Как определяется величина систематической ошибки

При прямых измеренияхзначение
измеряемой величины отсчитывается
непосредственно по шкале измерительного
прибора. Ошибка в отсчете может достигать
нескольких десятых долей деления шкалы.
Обычно при таких измерениях величину
систематической погрешности считают
равной половине цены деления шкалы
измерительного прибора. Например, при
измерении штангенциркулем с ценой
деления 0,05 мм величина приборной
погрешности измерения принимают равной
0,025 мм.

Цифровые измерительные приборы дают
значение измеряемых ими величин с
погрешностью, равной значению одной
единицы последнего разряда на шкале
прибора. Так, если цифровой вольтметр
показывает значение20,45 мВ, то абсолютная
погрешность при измерении равна
мВ.

Систематические погрешности возникают
и при использовании постоянных величин,
определяемых из таблиц. В подобных
случаях погрешность принимается равной
половине последнего значащего разряда.
Например, если в таблице значение
плотности стали дается величиной, равной
7,9∙103кг/м3, то абсолютная
погрешность в этом случае равнакг/м3.

Некоторые особенности в расчете приборных
погрешностей электроизмерительных
приборов будут рассмотрены ниже.

При определении систематической
(приборной) погрешности косвенных
измерений
функциональной величиныиспользуется
формула

,
(1)

где
— приборные ошибки прямых измерений
величины,
частные производные функции по переменной.

В качестве примера, получим формулу для
расчета систематической погрешности
при измерении объема цилиндра. Формула
вычисления объема цилиндра имеет вид

.

Частные производные по переменным d
и hбудут равны

,.

Таким образом, формула для определения
абсолютной систематической погрешности
при измерении объема цилиндра в
соответствии с (2. ..) имеет следующий вид

,

где
иприборные
ошибки при измерении диаметра и высоты
цилиндра

3. Оценка случайной погрешности. Доверительный интервал и доверительная вероятность

Д

Рис. 1

ля подавляющего большинства простых
измерений достаточно хорошо выполняется
так называемый нормальный закон случайных
погрешностей (закон Гаусса), выведенный
из следующих эмпирических положений.

  1. погрешности измерений могут принимать
    непрерывный ряд значений;

  2. при большом числе измерений погрешности
    одинаковой величины, но разного знака
    встречаются одинаково часто,

  3. чем больше величина случайной погрешности,
    тем меньше вероятность ее появления.

График нормального закона распределения
Гаусса представлен на рис.1. Уравнение
кривой имеет вид

,
(2)

где
— функция распределения случайных ошибок
(погрешностей), характеризующая
вероятность появления ошибки,σ– средняя
квадратичная ошибка.

Величина σне
является случайной величиной и
характеризует процесс измерений. Если
условия измерений не изменяются, то σ
остается постоянной величиной. Квадрат
этой величины называютдисперсией
измерений.
Чем меньше дисперсия, тем
меньше разброс отдельных значений и
тем выше точность измерений.

Точное значение средней квадратичной
ошибки σ, как
и истинное значение измеряемой величины,
неизвестно. Существует так называемая
статистическая оценка этого параметра,
в соответствии с которой средняя
квадратичная ошибка равняется средней
квадратичной ошибке среднего
арифметического.
Величина которой определяется по формуле

,
(3)

где
— результатi-го
измерения;
среднее арифметическое полученных
значений;n – число
измерений.

Чем больше число измерений, тем меньше
и тем больше оно приближается кσ.
Если истинное значение измеряемой
величины μ, ее среднее арифметическое
значение, полученное в результате
измерений ,
а случайная абсолютная погрешность,
то результат измерений запишется в виде.

Интервал значений от
до,
в который попадает истинное значение
измеряемой величины μ, называетсядоверительным интервалом.Посколькуявляется случайной величиной, то истинное
значение попадает в доверительный
интервал с вероятностью α, которая
называетсядоверительной вероятностью,илинадежностью измерений. Эта
величина численно равна площади
заштрихованной криволинейной трапеции.
(см. рис.)

Все это справедливо для достаточно
большого числа измерений, когда
близка к σ. Для отыскания доверительного
интервала и доверительной вероятности
при небольшом числе измерений, с которым
мы имеем дело в ходе выполнения
лабораторных работ, используетсяраспределение вероятностей Стьюдента.
Это распределение вероятностей
случайной величины,
называемойкоэффициентом Стьюдента,
дает значение доверительного интервалав долях средней квадратичной ошибки
среднего арифметического.

.

(4)

Распределение вероятностей этой величины
не зависит от σ2, а существенно
зависит от числа опытовn.С увеличением числа опытовnраспределение
Стьюдента стремится к распределению
Гаусса.

Функция распределения табулирована
(табл.1). Значение коэффициента Стьюдента
находится на пересечении строки,
соответствующей числу измерений n,
и столбца, соответствующего доверительной
вероятности α

Таблица 1.

n

α

n

α

0,8

0,9

0,95

0,98

0,8

0,9

0,95

0,98

3

1,9

2,9

4,3

7,0

6

1,5

2,0

2,6

3,4

4

1,6

2,4

3,2

4,5

7

1,4

1,9

2,4

3,1

5

1,5

2,1

2,8

3,7

8

1,4

1,9

2,4

3,9

Пользуясь данными таблицы, можно:

  1. определить доверительный интервал,
    задаваясь определенной вероятностью;

  2. выбрать доверительный интервал и
    определить доверительную вероятность.

При косвенных измерениях среднюю
квадратичную ошибку среднего
арифметического значения функции
вычисляют по формуле

.
(5)

Доверительный интервал и доверительная
вероятность определяются так же, как и
в случае прямых измерений.

Оценка суммарной погрешности измерений.
Запись окончательного результата.

Суммарную погрешность результата
измерений величины Х будем определять
как среднее квадратичное значение
систематической и случайной погрешностей

,
(6)

где δх – приборная погрешность, Δх
– случайная погрешность.

В качестве Х может быть как непосредственно,
так и косвенно измеряемая величина.

Окончательный результат измерений
рекомендуется представлять в следующем
виде

,
α=…, Е=…
(7)

Следует иметь в виду, что сами формулы
теории ошибок справедливы для большого
число измерений. Поэтому значение
случайной, а следовательно, и суммарной
погрешности определяется при малом nс большой ошибкой. При вычислении Δхпри числе измеренийрекомендуется
ограничиваться одной значащей цифрой,
если она больше 3 и двумя, если первая
значащая цифра меньше 3. Например, если
Δх= 0,042, то отбрасываем 2 и пишем
Δх=0,04, а если Δх=0,123, то пишем
Δх=0,12.

Число разрядов результата и суммарной
погрешности должно быть одинаковым.
Поэтому среднее арифметическое
погрешности должно быть одинаковым.
Поэтому среднее арифметическое
вычисляется вначале на один разряд
больше, чем измерение, а при записи
результата его значение уточняется до
числа разрядов суммарной ошибки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалом, прогрессивная технология — все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.

В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

1. Погрешности метода, или теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества -вообще.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекаюших процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и т.д.

2. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений.. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины — теории точности измерительных устройств.

3.   Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и т.д.

4. Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.

Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и

удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.

Способы обнаружения систематических погрешностей. Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например, Х1, Х2 и т.д.). Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,

Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого /-го наблюдения будем обозначать через 8., то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину 0, называемую систематической погрешностью неисправленного среднего арифметического. Действительно,

Если систематические погрешности постоянны, т.е. 0/ = 0, /=1,2, …, п, то неисправленные отклонения могут быть непосредственно использованы для оценки рассеивания ряда наблюдений. В противном случае необходимо предварительно исправить отдельные результаты измерений, введя в них так называемые поправки, равные систематическим погрешностям по величине и обратные им по знаку:

q = -Oi.

Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самого измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.

Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.

Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений. После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью.

Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения

где Р — измеряемое давление.

Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся погрешности:

•   определения поправок;

•   зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

•   связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы, и поправки на них не вводятся.

Систематические
погрешности не изменяются при увеличении
числа измерений, поскольку согласно
определению остаются постоянными или
изменяются по определенному закону в
процессе измерения. Систематические
погрешности могут быть выявлены на
основе теоретических оценок результатов,
путем сопоставления результатов,
полученных разными методами, на разных
приборах. Имеются возможности определить
систематические погрешности путем
тщательного исследования средства или
метода измерений путем построения
зависимости результатов от какого-либо
изменяющегося параметра, например
времени, климатических условий,
электромагнитных полей, напряжения
питания и т.д. В ряде случаев необходимо
выполнить большой объем исследовательской
работы для того, чтобы выявить условия,
создающие систематические погрешности
и, соответственно, представить либо
график, либо таблицу поправок, либо
определить аналитическую зависимость
систематической погрешности от
какого-либо параметра.

