|
Author | Topic: Problem importing models into Micro-Cap (Read 5355 times) |
0 Members and 1 Guest are viewing this topic. |
|
||||||
|
||||||
|
||||||
|
||||||
|
||||||
|
||||||
|
||||||
|
||||||
|
||||||
150
умолчанию полагается d = 0;
DIFD(u,v[,d]) – cравнение значений двух логических u и v во всех дискретных точках при расчете переходных процессов. DIFA присваивается значение 1, если во всех точках значения функций отличаются друг от друга, в противном случае присваивается 0. В течение первых d секунд после начала расчета переходных процессов сравнение не проводится. Параметр d необязательный, по умолчанию полагается d = 0.
151
ПРИЛОЖЕНИЕ 2 — НЕКОТОРЫЕ ШАБЛОНЫ ЦЕЛЕВЫХ ФУНКЦИЙ, ВСТРОЕННЫЕ В ПРОГРАММУ MICROCAP
High_X – нахождение абсциссы наибольшего значения графика функ-
ции;
High_Y – нахождение ординаты наибольшего значения графика функ-
ции;
Low_X – нахождение абсциссы наименьшего значения графика функ-
ции;
Low_Y – нахождение ординаты наименьшего значения графика функ-
ции;
Peak_X – нахождение абсциссы графика функции, которое соответствует N-ому локальному максимуму функции;
Peak_Y – нахождение ординаты графика функции, которое соответствует N-ому локальному максимуму функции;
Period – нахождение N-ого периода выражения Y. Период вычисляется как разность абсцисс последовательности точек, проходящих через среднее значение Y;
Valley_X – нахождение абсциссы графика функции, которое соответствует N-ому локальному минимуму функции;
Valley_Y – нахождение ординаты графика функции, которое соответствует N-ому локальному минимуму функции;
X_ Range – нахождение диапазона (размаха) по оси абсцисс значений аргумента при изменении значений функции от Y_Low до Y_High;
Y_Range – нахождение диапазона (размаха) по оси ординат значений функции на промежутке от X_Low до X_High.
152
ПРИЛОЖЕНИЕ 3 – ПРИМЕР ОФОРМЛЕНИЯ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)
КАФЕДРА КОНСТРУИРОВАНИЯ И ПРОИЗВОДСТВА РАДИОАППАРАТУРЫ (КИПР)
ЛАБОРАТОРНАЯ РАБОТА №10
«ИССЛЕДОВАНИЕ ДИФФУЗИОННОЙ ЕМКОСТИ ПОЛУПРОВОДНИКОВОГО ДИОДА»
по дисциплине «Общая электротехника и электроника — 2»
Выполнил студент группы 230-1
__________ А.В.Умников 26 апреля 2012 г.
Проверил доцент каф. КИПР
__________ Д.В.Озёркин « »________ 2012 г.
Томск, 2012
153
Цели работы
1.Исследование зависимости диффузионной емкости полупроводниковых диодов от внешнего напряжения.
2.Приобретение навыков моделирования электронных схем во временной области.
3.Составление символических выражений для определения дифференциальных характеристик в MicroCAP.
Лабораторное задание №1.
Условие. Требуется исследовать зависимость диффузионной емкости полупроводникового диода КД105Б от изменяющегося во времени прямого напряжения. Переменный сигнал представляет собой положительное пилообразное напряжение амплитудой 1В и постоянной составляющей 0В. Длительность переднего и заднего фронтов равны по 0.5 с; период повторения импульсов – 1 с.
Выполнение. Для использования математической модели полупроводникового диода КД105Б был подключен файл my_diode.lib.
Полупроводниковый диод КД105Б включен в прямом направлении последовательно с токоограничивающим резистором R и источником импульсного напряжения E (рисунок 1).
