нагрузку.

Контакт № 13 подключён земле (GND), что задаёт однотактный режим работы микросхемы. Через выводы № 8 и № 11 сформированный ШИМ-сигнал подаётся на более мощные силовые транзисторы Q1 и Q2, к которым подключена основная нагрузка.

Возможный вариант схемы блока питания для представленного выше решения с TL494CN представлен на рисунке.

Аналоги

Довольно часто, для TL494CN требуется подобрать аналоги. В настоящее время похожих по параметрам и функционалу устройств очень много. К ним можно отнести: ISL6741IBZ, KIA494AP. Отечественной заменой считается КР1114ЕУ4.

Производители

Основным производителем TL494 CN является американская корпорация Texas Instruments. В своё время она поглотила компанию Unitrode, которая специализировалась на разработке очень похожих ШИМ-контроллеров. Вместе с тем, рассмотренное изделие выпускают и другие фирмы, скачать их datasheet возможно по следующей ссылке.

Источник

42 Влияние напряжения статической
погрешности на работу УПТ и усилителей
переменного сигнала

Как уже было отмечено, на работу схем,
организованных на основе ОУ, могут
оказывать влияние паразитные факторы,
вызывающие появление постоянного
напряжения Uош вых
на выходе даже в условиях отсутствия
какого-либо сигнала на входе ОУ.
Воздействие этих паразитных факторов
удобно представлять с помощью
эквивалентного генератора постоянного
напряжения Uош вх,
воздействующего на неинвертирующей
вход ОУ. В условиях линейного режима
работы схемы на ОУ значение напряжения
Uош вых
определяется соотношением

Uош вых =
Uош вх
Кош, (1)

где Кош
– коэффициент усиления постоянного
напряжения, воздействующего на
неинвертирующий вход ОУ.

Вычисленное в соответствии с (1) напряжение
Uош вых не
должно превосходить предельно допустимого
для ОУ значения Uвых
max, в противном
случае ОУ теряет усилительные свойства,
а работа схемы сопровождается нелинейными
искажениями. Обычно схему на ОУ стремятся
выполнить таким образом, чтобы напряжение
Uош вых было
меньше некоторого допустимого значение
Uош доп,
вытекающего из особенностей применения
схемы на ОУ или же оговоренного в
технических условиях. Указанные
обстоятельства накладывают ограничения
сверху на возможные значения коэффициента
усиления Кош,
а именно

Кош
Uош доп /
Uош вх. (2)

где Uош вх
напряжение статической погрешности.
По указанным причинам недопустима
работа схемы УПТ на ОУ при коэффициенте
усиления большем, чем вытекающий из
соотношения (2).

Пример 1 Какое предельное значение
номинального коэффициента усиления К0
можно получить в схеме инвертирующего
усилителя, если она организована на ОУ
с Uош вх = 5 мВ,
а напряжение Uош доп
= 0,1 В?

Решение:

1. В соответствии с (2) необходимо, чтобы

Кош
Uош доп /
Uош вх = 0,1 / 5
10-3 = 20.

2. Напряжение Uош вх
передается на выход в соответствии с
передаточными свойствами неинвертирующей
схемой включения, а сигнала – с
инвертирующей, коэффициент передачи
которой меньше первой на единицу. С
учетом этого получаем

К0 = Кош –1 = 20 – 1 =
19.

Существенно большие значения коэффициентов
усиления сигнальных напряжений К0,
без превышения напряжения Uош доп,
могут обеспечить схемы усиления
переменных сигналов. В этих схемах
допускается применение разделительных
и блокирующих конденсаторов, вследствие
чего в них можно создать большую глубину
ООС на постоянном токе при относительно
небольшом значении для переменного
сигнала и тем самым существенно снизить
передачу на выход напряжения ошибки
при высоком значении коэффициента
усиления сигнала. В результате в
усилителях переменного сигнала обычно
выполняется соотношение Кош << К0,
где
К0
коэффициент усиления
переменного сигнала.