На
результат измерения влияют несколько
факторов, каждый из которых вызывает
свою систематическую погрешность. В
этом случае выявление аналитического
вида погрешности значительно усложняется,
приходится проводить трудоемкие
тщательные исследования, которые иногда
оканчиваются неудачей. Тем не менее,
необнаруженная систематическая
погрешность опаснее случайной, т.к.
последняя может быть минимизирована
соответствующей методикой измерения,
а систематическая невыявленная
погрешность исказит результат
непредсказуемо.

Особую
категорию систематических погрешностей
составляют измеренные с недостаточной
точностью фундаментальные и физические
константы, используемые в процессе
измерения. То же самое относится к
неточностям в стандартных справочных
данных, или к недостаточно точной
аттестации стандартных образцов.
Появление более точных справочных
данных требует пересчета результатов
всех измерений с их использованием, или
переградуировки шкал приборов. Например,
получение более точных данных о давлении
насыщающих паров индивидуальных веществ
может привести к необходимости
переградуировки термометров, манометров,
приборов для измерения концентраций и
т. д.

Уточнения
постоянной
Авогадро приводят к переградуировке
шкал всех приборов в физико-химических
измерениях. Новые исследования свойств
воды могут изменить результаты измерения
огромного числа приборов, т. к. на этих
постоянных строится температурная
шкала, шкала плотности, шкала вязкости.

Рассмотрим
группы систематических погрешностей,
отличающихся одна от другой причиной
возникновения. В основном различают
следующие группы:

  1. Инструментальные
    погрешности, связанные с несовершенством
    конструкции прибора, неправильностью
    технологии его изготовления.

  2. Погрешности
    внешних влияний. Особенно часто в
    измерительной практике приходится
    сталкиваться с влиянием климатических
    условий — температуры, давления,
    влажности. Кроме того, весьма
    распространенным источником такого
    рода погрешностей является влияние
    внешних электромагнитных полей и
    изменения в напряжении сети питания
    измерительных приборов.

  3. Погрешности
    метода измерения. Этот вид погрешности
    может быть связан как с неточностью
    знания свойства объекта измерения, так
    и с одинаковым влиянием разных факторов
    на датчик измерительного прибора. Сюда
    же можно отнести погрешности
    пробоподготовки в определении состава
    веществ и материалов.

  4. Субъективные
    погрешности, связанные либо с недостаточным
    вниманием, либо с невысокой квалификацией
    персонала, обслуживающего прибор.
    Особенно большое значение этот вид
    погрешности имеет при пользовании
    приборами с визуальным отсчетом. Большая
    часть промахов также может быть связана
    с субъективными погрешностями.

Инструментальная
погрешность

Инструментальная
погрешность — это составляющая погрешности,
зависящая от погрешности (класса
точности) средства измерения. Такие
погрешности могут быть выявлены либо
теоретически на основании механического,
электрического, теплового, оптического
расчета конструкции прибора, либо
опытным путем на основе контроля его
показаний по образцовым мерам, по
стандартным образцам, а также
компарированием показаний прибора с
аналогичными измерениями на других
приборах.

Инструментальные
погрешности, присущие конструкции
прибора, могут быть легко выявлены из
рассмотрения кинематической, электрической
или оптической схемы. Например, взвешивание
на весах с коромыслом обязательно
содержит погрешность, связанную с
неравенством длин коромысла от точек
подвеса чашек до средней точки опоры
коромысла. В электрических измерениях
на переменном токе обязательно будут
погрешности от сдвига фаз, который
появляется в любой электрической цепи.
В оптических приборах наиболее частыми
источниками систематической погрешности
являются аберрации оптических систем
и явления параллакса. Общим источником
погрешностей в большинстве приборов
является трение и связанные с ним наличие
люфтов, мертвого хода, свободного хода,
проскальзывания.

Способы
устранения или учета инструментальных
погрешностей достаточно хорошо известны
для каждого типа прибора. В метрологии
процедуры аттестации или испытаний
часто включают в себя исследования
инструментальных погрешностей. В ряде
случаев инструментальную погрешность
можно учесть и устранить за счет методики
измерений. Например, неравноплечесть
весов можно установить, поменяв местами
объект и гири. Аналогичные приемы
существуют практически во всех видах
измерения.

Инструментальные
погрешности, часто связанные с
несовершенством технологии изготовления
измерительного прибора. Особенно это
касается серийных приборов, выпускаемых
большими партиями. При сборке может
иметь место отличие в сигналах с датчиков,
отличие в установке шкал. Подвижные
части приборов могут собираться с разным
натягом, механические детали могут
иметь разные значения допусков и посадок
даже в пределах установленной нормы. В
оптических приборах огромное значение
имеет качество сборки или юстировка
оптической измерительной системы.
Современные оптические приборы могут
иметь десятки и сотни сборочных единиц,
а допуски при сборке составляют дол и
длины волны оптического излучения (λ =
0,4 — 0,7 мкм).

Методы
выявления таких погрешностей чаще всего
состоят в индивидуальной градуировке
измерительного прибора по образцовым
мерам или по образцовым приборам. В
современных приборах коррекция показаний
может быть выполнена не только
переградуировкой шкалы, но и коррекцией
электрического сигнала или компьютерной
обработкой результата. Естественно,
что во всех случаях коррекции должно
предшествовать исследование показаний
прибора.

Инструментальные
погрешности, связанные с износом или
старением средства измерения, имеют
определенные характерные особенности.
Процесс износа, как правило, проявляется
в погрешностях измерения постепенно.
Изменяются зазоры в сопрягаемых деталях,
соприкасающиеся поверхности покрываются
коррозией, изменяются упругости пружин
и т. д. Изменяется масса гирь, уменьшаются
размеры образцовых мер, изменяются
электрические и физико-химические
свойства узлов и деталей приборов, и
все это приводит к изменению показаний
приборов. Старение приборов — это, как
правило, следствие изменений структуры
материалов, из которых сделан прибор.
Изменяются не только механические
характеристики, но и электрические,
оптические, физико-химические. Стареют
металлы и сплавы, изменяя исходную
намагниченность, стареет оптика,
приобретая дополнительное светорассеяние
или центры окраски, стареют датчики
состава веществ. Последнее хорошо
известно тем, кто профессионально
работал с химреактивами, которые могут
сорбировать воду, реагировать с окружающей
средой и с примесями. Использование
химических веществ в измерительной
технике всегда необходимо с учетом
срока годности реактива.

Устранение
погрешностей приборов от старения или
износа, как правило, проводится по
результатам поверки, когда устанавливается
погрешность по истечении какого-либо
длительного времени хранения или
эксплуатации. В ряде случаев достаточно
почистить прибор, но иногда требуется
ремонт или перекалибровка шкалы.
Например, при появлении систематических
погрешностей во взвешивании на весах
удается вернуть им работоспособность
обычным техническим обслуживанием —
регулировкой и смазкой. При более
серьезном старении приходится
переполировывать трущиеся детали или
заменять сопрягаемые детали.

Особенно
важно выявить систематическую погрешность
у приборов, предназначенных для поверки
средств измерений — у образцовых приборов.
Как правило, на образцовых приборах
выполняется меньший объем работы, чем
на рабочих приборах, и по этой причине
систематический временной «уход»
показаний может не так наглядно
проявляться. Вместе с тем невыявленная
в образцовых приборах погрешность
передается другим приборам, которые по
данному образцовому прибору поверяются.

С
целью уменьшения влияния процессов
старения на измерительную технику в
ряде случаев прибегают к искусственному
старению наиболее ответственных узлов.
У оптических приборов — рефрактометров,
интерферометров, гониометров — старение
проявляется часто в том, что несущие
конструкции «ведет», т. е. они изменяют
форму, особенно в тех местах, где есть
сварка или обработка металла резанием.
Для того чтобы свести к минимуму влияние
такого старения, готовые узлы выдерживаются
какое-то время в жестких климатических
условиях или в специальных камерах, где
процесс старения можно ускорить, изменив
температуру, давление или влажность.

Отдельное
место в инструментальных погрешностях
занимает неправильная установка и
исходная регулировка средства измерения.
Многие приборы имеют встроенные указатели
уровня. Это значит, что перед измерением
нужно отгоризонтировать прибор. Причем,
такие требования предъявляются не
только к средствам измерений высокой
точности, но и к рутинным приборам
массового использования. Например,
неправильно установленные весы будут
систематически «обвешивать» покупателя,
на гониометре невозможно работать без
тщательного горизонтирования отсчетного
устройства. В приборах для измерения
магнитного поля весьма существенным
может оказаться ориентация его
относительно силовых линий поля Земли.
Озонометры нужно очень тщательно
ориентировать по Солнцу. Многие приборы
требуют установки по уровню или по
отвесу. Если двухплечие весы не установлены
горизонтально, нарушаются соотношения
длин между коромыслами. Если маятниковые
механизмы или грузопоршневые манометры
установлены не по отвесу, то показания
таких приборов будут сильно отличаться
от истинных.

