Как считать числа с ошибкой

Стандартная ошибка появляется при прогнозировании каких-либо данных или арифметических вычислениях, поэтому важно научиться находить этот параметр. В этой публикации разбираем, как найти и исправить стандартную ошибку путем использования инструментов Excel.

Расчет средней арифметической ошибки

В Microsoft Excel цельность и однородность выборки определяется при помощи стандартной ошибки. Стандартная ошибка — это квадратный корень из дисперсии. В приложении предусмотрено два варианта поиска стандартной ошибки: при помощи пакетного анализа и расширенных функций программы.
Чтобы найти значение средней арифметической, необходимо выполнить деление суммарной величины выборки на ее количество в электронной книге.

Расчет стандартной ошибки при помощи встроенных функций

Для того, чтобы правильно вычислять, необходимо изучить пошаговую инструкцию. В этом способе подбор результатов будет осуществляться с помощью комбинированных манипуляций.

  1. Для расчетов будем использовать таблицу с выборкой чисел. Кликаем на любой пустой ячейке на листе, где будет отображаться результат. Затем нажимаем кнопку «Вставить функцию.

№ 14.png

  1. Далее перед вами открывается диалоговое окно, в котором необходимо использовать «СТАНДОТКЛ.В», для этого в поле «Категория» необходимо выбрать «Полный алфавитный перечень». Затем нажмите кнопку «ОК».

№ 15.png

  1. В окне «Аргументы функции» кликаем в первом поле «Число 1», затем выполняем выделение мышью диапазона ячеек со значениями таблицы и нажимаем кнопку «ОК».

№ 16.png

  1. Далее активируем ячейку с нашими значениями, переходим в строку формулы и ставим после значений наклонную линию. Переходим в поле наименования, кликаем на указывающий вниз флажок, где из списка выбираем «Другие функции».

№ 17.png

  1. Снова активируется окно с перечнем функций, в котором необходимо выбрать категорию «Математические», затем функцию «Корень». Далее нажмите кнопку «ОК».

№ 18.png

  1. Далее открывается окно, в котором необходимо заполнить поле с числом. Для этого переходим в поле «Имя», где спускаемся к пункту «Счет». Если его нет, ищите в дополнительных функциях.

№ 19.png

После выполнения этих шагов, стандартная ошибка высчитывается автоматически, пользователю остается только сверить их и проверить значение на некорректное отображение.

Важно!

Для малых и стандартных выборок необходимо использовать разные формулы. В первом случае (если находится до 30 значений), ее необходимо видоизменить.

Решение задачи с помощью опции «Описательная статистика»

Благодаря опции «Описательная статистика» удается выполнить вычисление по различным критериям. По этим правилам удается найти среднюю арифметическую ошибку. Для использования данного метода предварительно нужно запустить «Пакет анализа».

  1. Переходим во вкладку «Файл», где перемещаемся в пункт «Параметры». Далее нажимаем на запись «Надстройки».

№ 20.png

  1. Открывается окошко, в нем в графе «Управление» должно быть прописано «Надстройки Excel», затем рядом нажимаем кнопку «Параметры».

№ 21.png

  1. В появившемся окне находим «Пакет анализа» и нажимаем кнопку «ОК».

№ 22.png

  1. Далее выбираем любую свободную ячейку, переходим во вкладку «Данные» и нажимаем «Анализ данных» в блоке «Анализ».

№ 23.png

  1. Происходит запуск вспомогательного окошка, в котором необходимо выбрать из всех инструментов «Описательную статистику» и нажать кнопку «ОК».

№ 24.png

  1. Открывается новый мастер значений. Здесь нужно вводить данные предельно внимательно. В поле «Входной интервал» вносим адрес диапазона ячеек с выборкой. Затем указываем параметр «Группирование» «По столбцам». Затем выбираем место для «выходного интервала», его должно быть столько же, сколько и «входного». Ставим галочку напротив «Итоговая статистика» и нажимаем кнопку «ОК».