Рисунок 1. Инвертирующий усилитель
переменного сигнала

Рисунок 2. Неинвертирующий усилитель
переменного сигнала

Рисунок 3. Усилитель переменного сигнала
с 3-полюсником в цепи ОС

Для переменного сигнала схема на рисунке
1 эквивалентна инвертирующему масштабному
усилителю, схема на рисунке 2, –
неинвертирующему, а схема на рисунке 3
– усилителю с трехполюсным элементом
в цепи обратной связи. Эквивалентность
выполняется во всем частотном диапазоне,
за исключением области низких частот.
В этой области возможны частотные
искажения вследствие того, что на
пониженных частотах сопротивление
конденсатора Ср
не имеет пренебрежимо малого значения.

Пример 2. Какое предельное значение
номинального коэффициента усиления К0
можно получить в схеме инвертирующего
усилителя, если преобразовать ее в схему
на рисунке 1?

Решение.

1. Включение в схему конденсатора Cр
снижает коэффициент Кош
до единицы, так как в этом случае
двухполюсник Z1 = R1 + 1/ jСр,
включающий конденсатор Ср,
на постоянном токе представляет
разомкнутую цепь. В результате этого
Z1 
=  и

Кош
= 1 + R1 / Z1 =
1; Uош вых =
Uош вх = 5 мВ.

2. Для переменного тока Z1=R1,
в результате чего не наблюдается
ограничений со стороны напряжения
Uош вх на
коэффициент усиления переменного
сигнала.

Уровень низкочастотных (f)
или переходных Δ искажений, может быть
оценен по приводимым ранее соотношениям
с подстановкой в них постоянных времени
τр
соответствующих разделительных цепей.
При рассмотрении этих искажений в схеме
на рисунке 1 возможно применение двух
подходов, один из которых связан с
усилением сигнала uвх,
а другой – сигнала Eс.
Уровень частотных искажений при первом
преобразовании определяет постоянная
времени τр1 = Ср
R1, а
второго – τр2 = Ср (Rс + R1).
В схеме на рисунке 2 уровень низкочастотных
и переходных искажений определяет одна
постоянная времени τр1,
а в схеме на рисунке 3 – две. В роли одной
из них выступает постоянная времени
τр1
или τр2,
а в роли второй – постоянная времени
τр Ср2 R3.

При вычислении коэффициентов передачи
Кош
для различных, в том числе и приведенных
схем, необходимо учитывать следующее:

— напряжение Uош вх
является постоянным, поэтому при анализе
его влияния на работу схемы все ее ветви,
содержащие разделительные конденсаторы,
могут рассматриваться как цепи с
бесконечно большим сопротивлением и
из рассмотрения исключаться;

— считается, что напряжение Uош вх
приложено к неинвертирующему входу ОУ.
Поэтому коэффициент передачи Кош
для всех схемных построений на ОУ следует
рассматривать как коэффициент передачи
относительно неинвертирующего входа
даже в случаях, когда передача сигнального
напряжения осуществляется по схеме
инвертирующего включения.

Из сказанного следует, что для всех
приведенных схем, коэффициент передачи
Кош
равен единице, т. е. независимо от значения
коэффициента усиления К0
сигнального напряжения Uош вых = Uош вх.
В схеме усилителя постоянного тока
практически всегда коэффициент усиления
К0
сигнала не ниже коэффициента передачи
Кош.

В схемах на рисунках 1 и 3 неинвертирующие
входы ОУ подсоединены к точке нулевого
потенциала через резисторы R+.
Значение сопротивления этого резистора
выбрано из условия RR,
выполнение которогоспособствует
снижению величины Uош вх
и, соответственно, напряжения Uош вых.

Соседние файлы в папке Сау лекции 2013

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Источник

Понравилась статья? Поделить с друзьями:
  • Напрасно он проливал крокодильи слезы ошибка
  • Напрасно он проливал крокодильи слезы найти ошибку
  • Наперекор судьбы леонид сделал неожиданный выбор ошибка
  • Наперекор судьбе не пойдешь ошибка
  • Нападение на ссср была ошибкой гитлера