Погрешности,
возникающие вследствие внешних влияний

Под
категорией
погрешностей,
возникающих вследствие внешних влияний,
обычно понимают изменение показаний
приборов под воздействием температуры,
влажности и давления. Тем не менее, это
лишь часть причин, приводящих к появлению
систематических погрешностей. Сюда же
следует отнести влияние вибраций,
постоянных и переменных ускорений,
влияние электромагнитного поля и
различных излучений: рентгеновского,
ультрафиолетового, ионизирующих
излучений, гамма-излучения. По мере
развития техники и науки появилась
возможность и необходимость проводить
измерения в нестандартных условиях,
например в Космосе или внутри подводной
лодки. Специфичность условий измерения
может доходить до высших категорий,
если ставить задачу измерения погодных
условий на Марсе или на Венере. Такие
же особенности могут иметь место в
реальных жизненно важных для нас
ситуациях. Если речь идет о контроле
параметров ядерного реактора, то условия,
в которых работает измерительный прибор,
могут значительно отличаться от
стандартных.

Влияние
температуры
— наиболее распространенный источник
погрешности при измерениях. Поскольку
от температуры зависит длина тел,
сопротивление проводников, объем
определенного количества газа, давление
насыщенного пара индивидуальных веществ,
то сигналы со всех видов датчиков, где
используются упомянутые физические
явления, будут изменяться с изменением
температуры. Существенно, что сигнал
сдатчика не только зависит от абсолютного
значения температуры, но от градиента
температуры в том месте, где расположен
датчик. Еще одна из причин появления
«температурной» систематической
погрешности — это изменение температуры
в процессе измерения. Указанные причины
существенны при косвенных измерениях,
т. е. в тех случаях, когда нет
необходимости измерять температуру
как физическую величину. Тем не менее
в собственно температурных измерениях
необходимо тщательно исследовать
показания приборов в различных
температурных интервалах. Например,
результаты измерения теплоемкости,
теплопроводности, теплотворной
способности топлива могут сильно
искажаться от различного рода температурных
воздействий.

Учитывая
большое влияние температуры на физические
свойства материалов и, соответственно,
на показания приборов, особое внимание
следует обращать на температурные
условия в тех комнатах, лабораториях и
зданиях, где проводятся градуировочнные
или поверочные работы. Здесь необходимо
тщательно следить за отсутствием
тепловых потоков, градиентов температуры,
однородностью температуры окружающей
среды и измерительного прибора. Для
того чтобы избежать влияния этих факторов
на измерения, приборы длительное время
выдерживают в термостатированном
помещении, прежде чем начинать какие-либо
работы. Для особо точных измерений
иногда используют дистанционные
манипуляторы, чтобы исключить тепловые
помехи, создаваемые операторами.

Для
большинства приборов при испытаниях
на право серийного выпуска программа
испытаний обязательно содержит
исследование показаний прибора (одного
или нескольких образцов) в зависимости
от температуры.

Влияние
магнитных или электрических полей
сказывается не только на средствах
измерения электромагнитных величин. В
зависимости от принципа действия прибора
наведенная ЭДС или токи Фуко могут
исказить показания любого датчика,
выходным сигналом которого служит
напряжение, ток, сопротивление или
электрическая емкость. Таких приборов
существует великое множество, особенно
в тех случаях, когда приборы имеют
цифровой выход. Аналогово-цифровые
преобразователи иногда начинают
регистрировать сигналы радиочастотных
или еще каких-либо электрических полей.
Очень часто электромагнитные помехи
попадают в прибор по сети питания.
Выяснить причины появления таких ложных
сигналов, научиться вводить поправки
в измерения при наличии электромагнитных
помех — это одна из важных проблем
метрологии и измерительной техники.

Особенно
важен рассматриваемый фактор появления
систематических погрешностей в больших
городах, где хорошо поставлена связь,
телевидение, радиовещание и т.п. Уровень
электромагнитного излучения бывает
настолько высоким, что, например, вблизи
мощного телецентра может загореться
низковольтная лампочка, если ее соединить
с проволочным контуром без источника
питания. Тот же эффект можно наблюдать
в зоне действия радиолокаторов вблизи
какого-либо аэропорта. О том, что этот
фактор может существенно влиять на
показания измерительных приборов,
свидетельствует тот факт, что буквально
за последние несколько лет появились
возможности уверенной радиотелефонной
связи, а также уверенного приема
спутникового телевидения. Это означает,
что уровень сигнала в окружающем нас
пространстве достаточно высок и легко
регистрируется соответствующей техникой.
Этот же сигнал будет накладываться на
сигналы, поступающие с датчиков
измерительных приборов.

Еще
один интересный случай появления
систематических погрешностей при
измерениях связан с измерительными
приборами на кораблях. Много лет назад
опытными мореплавателями было установлено,
что если корабль идет долгое время
курсом «норд» или «зюйд» некоторые
приборы начинают показывать неверные
результаты, т. е. приобретают какую-то
систематическую погрешность. Причина
этого была выяснена довольно точно:
корабль намагничивается от магнитного
поля Земли и при дальнейшем изменении
курса сохраняет остаточную намагниченность.
В наше время это хорошо исследованный
эффект. Во время мировой войны суда
специально размагничивали, чтобы
избежать срабатывания магнитных мин.
Сейчас в ряде стран, в том числе и у нас,
созданы корабли науки, которые либо
делаются из немагнитных материалов,
либо персонал тщательно следит за
намагниченностью корпуса. Такие суда
осуществляют дальнюю и космическую
связь, занимаются экологическими
измерениями, исследуют озоновый слой
Земли, исследуют прохождения радиоволн
и выполняют еще целый ряд необходимых
функций.

Влияние
второго климатического фактора — давления
— распространяется на несколько более
узкий круг измерений, чем температура,
но существует целый ряд очень важных
видов измерения, где данные об атмосферном
или внешнем давлении практически
определяют уровень точности измерений.
Так же, как в предыдущем случае, имеет
смысл отдельно рассматривать собственно
показания датчиков в других видах
измерения. Многие типы манометров по
сути своей являются дифференциальными,
т. е. измеряют разность давлений между
двумя различными точками какой-либо
системы. В этом случае любая погрешность
определения абсолютной величины давления
в той точке, относительно которой
измеряется давление, аддитивно
накладывается на результат измерения.

Влияние
давления на сигналы датчиков очень
существенны в рефрактометрии — измерении
показателя преломления — воздуха и
газов. Это относится собственно к
измерениям рефракции, а также к измерениям
с использованием соответствующих
датчиков, например при измерении
концентрации газов и газовых смесей.
От изменения давления меняется не только
показатель преломления газа, но и другие
характеристики, такие как диэлектрическая
постоянная. Соответственно, может
измениться сигнал с любого емкостного
датчика.

В
измерении массы информация о давлении
весьма существенна в связи с тем, что
при точных измерениях массы основной
вклад в систематическую погрешность
дает архимедова сила, выталкивающая
гирю. Силы Архимеда зависят от плотности
среды (плотности воздуха) и, следовательно,
непосредственно зависят от давления,
поскольку число молекул газа в единице
объема

(3.6)

где
n0
— постоянная, называемая числом Лошмита;
р — давление; Т — температура; a p0
и T0
— нормальные значения давления и
температуры.

(3.7)

В
метрологических справочниках всегда
можно найти данные о поправках, которые
необходимо ввести при взвешивании для
учета
силы
Архимеда. Нетрудно показать, что
выталкивающая сила, действующая на
гирю, выражается формулой

(3.8)

где
ρ — плотность воздуха; ρT
— плотность материала взвешиваемого
тела; mT
— масса тела. Масса взвешиваемого тела
будет равна:

(3.9)

где
ρГ
— плотность материала гири. Если плотность
воздуха считать много меньшей плотности
материалов тела и гири, то массу
взвешиваемого тела можно выразить через
действительную массу гири плюс некоторая
поправка на силу Архимеда

(3.10)

Из
приведенныхформул следует, что при
взвешивании гирями из материала большой
плотности систематическая погрешность
от силы Архимеда меньше, чем при
взвешивании гирями из легкого материала.
В табл. 3.1 представлены поправки на силы
Архимеда, которые необходимо учитывать
при взвешивании для тела массой 100 г.

Таблица
3.1

Поправки
на силы Архимеда, которые нужно делать
при
взвешивании гирями для тела массой 100
г.