№ 25.png

В результате вычислений вы получаете небольшую таблицу, в которой указаны все данные с определенной стандартной ошибкой.

Условное
обозначение средней арифметической
величины через М (от латинского слова
Media) чаще применяется в медицинских и
педагогических исследованиях. В
математической статистике предпочитают
обозначение через .
Средняя арифметическая величина является
производной, обобщающей количественные
признаки ряда однородных показателей
(совокупности). Выражая одним числом
определенную совокупность, она как бы
ослабляет влияние случайных индивидуальных
отклонений, и акцентирует некую обобщенную
количественную характеристику, наиболее
типичное свойство изучаемого ряда
показателей.

Определяя
значение средней арифметической
величины, следует придерживаться
некоторых правил.

1.  
Средняя арифметическая величина может
характеризовать только те признаки
изучаемого объекта, которые присущи
всей совокупности, но в разной
количественной мере (например, уровень
развития быстроты движений характерен
для каждого человека, хотя и в разной
количественной мере). Средняя арифметическая
величина не может характеризовать
количественную меру тех признаков,
которые одной части совокупности
присущи, а другой нет, т. е. она не может
отражать присутствие или отсутствие
того или иного признака (например, умение
или неумение выполнять то или иное
двигательное действие).

2.  
Средняя арифметическая величина должна
включать все показатели, полученные в
данном исследовании. Произвольное
исключение даже некоторых из них
неизбежно приведет к искажению конечного
результата.

3.  
Средняя арифметическая величина обязана
отражать только однородную совокупность.
Нельзя, например, определять средний
уровень физического развития школьников,
не разделив их предварительно по возрасту
и полу.

4.  
Средняя арифметическая величина должна
вычисляться на достаточно большой
совокупности, размеры которой определяются
в каждом конкретном случае отдельно
(см. «Подбор исследуемых»).

5.  
Необходимо стремиться к тому, чтобы
средняя арифметическая величина имела
четкие и простые свойства, позволяющие
легко и быстро ее вычислять.

6.  
Средняя арифметическая величина должна
обладать достаточной устойчивостью к
действию случайных факторов. Только в
этом случае она будет отражать
действительное состояние изучаемого
явления, а не его случайные изменения.

7.  
Точность вычисления средней арифметической
величины должна соответствовать
содержанию изучаемого педагогического
явления. В некоторых случаях нет
необходимости в расчетах с большой
точностью, в других — большая точность
нужна при вычислениях, но совершенно
не нужна в выводах. Например, при расчете
средних величин числа подтягиваний на
перекладине можно пользоваться и сотыми
долями целого, но представлять и выводах,
что исследуемые в среднем подтянулись
7,83 раза, было бы неграмотна, так как
невозможно измерение с подобной
точностью. В этом случае необходимо в
выводах представлять числа, округленные
до целых единиц.

В
простейшем случае этот показатель
вычисляется путем сложения всех
полученных значений (которые называются
вариантами) и деления суммы на число
вариант:

где
   S — знак суммирования;

V
— полученные в исследовании значения
(варианты);

п
— число вариант.

По
этой формуле вычисляется так называемая
простая средняя арифметическая величина.
Применяется она в тех случаях, когда
имеется небольшое число вариант.

При
большом числе вариант прибегают к
вычислению так называемой взвешенной
средней арифметической величины. С этой
целью строят ряд распределения, или
вариационный ряд, который представляет
собой ряд вариант и их частот,
характеризующих какой-нибудь признак
в убывающем или возрастающем порядке.
Например, в нашем случае измерение
точности попадания мячом в цель дало
125 вариант, т. е. в группе I, где применялась
методика обучения «А», одноразово
исследовалось 125 детей с числовым
выражением от 0 (точное попадание в цель)
до 21,5 см (максимальное отклонение от
цели). Каждое числовое выражение
встречалось в исследовании один и более
раз, например «0» встретился 28 раз.
Другими словами, 28 участников эксперимента
точно попали в цель. Этот показатель
называется числом наблюдений или
частотой вариант и условно обозначается
буквой «Р» (число наблюдений составляет
часть числа вариант).