Рисунок 1 – Схема включения полупроводникового диода для измерения диффузионной емкости
Задание характеристик импульсного сигнала проведено в интерактивном режиме. Согласно исходным данным параметры импульсного источника равны: V1 = 0; V2 = 1; TD = 0; TR = 0.5; TF = 0.5; PW = 0; PER = 1. Форма входного сигнала – пилообразное напряжение – соответствует введенным данным (рисунок 2).
Рисунок 2 – Входной сигнал
154
Перед выполнением анализа во временной области были заданы следующие параметры моделирования:
—временной диапазон – 1 с;
—временной шаг – 0.01 с.
Выражение для диффузионной емкости диода C dQ запишем как dU
DEL(Q(VD))/DEL(V(2)), где Q(VD) – заряд на диоде VD; V(2) – потенциал контрольной точки 2 или напряжение на диоде; DEL – встроенная дифференциальная функция MicroCAP.
Таблица параметров для построения графиков выглядит следующим образом:
P |
X Expression |
Y Expression |
1 |
V(1) |
DEL(Q(VD))/DEL(V(2)) |
2 |
TIME |
DEL(Q(VD))/DEL(V(2)) |
3 |
TIME |
I(VD) |
4 |
TIME |
V(2) |
4 |
TIME |
V(1) |
Результаты исследования диффузионной емкости полупроводникового диода представлены на рисунке 3.
а) – зависимость диффузионной емкости от входного напряжения; б) – временная зависимость диффузионной емкости; в) – временная зависимость тока через диод; г) – временные зависимости входного напряжения (1) и напряжения на диоде (2)
Рисунок 3 – Результаты исследования диффузионной емкости
155
На первом графике можно наблюдать петлю гистерезиса, которая характеризует сначала накопление неравновесного заряда в p— и n-областях, а затем процесс рекомбинации, зависящий от времени жизни неравновесных носителей заряда.
На втором графике представлена временная зависимость изменения диффузионной емкости диода. В режиме электронного курсора измеренное максимальное значение диффузионной емкости СДИФ составило около 14 нФ.
На третьем и четвертом графиках представлены, соответственно, временные зависимости тока и напряжения на диоде (вместе со входным сигналом). При этом максимальное значение тока составляет 42 мА; максимальное значение напряжения на диоде 0.58 В.
Для случая, когда длительность импульса входного сигнала намного превышает время диффузии носителей заряда сквозь базу, диффузионная емкость определяется как:
C ДИФ |
q |
I , |
|
kT |
|||
где q – заряд электрона; k – постоянная Больцмана; T – температура в градусах Цельсия; I – значение прямого тока через диод; — время жизни носителей заряда в базе диода.
Определим время жизни носителей заряда, учитывая, что в данном случае максимальные значения диффузионной емкости и тока равны СДИФ = 14 нФ и I = 42 мА, соответственно:
С |
ДИФ |
kT 14 10 9 1.38 10 |
23 27 |
7.8 10 |
10 c 0.78нс . |
|||
qI |
1.6 10 19 |
42 10 3 |
||||||
Выводы по лабораторному заданию №1. Анализируя совместно все четыре полученные зависимости можно сделать следующий вывод. В области малых прямых напряжениях (менее 0.5 В), когда диод «закрыт», изменение прямого напряжения не приводит к образованию диффузионной емкости. В этой области напряжений процессы рекомбинации доминируют над процессами накопления неравновесного заряда в p— и n-областях структуры. Начиная со значения прямого напряжения 0.5 В, когда диод начинает «приоткрываться», процессы рекомбинации уже не состоянии нейтрализовать накопленный заряд, поэтому начинает проявлять себя диффузионная емкость диода.
Лабораторное задание №2
……………………
Ответы на контрольные вопросы
1.Чем определяется постоянная времени диода? Она определяется временем пролета неосновных носителей заряда через базу диода.
2.…………………………………………………………..