Плотность
материала
взвешиваемого тела, г/см3

0,5

1

1,5

2

4

6

8

Поправка
на силу
Архимеда (mr*ε),
мг

230

100

70

50

15

6

0,7

Отдельно
следует рассматривать систематические
погрешности при измерении давления в
условиях вакуума. Здесь наиболее
существенным источником погрешностей
является селективность процесса
откачивания воздуха насосами с различными
принципами действия. Этот вопрос очень
сложен с точки зрения анализа физической
сущности процесса вакуумирования.
Насосы ротационные, сорбционные,
магниторазрядные, турбо-молекулярные
создают совершенно разный состав
остаточных газов. В итоге в каждом
отдельном случае при оценке погрешностей
измерения
вакуума
нужно анализировать совместные искажения,
вносимые в состав остаточного газа
насосом, и искажения, вносимые тем или
иным датчиком давления. В ряде случаев
для прояснения картины недостаточна
даже дополнительная калибровка, т. к.
создать достаточно точно ту среду по
составу, в которой будет работать датчик,
очень трудно.

Проблема
создания вакуума и измерения давления
остаточного вакуума является одной из
ключевых проблем современной техники
и науки. Уверенно можно утверждать, что
уровень вакуумной техники определяет
уровень многих технологий, например
технологии изготовления микросхем и
микросборок.

То
же самое относится к наукоемким видам
измерения —
масс-спектометрии
или ЯМР спектометрии. Все метрологические
категории этих видов измерения напрямую
зависят от того, насколько «чистый»
вакуум удается создать и с какой точностью
удается этот вакуум измерить.

Третий
климатический фактор, вносящий
систематические погрешности во многие
измерения, — это влажность, т. е. содержание
молекул воды в том или ином месте
расположения измерительного прибора.
При оценке такой погрешности можно
рассматривать гигрометрию как вид
измерения, т. е. возможные систематические
погрешности в измерении влагосодержания
(абсолютная влажность) и Благосостояния
(относительная влажность). Можно также
оценивать погрешность как следствие
влияния влаги на показания других типов
приборов. Например, наличие влаги
изменяет проводимость или емкость
электрических элементов датчиков. Влага
ухудшает изоляционные свойства
материалов, вызывая токи утечки. Влага
изменяет структуру многих химических
соединений, трансформируясь из свободной
влаги в кристаллизационную и обратно.

С
учетом этого становится очевидным
всеобъемлющий характер учета влажности
при оценке систематических погрешностей.

На
эти трудности накладываются еще
неоднозначности в выражении измеряемых
в гигрометрии величин и единиц. По одной
из версий исходным моментом в гигрометрии
является упругость насыщенного водяного
пара при фиксированной температуре. В
этом случае любое уточнение термодинамических
свойств воды должно привести к пересчету
всех результатов измерений. По другой
версии исходным моментом в
гигрометрии
должно являться число молекул воды в
единице объема. Эти измерения наиболее
точно выполняются радиочастотными
методами, возможности которых и определяют
погрешности гигрометрии.

Вся
проблема влияния влажности на
систематические погрешности в измерениях
обозначена во многих странах и
международных организациях как одна
из наиболее существенных. По этой причине
влияние влажности на показания любого
прибора являются обязательным элементом
любых испытаний и исследований на
предмет выявления систематической
погрешности.

Погрешности
метода измерения или теоретические
погрешности

Любое
измерение имеет предел точности. Какой
бы мы не создали измерительный инструмент,
всегда будут существовать рамки возможной
точности, превзойти которые созданием
совершенных измерительных устройств
невозможно. Всегда при измерениях идут
на допущения, отклонения от идеальных
ситуаций, от функциональных зависимостей,
ограничивая трудоемкость процесса на
основании принципа достаточности
точности измерения для решения
практической задачи. Такие допущения
приходится делать во всех видах измерений.

В
механических измерениях на практике
постоянно присутствующей систематической
погрешностью является сила Архимеда,
по разному действующая на взвешиваемый
предмет и на гири. Учет
силы
Архимеда делается только при взвешивании
на высшем уровне точности при аттестации
мер высшего разряда. Во всех практических
измерениях массы такие поправки не
делаются, ограничивая тем самым точность
определения массы.

В
электрических измерениях постоянным
источником систематической погрешности
являются собственные сопротивления
приборов, собственная распределенная
емкость и индуктивность проводников.
При использовании законов для цепей
постоянного и переменного тока как
правило собственные электрические
параметры не учитываются. Не учитываются
в большинстве случаев и возможные
термоЭДС в цепи или образования
гальванических пар. Можно свести эти
погрешности к минимуму тщательным
исследованием цепей, но в реальных
случаях стремятся работать в таких
ситуациях, когда влияние перечисленных
причин ничтожно в сравнении с необходимой
и достаточной точностью измерений.

Измерения
физико-химических величин в каждой
конкретной задаче имеет определенные
систематические погрешности, специфические
для данного вида измерения. Прежде всего
это порог чувствительности датчика
концентрации какого-либо вещества.
Детектирование отдельных атомов, т. е.
отсутствие порога чувствительности,
имеет место только для весьма специфических
методов и для очень узкого класса
веществ. Второй фактор — вещество,
например вода, может входить как в виде
собственно молекул воды, так и в виде
кристаллизационной воды. Особенно
сложно выявить фактор многообразия
различных форм существования измеряемого
компонента в случае элементного анализа.
Так, водород может встречаться в газе
или в воздухе в виде молекул водорода
Н^, может входить в состав паров воды, в
состав углеводородов и т. д. Если при
измерениях используется метод с
предварительной атомизацией пробы, то
информацию о содержании водорода в
составе какого-либо соединения можно
получить только с использованием
дополнительных усилий, например с
использованием хроматографической
колонки, которая разделит компоненты
пробы по массам.

В
температурных измерениях всегда
существуют погрешности, связанные с
температурными
градиентами, т. е. с неоднородностью
температурного поля. Практически
невозможно реализовать такую ситуацию,
когда все части термометра будут
находиться в одинаковых температурных
условиях, а это приведет к тому, что в
жидкостных термометрах не весь объем
жидкости примет измеряемую температуру,
а термопарный термометр кроме полезного
сигнала зарегистрирует все влияния
температурных градиентов на ЭДС
термопары.

В
оптических измерениях, особенно в
измерении характеристик светового
потока — фотометрии, постоянный источник
систематических погрешностей — это
рассеянный свет в измерительных приборах.
Поскольку не существует идеально
отражающих и идеально поглощающих
поверхностей, в любой ситуации внутри
каждого прибора существует некий
постоянный фон паразитной подсветки.
В прецизионных оптических прибоpax
принимаются специальные меры борьбы с
рассеянным светом: устанавливаются
светофильтры, предварительные
монохроматизаторы излучения,
изготавливаются специфические
дифракционные решетки (голографические).Тем
не менее на каком-то уровне рассеянный
свет присутствует в оптических измерениях
всегда.

В
приборах для измерения показателей
преломления —
рефрактометрах
— систематическая погрешность обычно
связана с влиянием показателя преломления
воздуха. Чтобы исключить эту погрешность,
рефрактометры высокой точности иногда
вакуумируют, т. е. откачивают из объема
прибора воздух. Эта процедура делает
прибор громоздким и дорогим, поэтому
по такому пути идут только при крайней
необходимости. Чаще просто вносят
поправки на преломление воздуха,
используя таблицы показателя преломления
при различных температурах и давлениях.

В
магнитных измерениях источником
систематической погрешности служит,
как уже указывалось, магнитное поле
Земли, а также электромагнитные поля,
создаваемые теле- и радиопередатчиками,
системами связи, линиями электропередач.
В зависимости от расстояния между
измерительным прибором и источником
помех такого рода влияние может быть
очень сильным. Методы борьбы с такими
погрешностями достаточно хорошо освоены:
это либо защита измерительных приборов
экранами, либо измерение уровня помех
другими, более чувствительными и более
точными специальными приборами.

К
систематическим погрешностям метода
измерения относятся не только перечисленные
погрешности, которые можно назвать
инструментальными, поскольку они есть
следствие влияния каких-либо причин на
измерительный прибор, но и систематические
погрешности метода или процедуры
приготовления объекта к измерениям.
Особенно наглядно это видно в измерениях
состава веществ и материалов. Например,
существует распространенный метод
определения влажности зерна путем
взвешивания определенного его количества
до и после сушки. При этом полагается,
во-первых, что испаряется вся влага и,
во-вторых, что ничего, кроме воды, не
испаряется. Понятно, что и то и другое
справедливо только с какими-то допущениями.
Другой пример — измерение содержания
двуокиси серы в дымовых газах. Если в
пробозаборном тракте есть следы влаги,
а сам зонд находится при комнатной
температуре, то сернистый газ по пути
транспортировки от трубы до измерительного
прибора прореагирует с парами воды с
образованием серной кислоты. Естественно,
что прибор покажет неверное, заниженное
значение концентрации двуокиси серы.