Для
упрощения числовых операций все 125
вариант разбиваются на классы с величиной
интервала 1,9 см. Число классов зависит
от величины колебаний вариант (разности
между максимальной и минимальной
вариантами), наличия вариант для каждого
класса (если, например, для первого
класса — «0 — 1,9» — нет соответствующих
вариант, т.е. ни один исследуемый не имел
точных попаданий или отклонений от цели
в пределах от 0 до 1,9 см, то подобный класс
не вносится в вариационный ряд) и,
наконец, требуемой точности вычисления,
(чем больше классов, тем точность
вычисления выше). Вполне понятно, что
чем больше величина интервала, тем
меньше число классов при одной и той же
величине колебаний вариант.

После
разбивки вариант по классам в каждом
классе определяется срединная варианта
«Vc»,
и для каждой срединной варианты
проставляется число наблюдений. Пример
этих операций, и дальнейший ход вычислений
приведены в следующей таблице:

Классы

Серединные
варианты VC

Число
набл, р

VCP

VC-M=d

d2

d2P

0
– 1.9

1

28

28

-4.6

21.16

592.48

2
– 3.9

3

29

87

-2.6

6.76

196.04

4
– 5.9

5

22

110

-0.6

0.36

7.92

6
– 7.9

7

13

91

1.4

1.96

25.48

8
– 9.9

9

11

99

3.4

11.56

127.16

10
– 11.9

11

13

143

5.4

29.16

379.08

12
– 13.9

13

4

52

7.4

54.76

219.04

14
– 15.9

15

2

30

9.4

88.36

176.72

16
– 17.9

17

1

17

11.4

130.00

130.00

18
– 19.9

19

1

19

13.4

179.60

179.60

20
– 21.9

21

1

21

15.4

237.20

237.20

125

697

2270.72

Очередность
числовых операций:

1)  
вычислить сумму числа наблюдений (в
нашем примере она равна 125);

2)  
вычислить произведение каждой срединной
варианты на ее частоту (например, 1*28 =
28);

3)  
вычислить сумму произведений срединных
вариант на их частоты (в нашем примере
она равна 697);

4)  
вычислить взвешенную среднюю арифметическую
величину по формуле:

Средняя
арифметическая величина позволяет
сравнивать и оценивать группы изучаемых
явлений в целом. Однако для характеристики
группы явлений только этой величины
явно недостаточно, так как размер
колебаний вариант, из которых она
складывается, может быть различным.
Поэтому в характеристику группы явлений
необходимо ввести такой показатель,
который давал бы представление о величине
колебаний вариант около их средней
величины.

Вычисление
средней ошибки среднего арифметического
.
Условное обозначение средней ошибки
среднего арифметического — т. Следует
помнить, что под «ошибкой» в статистике
понимается не ошибка исследования, а
мера представительства данной величины,
т. е. мера, которой средняя арифметическая
величина, полученная на выборочной
совокупности (в нашем примере — на 125
детях), отличается от истинной средней
арифметической величины, которая была
бы получена на генеральной совокупности
(в нашем примере это были бы все дети
аналогичного возраста, уровня
подготовленности и т. д.). Например, в
приведенном ранее примере определялась
точность попадания малым мячом в цель
у 125 детей и была получена средняя
арифметическая величина примерно равная
5,6 см. Теперь надо установить, в какой
мере эта величина будет характерна,
если взять для исследования 200, 300, 500 и
больше аналогичных детей. Ответ на этот
вопрос и даст вычисление средней ошибки
среднего арифметического, которое
производится по формуле:

Для
приведенного примера величина средней
ошибки среднего арифметического будет
равна:

Следовательно,
M±m = 5,6±0,38. Это означает, что полученная
средняя арифметическая величина (M =
5,6) может иметь в других аналогичных
исследованиях значения от 5,22 (5,6 — 0,38 =
5,22) до 5,98 (5,6+0,38 = 5,98).