156
ПРИЛОЖЕНИЕ 4 – СООТВЕТСТВИЕ УСЛОВНЫХ ГРАФИЧЕСКИХ ОБОЗНАЧЕНИЙ НЕКОТОРЫХ ЭРЭ В РОССИИ И ЗА РУБЕЖОМ
Таблица |
||||
Обозначения, принятые в |
Обозначения, принятые в Mi- |
|||
ЕСКД |
croCAP |
|||
Название ЭРЭ |
Символ по- |
Условное |
Символ по- |
Условное |
зиционного |
графическое |
зиционного |
графическое |
|
обозначения |
обозначение |
обозначения |
обозначение |
|
Общий провод- |
— |
— |
||
ник |
||||
Резистор посто- |
R |
R |
||
янный |
||||
Резистор пере- |
R |
R |
||
менный |
||||
Конденсатор по- |
C |
C |
||
стоянный |
||||
Конденсатор по- |
||||
стоянный поля- |
C |
C |
||
ризованный |
||||
Катушка индук- |
L |
L |
||
тивности |
||||
Диод выпрями- |
VD |
D |
||
тельный |
||||
Стабилитрон |
VD |
D |
||
Биполярный |
VT |
Q |
||
транзистор n—p—n |
||||
Биполярный |
VT |
Q |
||
транзистор p—n—p |
||||
Полевой транзи- |
||||
стор с p—n пере- |
VT |
J |
||
ходом и n— |
||||
каналом |
||||
157
Продолжение таблицы
Обозначения, принятые в |
Обозначения, принятые в |
|||
ЕСКД |
MicroCAP |
|||
Название ЭРЭ |
Символ по- |
Условное |
Символ по- |
Условное |
зиционного |
графическое |
зиционного |
графическое |
|
обозначения |
обозначение |
обозначения |
обозначение |
|
Полевой транзи- |
||||
стор с p—n пере- |
VT |
J |
||
ходом и p— |
||||
каналом |
||||
МДП-транзистор |
||||
с встроенным n— |
VT |
M |
||
каналом |
||||
МДП-транзистор |
||||
с встроенным p— |
VT |
M |
||
каналом |
||||
МДП-транзистор |
||||
с индуцирован- |
VT |
M |
||
ным n-каналом |
||||
МДП-транзистор |
||||
с индуцирован- |
VT |
M |
||
ным p-каналом |
||||
Линия задержки |
Т |
Т |
||
Элемент питания |
GB |
V |
||
158
ПРИЛОЖЕНИЕ 5 – НЕКОТОРЫЕ СООБЩЕНИЯ ОБ ОШИБКАХ, ВЫДАВАЕМЫЕ ПРОГРАММОЙ MICROCAP 7
В этом Приложении приведены некоторые сообщения об ошибках, возникающие при моделировании в программе MicroCAP 7, а также их краткое толкование. Список сообщений об ошибках упорядочен по алфавиту.
1.Can’t find label in V(…). Не найдена метка в символическом выражении V(…).
Ошибка возникает из-за несоответствия позиционного обозначения ЭРЭ на схеме и позиционного обозначения в символическом выражении, когда оно записывается в таблице диалоговых окон DC Analysis Limits, AC Analysis Limits или Transient Analysis Limits.
Ошибка может также возникнуть, если в символическом выражении содержится указание на несуществующую на схеме контрольную точку.
2.Expecting ‘…’ Parameter: … Text: … Ожидается ‘…’ в параметре
…в тексте….
Сообщение возникает, когда в математической модели ЭРЭ формата SPICE содержится недопустимый символ или синтаксическая ошибка. При этом вместо символов «многоточие» будут присутствовать ожидаемый символ, название параметра и начальный фрагмент описания математической модели. Следует перейти к файлу библиотеки математических моделей и исправить указанную ошибку.
3.Failed to converge in specified number of iterations in time=0. Пре-
кращение сходимости за указанное число итераций в нулевой момент времени.