Еще
один источник систематической погрешности,
связанный с несовершенством методов
измерения, имеет место в тех случаях,
когда приходится пользоваться при
измерениях какими-либо таблицами или
справочными данными. Любые данные в
справочниках получены с определенной
погрешностью, которая переносится на
объект измерения автоматически. Такого
же рода погрешности появляются при
использовании стандартных образцов.
Погрешности в аттестации стандартного
образца непосредственно ограничиваютточность
измерения в любом методе, когда
используются при калибровке и градуировке
стандартные образцы.

После
перечисления многочисленных причин
появления систематических погрешностей,
заключенных в методе измерения, может
показаться, что точно вообще ничего
измерить невозможно. На самом деле в
большинстве случаев обеспечивается
достаточный запас точности, или проводятся
специальные исследования по выявлению
причин систематических погрешностей.
После этого вносятся поправки либо в
показания шкал приборов, либо в методику
измерений.

Субъективные
систематические погрешности

На
результаты измерений непосредственное
влияние оказывает квалификация персонала
и индивидуальные особенности человека,
работающего на приборе. Для полной
реализации возможностей измерительного
прибора или метода предела для
совершенствования не существует. В
главе, посвященной эталонам, изложена
история совершенствования эталона
длины. На таком уровне обычных инженерных
знаний недостаточно, по этой причине
процесс измерения ставят рядом с
искусством. Понятно, что получить
информацию о результатах измерений
состава атмосферы на Венере, расшифровать
ее и оценить погрешность может только
очень квалифицированный человек. С
другой стороны, некоторые измерения,
например температуры тела человека,
может выполнить любой, даже неграмотный
человек.

На
субъективные погрешности измерений
влияют самые разнообразные особенности
человека. Известно, что время реакции
на звук, на свет, на запах, на тепло у
каждого человека разное. Хорошо известно,
что дискретные кадры в кино или в
телевизоре, следующие 25 раз в секунду,
воспринимаются наблюдателем как
непрерывная картина. Из этого следует,
что между откликом прибора и реакцией
человека временной интервал в 1/25 секунды
не может быть зарегистрирован.

Еще
одним наглядным примером влияния
оператора на результат измерения служат
измерения цвета. Человеческий глаз
имеет два аппарата зрения — дневной и
сумеречный. Дневной аппарат представляет
собой комбинацию из красных, зеленых и
синих рецепторов. У большой части людей
наблюдаются отклонения от средних
статистических характеристик — хорошо
известный дефект, называемый в обиходе
дальтонизмом. У человека может ненормально
функционировать либо какой-нибудь
рецептор, либо какой-нибудь аппарат
зрения. Принято проверять на правильность
цветовосприятия только водителей
транспорта. Обычный персонал, занимающийся
измерениями, никто на цветовосприятие
не проверяет. Это может привести к
неверным измерениям координат цвета
или температуры пирометром, т. е. в тех
случаях, когда используются визуальные
методы оценки яркости или цвета. Известно
также, что у человека цветовосприятие
может измениться с возрастом. Это связано
с тем, что стекловидное тело глаза с
возрастом желтеет, в результате чего
цвет одним и тем же человеком воспринимается
с годами по-разному. Некоторые художники,
восстанавливавшие свои собственные
картины через десятки лет, изображали
все в синих тонах.

Субъективное
восприятие человеком результата
измерения в большой степени определяется
также опытом работы. Например, при
измерении состава сплавов визуальным
стилометром опыт работы является
определяющим в получении достоверного
и точного результата. Опытный оператор
по появлению спектральных линий в поле
зрения прибора может определить не
только тип сплава, но и количественное
содержание в нем многих элементов.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

Систематическая погрешность (или, на физическом жаргоне, систематика) характеризует неточность измерительного инструмента или метода обработки данных. Если точнее, то она показывает наше ограниченное знание этой неточности: ведь если инструмент «врет», но мы хорошо знаем, насколько именно, то мы сможем скорректировать его показания и устранить инструментальную неопределенность результата. Слово «систематическая» означает, что вы можете повторять какое-то измерение на этой установке миллионы раз, но если у нее «сбит прицел», то вы систематически будете получать значение, отличающееся от истинного.

Конечно, систематические погрешности хочется взять под контроль. Поскольку это чисто инструментальный эффект, ответственность за это целиком лежит на экспериментаторах, собиравших, настраивавших и работающих на этой установке. Они прилагают все усилия для того, чтобы, во-первых, корректно определить эти погрешности, а во-вторых, их минимизировать. Собственно, они этим начинают заниматься с самых первых дней работы установки, даже когда еще собственно научная программа исследований и не началась.

Возможные источники систематических погрешностей

Современный коллайдерный эксперимент очень сложен. В нём есть место огромному количеству источников систематических погрешностей на самых разных стадиях получения экспериментального результата. Вот некоторые из них.

Погрешности могут возникать на уровне «железа», при получении сырых данных:

  • дефектные или неработающие отдельные регистрирующие компоненты или считывающие элементы. В детекторе миллионы отдельных компонентов, и даже если 1% из них оказался дефектным, это может ухудшить «зоркость» детектора и четкость регистрации сигналов. Надо подчеркнуть, что, даже если при запуске детектор работает на все 100%, постоянное детектирование частиц (это же жесткая радиация!) с течением времени выводит из строя отдельные компоненты, так что следить за поведением детектора абсолютно необходимо;
  • наличие «слепых зон» детектора; например, если частица вылетает близко к оси пучков, то она улетит в трубу и детектор ее просто не заметит.

Погрешности могут возникать на этапе распознавания сырых данных и их превращение в физическое событие:

  • погрешность при измерении энергии частиц в калориметре;
  • погрешность при измерении траектории частиц в трековых детекторах, из-за которой неточно измеряется точка вылета и импульс частицы;
  • неправильная идентификация типа частицы (например, система неудачно распознала след от π-мезона и приняла его за K-мезон). Более тонкий вариант: неправильное объединение адронов в одну адронную струю и неправильная оценка ее энергии;
  • неправильный подсчет числа частиц (две частицы случайно вылетели так близко друг к другу, что детектор «увидел» только один след и посчитал их за одну).

Наконец, новые систематические погрешности добавляются на этапе позднего анализа события:

  • неточность в измерении светимости пучков, которая влияет на пересчет числа событий в сечение процесса;
  • наличие посторонних процессов рождения частиц, которые отличаются с физической точки зрения, но, к сожалению, выглядят для детектора одинаковыми. Такие процессы порождают неустранимый фон, который часто мешает разглядеть искомый эффект;
  • необходимость моделировать процессы (в особенности, адронизацию, превращение кварков в адроны), опираясь частично на теорию, частично на прошлые эксперименты. Несовершенство того и другого привносит неточности и в новый экспериментальный результат. По этой причине теоретическую погрешность тоже часто относят к систематике.

В отдельных случаях встречаются источники систематических погрешностей, которые умудряются попасть сразу во все категории, они совмещают в себе и свойства детекторного «железа», и методы обработки и интерпретации данных. Например, если вы хотите сравнить друг с другом количество рожденных частиц и античастиц какого-то сорта (например, мюонов и антимюонов), то вам не стоит забывать, что ваш детектор состоит из вещества, а не из антивещества! Этот «перекос» в сторону вещества может привести к тому, что детектор будет видеть мюонов меньше, чем антимюонов, подробности см. в заметке Немножко про CP-нарушение, или Как жаль, что у нас нет детекторов из антивещества!.

Всю эту прорву источников потенциальных проблем надо распознать и оценить их влияние на выполняемый анализ. Здесь никаких абсолютно универсальных алгоритмов нет; исследователь должен сам понять, на какие погрешности надо обращать внимание и как грамотно их оценить. Конечно, тут на помощь приходят разные калибровочные измерения, выполненные в первые год-два работы детектора, и программы моделирования, которые позволяют виртуально протестировать поведение детектора в тех или иных условиях. Но главным в этом искусстве всё же является физическое чутье экспериментатора, его квалификация и накопленный опыт.

Почему важна грамотная оценка систематики

Беспечная оценка систематических погрешностей может привести к двум крайностям, причем обе очень нежелательны.

Заниженная погрешность — то есть неоправданная уверенность экспериментатора в том, что погрешности в его детекторе маленькие, хотя они на самом деле намного больше, — исключительно опасна, поскольку она может привести к совершенно неправильным научным выводам. Например, экспериментатор может на их основании решить, что измерения отличаются от теоретических предсказаний на уровне статистической значимости 10 стандартных отклонений (сенсация!), хотя истинная причина расхождения может просто состоять в том, что он проглядел источник ошибок, в 10 раз увеличивающий неопределенность измерения, и никакого расхождения на самом деле нет.