Соседние файлы в предмете Ветеринарная генетика

  • #
  • #
  • #

Как в Экселе посчитать сумму, если в некоторых ячейках содержатся ошибки?

Как в Excel при вычислении суммы игнорировать ошибки в ячейках диапазона?

Чтобы игнорировать ячейки ошибки при расчете суммы диапазона, потребуется все ячейки с ошибками рассматривать как ячейки с нулевым значением.

Это делается с использованием формулы массива (Что такое формула массива в Excel? ), которая заменяет каждое ошибочное значение на ноль.

Например так:

=СУММ( ЕСЛИОШИБКА( A1:A100 ; 0))

A1:A100 диапазон суммирования ячеек

Ввод формулы массива осуществляется нажатием комбинации клавиш Ctrl+Shift+Enter

vdtes­t
[29.8K]

3 года назад 

В Эксель при вычислении суммы можно считать только ячейки содержащие число, а остальные считать со значением 0; это достигается использованием следующей формулы массива:

диапазона ячеек A1:A20 формула выглядит так:

=СУММ( ЕСЛИ( ЕЧИСЛО( A1:A20); A1:A20; 0))

подробнее о формулах массива

Знаете ответ?


Загрузить PDF


Загрузить PDF

Стандартной ошибкой называется величина, которая характеризует стандартное (среднеквадратическое) отклонение выборочного среднего. Другими словами, эту величину можно использовать для оценки точности выборочного среднего. Множество областей применения стандартной ошибки по умолчанию предполагают нормальное распределение. Если вам нужно рассчитать стандартную ошибку, перейдите к шагу 1.

  1. Изображение с названием Calculate Standard Error Step 1

    1

    Запомните определение среднеквадратического отклонения. Среднеквадратическое отклонение выборки – это мера рассеянности значения. Среднеквадратическое отклонение выборки обычно обозначается буквой s. Математическая формула среднеквадратического отклонения приведена выше.

  2. Изображение с названием Calculate Standard Error Step 2

    2

    Узнайте, что такое истинное среднее значение. Истинное среднее является средним группы чисел, включающим все числа всей группы – другими словами, это среднее всей группы чисел, а не выборки.

  3. Изображение с названием Calculate Standard Error Step 3

    3

    Научитесь рассчитывать среднеарифметическое значение. Среднеаримфетическое означает попросту среднее: сумму значений собранных данных, разделенную на количество значений этих данных.

  4. Изображение с названием Calculate Standard Error Step 4

    4

    Узнайте, что такое выборочное среднее. Когда среднеарифметическое значение основано на серии наблюдений, полученных в результате выборок из статистической совокупности, оно называется “выборочным средним”. Это среднее выборки чисел, которое описывает среднее значение лишь части чисел из всей группы. Его обозначают как:

  5. Изображение с названием Calculate Standard Error Step 5

    5

    Усвойте понятие нормального распределения. Нормальные распределения, которые используются чаще других распределений, являются симметричными, с единичным максимумом в центре – на среднем значении данных. Форма кривой подобна очертаниям колокола, при этом график равномерно опускается по обе стороны от среднего. Пятьдесят процентов распределения лежит слева от среднего, а другие пятьдесят процентов – справа от него. Рассеянность значений нормального распределения описывается стандартным отклонением.

  6. Изображение с названием Calculate Standard Error Step 6

    6

    Запомните основную формулу. Формула для вычисления стандартной ошибки приведена выше.

    Реклама

  1. Изображение с названием Calculate Standard Error Step 7

    1

    Рассчитайте выборочное среднее. Чтобы найти стандартную ошибку, сначала нужно определить среднеквадратическое отклонение (поскольку среднеквадратическое отклонение s входит в формулу для вычисления стандартной ошибки). Начните с нахождения средних значений. Выборочное среднее выражается как среднее арифметическое измерений x1, x2, . . . , xn. Его рассчитывают по формуле, приведенной выше.