Ошибка, возникающая при работе вычислительных алгоритмов программы MicroCAP. Возможных причин может быть несколько: неправильно изображенная схема, неверно заданные номиналы, неверно заданные параметры моделирования в диалоговых окнах DC Analysis Limits, AC Analysis Limits или Transient Analysis Limits.
4.Floating point ‘overflow’. Переполнение разрядов в ячейках оперативной памяти при работе с числами с плавающей запятой.
Ошибка возникает в случае, когда в схеме встречаются (намеренно или случайно) бесконечно малые или бесконечно большие числовые значения. Часто причина ошибки заключается в неправильном использовании стандартных суффиксов MicroCAP для обозначения кратных и дольных единиц.
5.Illegal character in label ‘…’. Непредусмотренная буква в метке ‘…’.
Ошибка возникает, если в позиционных обозначениях ЭРЭ на схеме используются буквы русского алфавита.
6.Illegal temperature. Непредусмотренная температура.
Ошибка возникает при указании бесконечно малой (менее -273 С) или бесконечно большой температуры окружающей среды.
159
7. Illegal time range. Непредусмотренный временной диапазон.
Ошибка возникает при неправильном указании временного диапазона в диалоговом окне Transient Analysis Limits.
8.Inductor/voltage source loop found. Найдено короткое замыкание источника напряжения или катушки индуктивности.
Ошибка возникает, когда на схеме какой-либо проводник шунтирует источник напряжения или катушку индуктивности.
9.Matrix singular. Единичная матрица.
Ошибка возникает, когда при расчете по постоянному току в вычислительном алгоритме Ньютона-Рафсона появляется единичная матрица. Такой результат следствие неправильно заданных номиналов ЭРЭ или неправильно изображенной электрической схемы.
10. Missing model statement ‘…’. Отсутствующее наименование математической модели.
Ошибка возникает либо при ошибочном написании имени математической модели, либо при отсутствии таковой в библиотеки математических моделей.
11. Need at least two values for ‘SIN’. Нужно по крайней мере два зна-
чения для задания синусоидального сигнала.
Обычно ошибка возникает при отсутствии параметров синусоидального источника напряжения или тока при попытке провести моделирования во временной области. Подобное сообщение может появляться при отсутствии параметров у других источников сигнала (импульсных, экспоненциальных, кусочно-линейных и т.д.).
12. No Model Name Given. Математической модели ЭРЭ не дано наименование.
Ошибка, характерная при размещении на поле чертежа многопараметрических ЭРЭ, описание которых содержится в математических моделях.
13. Node … has no DC path to ground. Узел не имеет соединения по постоянному току с общим проводником.
Ошибка возникает при неправильном соединении проводниками ЭРЭ. Возможны следующие случаи: разрыв проводника в электрической цепи, наличие на схеме несоединенных выводов ЭРЭ, параллельнопоследовательное соединение подряд нескольких емкостей (приводит к появлению электрического узла без гальванической связи с остальной схемой).
14. Source not found. Источник не найден.
Ошибка возникает при указании в диалоговых окнах DC Analysis Limits, AC Analysis Limits или Transient Analysis Limits на несуществующий источник напряжения или тока.
15. The AC signal magnitudes of all sources in this circuit are zero. Ам-
плитуды переменного сигнала всех источников в этой схеме равны нулю.