В борьбе с этой опасностью есть соблазн впасть в другую крайность: «А вдруг там есть еще какие-то погрешности? Может, я что-то не учел? Давай-ка я на всякий случай увеличу погрешности измерения в 10 раз для пущей безопасности.» Такая крайность плоха тем, что она обессмысливает измерение. Неоправданно завышая погрешность, вы рискуете получить результат, который будет, конечно, правильным, но очень неопределенным, ничем не лучше тех результатов, которые уже были получены до вас на гораздо более скромных установках. Такой подход, фактически, перечеркивает всю работу по разработке технологий, по изготовлению компонентов, по сборке детектора, все затраты на его работу и на анализ результатов.

Грамотный и ответственный анализ систематики должен удерживать оптимальный баланс (максимальная достоверность при максимальной научной ценности), не допуская таких крайностей. Это очень тонкая и сложная работа, и первые страницы в большинстве современных экспериментальных статей по физике частиц посвящены тщательному обсуждению систематических (а также статистических) погрешностей.

Мы не будем обсуждать подробности того, как обсчитывать систематические погрешности. Подчеркнем только, что это серьезная наука с множеством тонкостей и подводных камней. В качестве примера умеренно простого обсуждения некоторых вопросов см. статью Systematic Errors: facts and fictions.


Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Видео: Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Содержание

  • Как рассчитать систематическую ошибку?
  • Постоянство и соразмерность
  • Систематическая ошибка в химии
  • Систематическая ошибка в физический
  • Примеры eсистематическая ошибка
  • Ссылки

В систематическая ошибка Это одна из составляющих ошибок эксперимента или наблюдений (ошибок измерения), которая влияет на точность результатов. Это также известно как детерминированная ошибка, поскольку в большинстве случаев ее можно обнаружить и устранить, не повторяя эксперименты.

Важной характеристикой систематической ошибки является постоянство ее относительной величины; то есть он не зависит от размера выборки или толщины данных. Например, предполагая, что его относительное значение составляет 0,2%, если измерения повторяются в тех же условиях, ошибка всегда будет оставаться 0,2%, пока не будет исправлена.

Как правило, систематическая ошибка возникает из-за неправильного обращения с приборами или из-за технической неисправности аналитика или ученого. Его легко обнаружить, если сравнить экспериментальные значения со стандартным или сертифицированным значением.

Примеры экспериментальной ошибки этого типа возникают, когда аналитические весы, термометры и спектрофотометры не откалиброваны; или в случаях, когда не выполняется хорошее чтение правил, верньеров, градуированных цилиндров или бюреток.

Как рассчитать систематическую ошибку?

Систематическая ошибка влияет на точность, в результате чего экспериментальные значения могут быть выше или ниже фактических результатов. Под реальным результатом или значением понимается результат, который был исчерпывающе проверен многими аналитиками и лабораториями и зарекомендовал себя в качестве эталона сравнения.

Таким образом, сравнивая экспериментальное значение с реальным, получается разница. Чем больше эта разница, тем больше абсолютное значение систематической ошибки.

Например, предположим, что в аквариуме насчитывается 105 рыб, но известно заранее или из других источников, что истинное число составляет 108. Таким образом, систематическая ошибка составляет 3 (108-105). Мы сталкиваемся с систематической ошибкой, если, повторяя подсчет рыб, мы снова и снова получаем 105 рыб.

Однако более важным, чем вычисление абсолютного значения этой ошибки, является определение ее относительного значения:

Относительная погрешность = (108-105) ÷ 108

= 0,0277

Если выражать в процентах, то получается 2,77%. То есть ошибка подсчета имеет вес 2,77% от истинного количества рыбы. Если в аквариуме теперь есть 1000 рыб, и он будет считать их с той же систематической ошибкой, то будет на 28 рыб меньше, чем ожидалось, а не на 3, как это происходит с меньшим аквариумом.

Постоянство и соразмерность

Систематическая ошибка обычно постоянная, аддитивная и пропорциональная. В приведенном выше примере ошибка 2,77% останется постоянной до тех пор, пока измерения будут повторяться в одних и тех же условиях, независимо от размера аквариума (уже соприкасающегося с аквариумом).

Также обратите внимание на пропорциональность систематической ошибки: чем больше размер выборки или толщина данных (или объем аквариума и количество рыб в нем), тем больше систематическая ошибка. Если в аквариуме теперь 3500 рыб, ошибка будет 97 рыб (3500 x 0,0277); абсолютная погрешность увеличивается, но ее относительное значение неизменно, постоянно.

Если число удвоить, на этот раз с 7000 рыб, то ошибка будет 194 рыбы. Таким образом, систематическая ошибка постоянна и пропорциональна.

Это не означает, что необходимо повторить подсчет рыбы: достаточно знать, что определенное количество соответствует 97,23% от общего количества рыбы (100–2,77%). Отсюда истинное количество рыбы можно рассчитать, умножив на коэффициент 100 / 97,23.

Например, если было подсчитано 5200 рыб, то фактическое количество было бы 5 348 рыб (5200 x 100 / 97,23).

Систематическая ошибка в химии

В химии систематические ошибки обычно возникают из-за неправильного взвешивания из-за некалиброванных весов или из-за неправильного считывания объемов стеклянных материалов. Хотя они могут показаться не такими, как это, они влияют на точность результатов, потому что чем их больше, тем больше их негативных эффектов.

Например, если весы плохо откалиброваны, и при определенном анализе необходимо провести несколько взвешиваний, то окончательный результат будет все дальше и дальше от ожидаемого; это будет более неточно. То же самое происходит, если анализ постоянно измеряет объемы бюреткой, показания которой неверны.

Помимо весов и стеклянных материалов, химики также могут ошибаться в обращении с термометрами и pH-метрами, в скорости перемешивания, во времени, необходимом для протекания реакции, в калибровке весов. спектрофотометры, если предполагается высокая чистота образца или реагента и т. д.

Другие систематические ошибки в химии могут быть связаны с изменением порядка добавления реагентов, нагревом реакционной смеси до температуры выше, чем рекомендованная методом, или неправильной перекристаллизацией продукта синтеза.

Систематическая ошибка в физический

В физических лабораториях систематические ошибки носят еще более технический характер: любое оборудование или инструмент без надлежащей калибровки, неправильное поданное напряжение, неправильное расположение зеркал или деталей в эксперименте, добавление слишком большого момента к объекту, который должен упасть. из-за эффекта гравитации, среди других экспериментов.

Обратите внимание на то, что есть систематические ошибки, которые происходят из инструментального несовершенства, а другие, скорее, операционного типа, являются результатом ошибки со стороны аналитика, ученого или отдельного человека, который выполняет какое-либо действие.

Примеры eсистематическая ошибка

Ниже будут упомянуты другие примеры систематических ошибок, которые не обязательно должны происходить в лаборатории или в научной сфере:

— Поместите булочки в нижнюю часть духовки, поджаривая их больше, чем хотелось бы.

-Плохая осанка при сидении

-Закройте горшок для мокко только из-за недостатка прочности

-Не очищайте пароварки кофемашин сразу после текстурирования или нагрева молока.

-Используйте чашки разных размеров, когда вы следуете или хотите повторить определенный рецепт

-Хотите дозировать солнечную радиацию в тенистые дни

— Выполняйте подтягивания на перекладине, подняв плечи к ушам.

-Играйте несколько песен на гитаре без предварительной настройки струн

-Жарить оладьи с недостаточным количеством масла в казане

-Проведите последующее объемное титрование без повторной стандартизации раствора титранта

Ссылки

  1. Дэй Р. и Андервуд А. (1986). Количественная аналитическая химия. (Пятое изд.). ПИРСОН Прентис Холл.
  2. Хельменстин, Энн Мари, доктор философии (11 февраля 2020 г.). Случайная ошибка vs. Систематическая ошибка. Получено с: thinkco.com
  3. Bodner Research Web. (н.д.). Ошибки. Получено с: chemed.chem.purdue.edu
  4. Elsevier B.V. (2020). Систематическая ошибка. ScienceDirect. Получено с: sciencedirect.com
  5. Сепульведа, Э. (2016). Систематические ошибки. Получено из Physics Online: fisicaenlinea.com
  6. Мария Ирма Гарсиа Ордас. (н.д.). Проблемы с ошибкой измерения. Автономный университет штата Идальго. Получено с: uaeh.edu.mx
  7. Википедия. (2020). Ошибка наблюдения. Получено с: en.wikipedia.org
  8. Джон Спейси. (2018, 18 июля). 7 видов систематической ошибки. Получено с: simplicable.com

Результат любого измерения не определён однозначно и имеет случайную составляющую.
Поэтому адекватным языком для описания погрешностей является язык вероятностей.
Тот факт, что значение некоторой величины «случайно», не означает, что
она может принимать совершенно произвольные значения. Ясно, что частоты, с которыми
возникает те или иные значения, различны. Вероятностные законы, которым
подчиняются случайные величины, называют распределениями.