    • Допустим, например, что вам нужно рассчитать стандартную ошибку выборочного среднего результатов измерения массы пяти монет, указанных в таблице:
      Вы сможете рассчитать выборочное среднее, подставив значения массы в формулу:
  2. Изображение с названием Calculate Standard Error Step 8

    2

    Вычтите выборочное среднее из каждого измерения и возведите полученное значение в квадрат. Как только вы получите выборочное среднее, вы можете расширить вашу таблицу, вычтя его из каждого измерения и возведя результат в квадрат.

    • Для нашего примера расширенная таблица будет иметь следующий вид:
  3. Изображение с названием Calculate Standard Error Step 9

    3

    Найдите суммарное отклонение ваших измерений от выборочного среднего. Общее отклонение – это сумма возведенных в квадрат разностей от выборочного среднего. Чтобы определить его, сложите ваши новые значения.

    • В нашем примере нужно будет выполнить следующий расчет:
      Это уравнение дает сумму квадратов отклонений измерений от выборочного среднего.
  4. Изображение с названием Calculate Standard Error Step 10

    4

    Рассчитайте среднеквадратическое отклонение ваших измерений от выборочного среднего. Как только вы будете знать суммарное отклонение, вы сможете найти среднее отклонение, разделив ответ на n -1. Обратите внимание, что n равно числу измерений.

    • В нашем примере было сделано 5 измерений, следовательно n – 1 будет равно 4. Расчет нужно вести следующим образом:
  5. Изображение с названием Calculate Standard Error Step 11

    5

    Найдите среднеквадратичное отклонение. Сейчас у вас есть все необходимые значения для того, чтобы воспользоваться формулой для нахождения среднеквадратичного отклонения s.

    • В нашем примере вы будете рассчитывать среднеквадратичное отклонение следующим образом:
      Следовательно, среднеквадратичное отклонение равно 0,0071624.

    Реклама

  1. Изображение с названием Calculate Standard Error Step 12

    1

    Чтобы вычислить стандартную ошибку, воспользуйтесь базовой формулой со среднеквадратическим отклонением.

    • В нашем примере вы сможете рассчитать стандартную ошибку следующим образом:
      Таким образом в нашем примере стандартная ошибка (среднеквадратическое отклонение выборочного среднего) составляет 0,0032031 грамма.

Советы

  • Стандартную ошибку и среднеквадратическое отклонение часто путают. Обратите внимание, что стандартная ошибка описывает среднеквадратическое отклонение выборочного распределения статистических данных, а не распределения отдельных значений
  • В научных журналах понятия стандартной ошибки и среднеквадратического отклонения несколько размыты. Для объединения двух величин используется знак ±.

Реклама

Об этой статье

Эту страницу просматривали 49 566 раз.

Была ли эта статья полезной?

Как рассчитать процент ошибки

На чтение 4 мин. Просмотров 1.9k. Опубликовано 05.06.2021

Ошибка в процентах или ошибка в процентах выражает в процентах разницу между приблизительным или измеренным значением и точным или известным значением. Он используется в науке для сообщения о разнице между измеренным или экспериментальным значением и истинным или точным значением. Вот как вычислить процентную ошибку с примером вычисления.

Содержание

  1. Ключевые моменты: процентная ошибка
  2. Формула процентной ошибки
  3. Шаги вычисления процентной ошибки
  4. Пример вычисления процента ошибки
  5. Процент Ошибка в сравнении с абсолютной и относительной ошибкой
  6. Источники

Ключевые моменты: процентная ошибка

  • Цель вычисления процентной ошибки – определить, насколько близко измеренное значение к истинному значению.
  • Ошибка в процентах (ошибка в процентах) – это разница между экспериментальное и теоретическое значение, разделенное на теоретическое значение, умноженное на 100, чтобы получить процент.
  • В некоторых полях процентная погрешность всегда выражается как положительное число. В других случаях правильно иметь либо положительное, либо отрицательное значение. Знак может быть сохранен, чтобы определить, постоянно ли записанные значения оказываются выше или ниже ожидаемых значений.
  • Ошибка в процентах – это один из типов вычисления ошибок. Абсолютная и относительная погрешности – два других общих вычисления. Процентная ошибка является частью комплексного анализа ошибок.
  • Ключом к правильному сообщению процентной ошибки является знание того, следует ли опускать знак (положительный или отрицательный) при вычислении, и сообщать значение, используя правильное количество значащих цифр.