Обычно ошибка возникает, если не указана амплитуда переменного сигнала в источнике напряжения или тока при попытке провести моделирование в частотной области.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
SOO |
|
1 |
|
26.02.2016, 20:58. Показов 6887. Ответов 3
Доброго времени суток. Ситуация такая: решил я помучить MicroCap v10 с целью изучения схемотехники, нашел схему колебательного контура попроще(та которая — Классика жанра) http://rodyokot.ru/stort/analog/bugs/03/ собственно отрисовал ее в MicroCap, т.к. у меня значения C1=5u и L1=15u, то после рассчетов у меня получилась частота колебательного контура f=18386Гц => T=1/18386=54us, поэтому когда я захотел увидеть, что за колебания у меня получились я в Transient analaysus выставил значение 100u для времени просмотра, после чего получил то, что на картинке http://файлообменник.рф/vomt8alb3iqn.html. |
Programming Эксперт 94731 / 64177 / 26122 Регистрация: 12.04.2006 Сообщений: 116,782 |
26.02.2016, 20:58 |
Ответы с готовыми решениями: MICRO-CAP. Схема счетчика с последовательным переносом Схема УЗЧ в Micro-CAP Micro-Cap Micro-Cap Micro-Cap 8 3 |
0 / 0 / 0 Регистрация: 07.02.2106 Сообщений: 3,113 |
|
26.02.2016, 21:34 |
2 |
Не выкладывайте картинки на порнообменники. По схеме.
0 |
SOO |
|
26.02.2016, 23:08 |
3 |
Попробывал сделать как вы написали, в случае с импульсным источником питания колебания идут, НО частота колебаний не совпадает с рассчитанными мягко говоря(T=1us получается при рассчитанной 56us) в случае если убираю C3 и делитель напряжения получается пила, НО амплитуда колебаний измеряется в фемто вольтах, что тоже не есть гуд. |
0 / 0 / 0 Регистрация: 07.02.2106 Сообщений: 3,113 |
|
26.02.2016, 23:12 |
4 |
При С1=С2=15p и L=15u получается период 110ns. Симуляция была на транзисторе BC846B. (PSPICE)
0 |
-
#13
bricolo, c’est pour quel soft que tu cherchais cette lib de 2SK216 ?
je cherche le 2SJ79 et 2SK216 pour B2 SPICE
MERCI
-
#15
y a plusieur model donné ici …. tu as utilisé le quel ?
-
#17
Bricolo
Send me an email and I will foward my library of voltage regulator models which includes models for the LM317 from Nat Semi, Motorola and TI. I use these in SIMetrix Intro which requires Spice 2 or PSpice format so you may have more luck with getting them to work.
Geoff
-
#19
Bricolo
As I said, email me if you want the three LM317 models (plus others).
Have you searched for the TL431 model? It is/was available at TI’s website:
*****************************************************************************
* TL431 MACROMODEL ***************3-26-92************************************
* REV N/A ****************************************************************DBB
*****************************************************************************
* REFERENCE
* | ANODE
* | | CATHODE
* | | |
.SUBCKT TL431 1 2 3
V1 6 7 DC 1.4V
I1 2 4 1E-3
R1 1 2 1.2E6
R2 4 2 RMOD 2.495E3
R3 5 7 .2
D1 3 6 DMOD1
D2 2 3 DMOD1
D3 2 7 DMOD2
E1 5 2 POLY(2) (4,2) (1,2) 0 710 -710
.MODEL RMOD RES (TC1=1.4E-5 TC2=-1E-6)
.MODEL DMOD1 D (RS=.3)
.MODEL DMOD2 D (RS=1E-6)
.ENDS
Geoff
LithiumOverdosE
Senior Member Posts: 341 Thank You |
For most things related to simulation I find Proteus more than adequate. So far, I haven’t had any problems importing manufacturers models into MC. However, this time around I’m stuck with two models that make MC throw error when trying to use them. My guess is that the problems are related to some aspect of Spice/PSpice syntax so perhaps someone 1. The first model is small NE-2 gas discharge bulb. I have found surprisingly small number of articles on topic of NE-2 simulation but one particular model is more or less * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * It looks like PSpice syntax and MC should be able to run it but when the sim starts I get following errors: Warning: Part names have been changed. following with Error: Missing Nodes. To me it seems as if MC doesn’t like assigning value to a Rpar for some reason but at this point I’m at loss on how to proceed further. 2. The second model are ordinary cheap MOSFET driver TC4429 which is successfully modelled in Proteus but not in MC. .SUBCKT TC4429 1 2 3 4 However, resistors TC syntax seems to be bothersome for MC. Error: Missing model statement ‘TC’. I have tried putting TC values into square brackets as suggested in MC manual but with no luck. Of course, the simplest solution would be to try models in PSpice but for some reason I have problem running it on the laptop Regrettably there seem to be limited resources on the net pertaining to peculiarities of MC so perhaps some of you have have some useful ideas. |