2.1 Случайная величина

Случайной будем называть величину, значение которой не может быть достоверно определено экспериментатором. Чаще всего подразумевается, что случайная величина будет изменяться при многократном повторении одного и того же эксперимента. При интерпретации результатов измерений в физических экспериментах, обычно случайными также считаются величины, значение которых является фиксированным, но не известно экспериментатору. Например смещение нуля шкалы прибора. Для формализации работы со случайными величинами используют понятие вероятности. Численное значение вероятности того, что какая-то величина примет то или иное значение определяется либо как относительная частота наблюдения того или иного значения при повторении опыта большое количество раз, либо как оценка на основе данных других экспериментов.

Замечание. 
Хотя понятия вероятности и случайной величины являются основополагающими, в литературе нет единства в их определении. Обсуждение формальных тонкостей или построение строгой теории лежит за пределами данного пособия. Поэтому на начальном этапе лучше использовать «интуитивное» понимание этих сущностей. Заинтересованным читателям рекомендуем обратиться к специальной литературе: [5].

Рассмотрим случайную физическую величину x, которая при измерениях может
принимать непрерывный набор значений. Пусть
P[x0,x0+δ⁢x] — вероятность того, что результат окажется вблизи
некоторой точки x0 в пределах интервала δ⁢x: x∈[x0,x0+δ⁢x].
Устремим интервал
δ⁢x к нулю. Нетрудно понять, что вероятность попасть в этот интервал
также будет стремиться к нулю. Однако отношение
w⁢(x0)=P[x0,x0+δ⁢x]δ⁢x будет оставаться конечным.
Функцию w⁢(x) называют плотностью распределения вероятности или кратко
распределением непрерывной случайной величины x.

Замечание. В математической литературе распределением часто называют не функцию
w⁢(x), а её интеграл W⁢(x)=∫w⁢(x)⁢𝑑x. Такую функцию в физике принято
называть интегральным или кумулятивным распределением. В англоязычной литературе
для этих функций принято использовать сокращения:
pdf (probability distribution function) и
cdf (cumulative distribution function)
соответственно.

Гистограммы.

Проиллюстрируем наглядно понятие плотности распределения. Результат
большого числа измерений случайной величины удобно представить с помощью
специального типа графика — гистограммы.
Для этого область значений x, размещённую на оси абсцисс, разобьём на
равные малые интервалы — «корзины» или «бины» (англ. bins)
некоторого размера h. По оси ординат будем откладывать долю измерений w,
результаты которых попадают в соответствующую корзину. А именно,
пусть k — номер корзины; nk — число измерений, попавших
в диапазон x∈[k⁢h,(k+1)⁢h]. Тогда на графике изобразим «столбик»
шириной h и высотой wk=nk/n.
В результате получим картину, подобную изображённой на рис. 2.1.

Рис. 2.1: Пример гистограммы для нормального распределения (x¯=10,
σ=1,0, h=0,1, n=104)

Высоты построенных столбиков будут приближённо соответствовать значению
плотности распределения w⁢(x) вблизи соответствующей точки x.
Если устремить число измерений к бесконечности (n→∞), а ширину корзин
к нулю (h→0), то огибающая гистограммы будет стремиться к некоторой
непрерывной функции w⁢(x).

Самые высокие столбики гистограммы будут группироваться вблизи максимума
функции w⁢(x) — это наиболее вероятное значение случайной величины.
Если отклонения в положительную и отрицательную стороны равновероятны,
то гистограмма будет симметрична — в таком случае среднее значение ⟨x⟩
также будет лежать вблизи этого максимума. Ширина гистограммы будет характеризовать разброс
значений случайной величины — по порядку величины
она, как правило, близка к среднеквадратичному отклонению sx.

Свойства распределений.

Из определения функции w⁢(x) следует, что вероятность получить в результате
эксперимента величину x в диапазоне от a до b
можно найти, вычислив интеграл:

Px∈[a,b]=∫abw⁢(x)⁢𝑑x. (2.1)

Согласно определению вероятности, сумма вероятностей для всех возможных случаев
всегда равна единице. Поэтому интеграл распределения w⁢(x) по всей области
значений x (то есть суммарная площадь под графиком w⁢(x)) равен единице:

Это соотношение называют условием нормировки.

Среднее и дисперсия.

Вычислим среднее по построенной гистограмме. Если размер корзин
h достаточно мал, все измерения в пределах одной корзины можно считать примерно
одинаковыми. Тогда среднее арифметическое всех результатов можно вычислить как

Переходя к пределу, получим следующее определение среднего значения
случайной величины:

где интегрирование ведётся по всей области значений x.
В теории вероятностей x¯ также называют математическим ожиданием
распределения.
Величину

σ2=(x-x¯)2¯=∫(x-x¯)2⁢w⁢𝑑x (2.3)

называют дисперсией распределения. Значение σ есть
срекднеквадратичное отклонение в пределе n→∞. Оно имеет ту
же размерность, что и сама величина x и характеризует разброс распределения.
Именно эту величину, как правило, приводят как характеристику погрешности
измерения x.

Доверительный интервал.

Обозначим как P|Δ⁢x|<δ вероятность
того, что отклонение от среднего Δ⁢x=x-x¯ составит величину,
не превосходящую по модулю значение δ:

P|Δ⁢x|<δ=∫x¯-δx¯+δw⁢(x)⁢𝑑x. (2.4)

Эту величину называют доверительной вероятностью для
доверительного интервала |x-x¯|≤δ.

2.2 Нормальное распределение

Одним из наиболее примечательных результатов теории вероятностей является
так называемая центральная предельная теорема. Она утверждает,
что сумма большого количества независимых случайных слагаемых, каждое
из которых вносит в эту сумму относительно малый вклад, подчиняется
универсальному закону, не зависимо от того, каким вероятностным законам
подчиняются её составляющие, — так называемому нормальному
распределению
(или распределению Гаусса).

Доказательство теоремы довольно громоздко и мы его не приводим (его можно найти
в любом учебнике по теории вероятностей). Остановимся
кратко на том, что такое нормальное распределение и его основных свойствах.

Плотность нормального распределения выражается следующей формулой:

w𝒩⁢(x)=12⁢π⁢σ⁢e-(x-x¯)22⁢σ2. (2.5)

Здесь x¯ и σ
— параметры нормального распределения: x¯ равно
среднему значению x, a σ —
среднеквадратичному отклонению, вычисленным в пределе n→∞.

Как видно из рис. 2.1, распределение представляет собой
симметричный
«колокол», положение вершины которого
соответствует x¯ (ввиду симметрии оно же
совпадает с наиболее вероятным значением — максимумом
функции w𝒩⁢(x)).

При значительном отклонении x от среднего величина
w𝒩⁢(x)
очень быстро убывает. Это означает, что вероятность встретить отклонения,
существенно большие, чем σ, оказывается пренебрежимо
мала
. Ширина «колокола» по порядку величины
равна σ — она характеризует «разброс»
экспериментальных данных относительно среднего значения.

Замечание. Точки x=x¯±σ являются точками
перегиба графика w⁢(x) (в них вторая производная по x
обращается в нуль, w′′=0), а их положение по высоте составляет
w⁢(x¯±σ)/w⁢(x¯)=e-1/2≈0,61
от высоты вершины.

Универсальный характер центральной предельной теоремы позволяет широко
применять на практике нормальное (гауссово) распределение для обработки
результатов измерений, поскольку часто случайные погрешности складываются из
множества случайных независимых факторов. Заметим, что на практике
для приближённой оценки параметров нормального распределения
случайной величины используются выборочные значения среднего
и дисперсии: x¯≈⟨x⟩, sx≈σx.

x-x0σ2=2w⁢(x)σ1=1

Рис. 2.2: Плотность нормального распределения

Доверительные вероятности.

Вычислим некоторые доверительные вероятности (2.4) для нормально
распределённых случайных величин.

Замечание. Значение интеграла вида ∫e-x2/2⁢𝑑x
(его называют интегралом ошибок) в элементарных функциях не выражается,
но легко находится численно.

Вероятность того, что результат отдельного измерения x окажется
в пределах x¯±σ оказывается равна

P|Δ⁢x|<σ=∫x¯-σx¯+σw𝒩⁢𝑑x≈0,68.

Вероятность отклонения в пределах x¯±2⁢σ:

а в пределах x¯±3⁢σ:

Иными словами, при большом числе измерений нормально распределённой
величины можно ожидать, что лишь треть измерений выпадут за пределы интервала
[x¯-σ,x¯+σ]. При этом около 5%
измерений выпадут за пределы [x¯-2⁢σ;x¯+2⁢σ],
и лишь 0,27% окажутся за пределами
[x¯-3⁢σ;x¯+3⁢σ].