Формула процентной ошибки

Процентная ошибка – это разница между измеренным или экспериментальным значение и принятое или известное значение, разделенное на известное значение, умноженное на 100%.

Для многих приложений процентная ошибка всегда выражается как положительное значение . Абсолютное значение ошибки делится на допустимое значение и выражается в процентах.

| принятое значение – экспериментальное значение | принятое значение x 100%

Для химии и других наук принято оставлять отрицательное значение, если оно произойдет. Важно, является ли ошибка положительной или отрицательной. Например, вы не ожидаете получить положительную процентную ошибку при сравнении фактического выхода с теоретическим в химической реакции. Если было вычислено положительное значение, это дало бы подсказку относительно потенциальных проблем с процедурой или неучтенных реакций.

При сохранении знака ошибки вычисление будет экспериментальное или измеренное значение минус известное или теоретическое значение, разделенное на теоретическое значение и умноженное на 100%.

ошибка в процентах = [ экспериментальное значение – теоретическое значение]/теоретическое значение x 100%

Шаги вычисления процентной ошибки

  1. Вычтите одно значение из другого. Порядок не имеет значения, если вы опускаете знак (беря абсолютное значение. Вычтите теоретическое значение из экспериментального значения, если вы сохраняете отрицательные знаки. Это значение является вашей «ошибкой».
  2. Разделить погрешность точным или идеальным значением (не вашим экспериментальным или измеренным значением). В результате будет получено десятичное число.
  3. Преобразуйте десятичное число в процент, умножив его на 100.
  4. Добавьте символ процента или%, чтобы сообщить значение процентной ошибки. .

Пример вычисления процента ошибки

В лаборатории вам дают блок алюминия. Вы измеряете размеры блока и его объем в емкости с водой известного объема. Вы рассчитываете, что плотность алюминиевого блока составляет 2,68 г/см 3 . Вы проверяете плотность алюминиевого блока при комнатной температуре и обнаруживаете, что она составляет 2,70 г/см 3 . Вычислите процентную ошибку вашего измерения.

  1. Вычтите одно значение из другого:
    2,68 – 2,70 = -0,02
  2. В зависимости от того, что вам нужно, вы можете отбросить любой отрицательный знак (взять абсолютное значение): 0,02
    Это ошибка.
  3. Разделите ошибку на истинное значение: 0,02/2,70 = 0,0074074
  4. Умножьте это значение на 100%, чтобы получить процентную ошибку:
    0,0074074 x 100% = 0,74% (выражается с использованием 2 значащих цифр) .
    В науке важны значительные цифры. Если вы сообщите об ответе, используя слишком много или слишком мало ответов, это может быть сочтено неправильным, даже если вы правильно настроили проблему.

Процент Ошибка в сравнении с абсолютной и относительной ошибкой

Ошибка в процентах связана с абсолютной ошибкой и относительной ошибкой. Разница между экспериментальным и известным значением – это абсолютная ошибка. Когда вы разделите это число на известное значение, вы получите относительную ошибку. Ошибка в процентах – это относительная ошибка, умноженная на 100%. Во всех случаях сообщайте значения, используя соответствующее количество значащих цифр.

Источники

  • Беннет, Джеффри; Бриггс, Уильям (2005), Использование и понимание математики: подход количественного мышления (3-е изд.), Boston: Pearson.
  • Торнквист, Лео; Вартия, Пентти; Вартия, Юрьё (1985), «Как следует измерять относительные изменения?», Американский статистик , 39 (1): 43–46.

Понравилась статья? Поделить с друзьями:
  • Как считать стандартную ошибку в экселе
  • Как считать стандартную ошибку в excel
  • Как считать средняя ошибка аппроксимации
  • Как считать средняя арифметическая ошибка
  • Как считать среднюю ошибку средней арифметической