||
|
optikon
Cracking Team Posts: 837 Thank You |
Have you narrowed down which particular lines are causing trouble? When you remove certain lines or commands, the model wont run but does it eliminate the errors? Once the errors are eliminated, we can re-write the problematic line using MC friendly syntax. |
||
I can explain this to you. I can’t comprehend it for you. |
LithiumOverdosE
Senior Member Posts: 341 Thank You |
Thx for the reply. 1. Sure, I’ve narrowed it down to two «Rpar=1;» and «Rpar={1/Ia**2};» statements in the NE-2H model. What caught my eye is that B sources are not mentioned in the MC manual. For the current source, a parallel resistance may be specified with the Rpar instance parameter. I found that capacitor models in LTspice also have «Rpar» parameter which defines parallel resistance. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * .SUBCKT NE-2H A1 A2 PARAMS: Vs=130 Ii=50u Ti=1m Vh=80 Rh=1k Ia=4m What perplexes me is that it seems that MC accepts LTspice’s B source «I» parameter but not «Rpar» and what So, the first problem is solved. |
||
|
optikon
Cracking Team Posts: 837 Thank You |
In MC, NFV or NFI seem to be the behavioral voltage and current sources. I am unsure which one follows the SPICE syntax more closely but yeah, clearly a difference. |
||
I can explain this to you. I can’t comprehend it for you. |
LithiumOverdosE
Senior Member Posts: 341 Thank You |
Indeed, but why is B source partially accepted by MC but not documented? 2. Back to TC4429 model problem. First of all it seems that TC temperature parameter of few resistors is not in the form acceptable to MC. Example: *R21 0 11 1 TC .3m 1.4u Considering that MCHP explicitly says those are PSpice models I start to wonder to which extent MC is truly PSpice compatible. So, that solved the problem with the resistors TC parameters. Then MC threw error regarding extra parenthesis in the G source tables. That was quickly fixed and the model is suppose to be running. Here is the corrected model: * * However, although MC doesn’t report any errors regarding the model, now I get singular matrix error. |
||
|
LithiumOverdosE
Senior Member Posts: 341 Thank You |
I have just noticed that the MC syntax for TABLE is differs from PSpice as well. So, the corrected model is here: .SUBCKT TC4429 1 2 3 4 However «Matrix is singular» error persists. |
||
|
optikon
Cracking Team Posts: 837 Thank You |
Ive seen singular matrix errors before with Tables in G sources.. can you try commenting some of them out? BTW, what characteristics are important for your driver model? The model seems rather complex (perhaps necessarily so) Ive found that the tricky / important stuff for MOSFET drivers tends to not match very well in real world.. but YMMV of course. |
||
I can explain this to you. I can’t comprehend it for you. |
LithiumOverdosE
Senior Member Posts: 341 Thank You |
Actually, I have just removed the model from the test schematic, saved schematic and then added model back. Strange occurrences indeed. |
||
|
2N5109
Junior Member Posts: 67 Thank You |
For what its worth here is LTSPICE’s NE-2 model: .subckt neonbulb 1 2 To run this you probably need this info from LTSPICE help file: S Voltage Controlled Switch Syntax: Sxxx n1 n2 nc+ nc- <model> [on,off] Example: S1 out 0 in 0 MySwitch The voltage between nodes nc+ and nc- controls the switch’s impedance between nodes n1 and n2. A model card is required to define the behavior of the switch. Voltage Controlled Switch Model Parameters: Name Description Units Default —2N5109 |
||
|