Пример. В сообщениях об открытии бозона Хиггса на Большом адронном коллайдере
говорилось о том, что исследователи ждали подтверждение результатов
с точностью «5 сигма». Используя нормальное распределение (2.5)
нетрудно посчитать, что они использовали доверительную вероятность
P≈1-5,7⋅10-7=0,99999943. Такую точность можно назвать фантастической.

Полученные значения доверительных вероятностей используются при
стандартной записи результатов измерений. В физических измерениях
(в частности, в учебной лаборатории), как правило, используется P=0,68,
то есть, запись

означает, что измеренное значение лежит в диапазоне (доверительном
интервале) x∈[x¯-δ⁢x;x¯+δ⁢x] с
вероятностью 68%. Таким образом погрешность ±δ⁢x считается
равной одному среднеквадратичному отклонению: δ⁢x=σ.
В технических измерениях чаще используется P=0,95, то есть под
абсолютной погрешностью имеется в виду удвоенное среднеквадратичное
отклонение, δ⁢x=2⁢σ. Во избежание разночтений доверительную
вероятность следует указывать отдельно.

Замечание. Хотя нормальный закон распределения встречается на практике довольно
часто, стоит помнить, что он реализуется далеко не всегда.
Полученные выше соотношения для вероятностей попадания значений в
доверительные интервалы можно использовать в качестве простейшего
признака нормальности распределения: в частности, если количество попадающих
в интервал ±σ результатов существенно отличается от 2/3 — это повод
для более детального исследования закона распределения ошибок.

Сравнение результатов измерений.

Теперь мы можем дать количественный критерий для сравнения двух измеренных
величин или двух результатов измерения одной и той же величины.

Пусть x1 и x2 (x1≠x2) измерены с
погрешностями σ1 и σ2 соответственно.
Ясно, что если различие результатов |x2-x1| невелико,
его можно объяснить просто случайными отклонениями.
Если же теория предсказывает, что вероятность обнаружить такое отклонение
слишком мала, различие результатов следует признать значимым.
Предварительно необходимо договориться о соответствующем граничном значении
вероятности. Универсального значения здесь быть не может,
поэтому приходится полагаться на субъективный выбор исследователя. Часто
в качестве «разумной» границы выбирают вероятность 5%,
что, как видно из изложенного выше, для нормального распределения
соответствует отклонению более, чем на 2⁢σ.

Допустим, одна из величин известна с существенно большей точностью:
σ2≪σ1 (например, x1 — результат, полученный
студентом в лаборатории, x2 — справочное значение).
Поскольку σ2 мало, x2 можно принять за «истинное»:
x2≈x¯. Предполагая, что погрешность измерения
x1 подчиняется нормальному закону с и дисперсией σ12,
можно утверждать, что
различие считают будет значимы, если

Пусть погрешности измерений сравнимы по порядку величины:
σ1∼σ2. В теории вероятностей показывается, что
линейная комбинация нормально распределённых величин также имеет нормальное
распределение с дисперсией σ2=σ12+σ22
(см. также правила сложения погрешностей (2.7)). Тогда
для проверки гипотезы о том, что x1 и x2 являются измерениями
одной и той же величины, нужно вычислить, является ли значимым отклонение
|x1-x2| от нуля при σ=σ12+σ22.


Пример. Два студента получили следующие значения для теплоты испарения
некоторой жидкости: x1=40,3±0,2 кДж/моль и
x2=41,0±0,3 кДж/моль, где погрешность соответствует
одному стандартному отклонению. Можно ли утверждать, что они исследовали
одну и ту же жидкость?

Имеем наблюдаемую разность |x1-x2|=0,7 кДж/моль,
среднеквадратичное отклонение для разности
σ=0,22+0,32=0,36 кДж/моль.
Их отношение |x2-x1|σ≈2. Из
свойств нормального распределения находим вероятность того, что измерялась
одна и та же величина, а различия в ответах возникли из-за случайных
ошибок: P≈5%. Ответ на вопрос, «достаточно»
ли мала или велика эта вероятность, остаётся на усмотрение исследователя.

Замечание. Изложенные здесь соображения применимы, только если x¯ и
его стандартное отклонение σ получены на основании достаточно
большой выборки n≫1 (или заданы точно). При небольшом числе измерений
(n≲10) выборочные средние ⟨x⟩ и среднеквадратичное отклонение
sx сами имеют довольно большую ошибку, а
их распределение будет описываться не нормальным законом, а так
называемым t-распределением Стъюдента. В частности, в зависимости от
значения n интервал ⟨x⟩±sx будет соответствовать несколько
меньшей доверительной вероятности, чем P=0,68. Особенно резко различия
проявляются при высоких уровнях доверительных вероятностей P→1.

2.3 Независимые величины

Величины x и y называют независимыми если результат измерения одной
из них никак не влияет на результат измерения другой. Для таких величин вероятность того, что x окажется в некоторой области X, и одновременно y — в области Y,
равна произведению соответствующих вероятностей:

Обозначим отклонения величин от их средних как Δ⁢x=x-x¯ и
Δ⁢y=y-y¯.
Средние значения этих отклонений равны, очевидно, нулю: Δ⁢x¯=x¯-x¯=0,
Δ⁢y¯=0. Из независимости величин x и y следует,
что среднее значение от произведения Δ⁢x⋅Δ⁢y¯
равно произведению средних Δ⁢x¯⋅Δ⁢y¯
и, следовательно, равно нулю:

Δ⁢x⋅Δ⁢y¯=Δ⁢x¯⋅Δ⁢y¯=0. (2.6)

Пусть измеряемая величина z=x+y складывается из двух независимых
случайных слагаемых x и y, для которых известны средние
x¯ и y¯, и их среднеквадратичные погрешности
σx и σy. Непосредственно из определения (1.1)
следует, что среднее суммы равно сумме средних:

Найдём дисперсию σz2. В силу независимости имеем

Δ⁢z2¯=Δ⁢x2¯+Δ⁢y2¯+2⁢Δ⁢x⋅Δ⁢y¯≈Δ⁢x2¯+Δ⁢y2¯,

то есть:

Таким образом, при сложении независимых величин их погрешности
складываются среднеквадратичным образом.

Подчеркнём, что для справедливости соотношения (2.7)
величины x и y не обязаны быть нормально распределёнными —
достаточно существования конечных значений их дисперсий. Однако можно
показать, что если x и y распределены нормально, нормальным
будет и распределение их суммы
.

Замечание. Требование независимости
слагаемых является принципиальным. Например, положим y=x. Тогда
z=2⁢x. Здесь y и x, очевидно, зависят друг от друга. Используя
(2.7), находим σ2⁢x=2⁢σx,
что, конечно, неверно — непосредственно из определения
следует, что σ2⁢x=2⁢σx.

Отдельно стоит обсудить математическую структуру формулы (2.7).
Если одна из погрешностей много больше другой, например,
σx≫σy,
то меньшей погрешностью можно пренебречь, σx+y≈σx.
С другой стороны, если два источника погрешностей имеют один порядок
σx∼σy, то и σx+y∼σx∼σy.

Эти обстоятельства важны при планирования эксперимента: как правило,
величина, измеренная наименее точно, вносит наибольший вклад в погрешность
конечного результата. При этом, пока не устранены наиболее существенные
ошибки, бессмысленно гнаться за повышением точности измерения остальных
величин.

Пример. Пусть σy=σx/3,
тогда σz=σx⁢1+19≈1,05⁢σx,
то есть при различии двух погрешностей более, чем в 3 раза, поправка
к погрешности составляет менее 5%, и уже нет особого смысла в учёте
меньшей погрешности: σz≈σx. Это утверждение
касается сложения любых независимых источников погрешностей в эксперименте.

2.4 Погрешность среднего

Выборочное среднее арифметическое значение ⟨x⟩, найденное
по результатам n измерений, само является случайной величиной.
Действительно, если поставить серию одинаковых опытов по n измерений,
то в каждом опыте получится своё среднее значение, отличающееся от
предельного среднего x¯.

Вычислим среднеквадратичную погрешность среднего арифметического
σ⟨x⟩.
Рассмотрим вспомогательную сумму n слагаемых

Если {xi} есть набор независимых измерений
одной и той же физической величины, то мы можем, применяя результат
(2.7) предыдущего параграфа, записать

σZ=σx12+σx22+…+σxn2=n⁢σx,

поскольку под корнем находится n одинаковых слагаемых. Отсюда с
учётом ⟨x⟩=Z/n получаем

Таким образом, погрешность среднего значения x по результатам
n независимых измерений оказывается в n раз меньше погрешности
отдельного измерения
. Это один из важнейших результатов, позволяющий
уменьшать случайные погрешности эксперимента за счёт многократного
повторения измерений.

Подчеркнём отличия между σx и σ⟨x⟩:

величина σx — погрешность отдельного
измерения
— является характеристикой разброса значений
в совокупности измерений {xi}, i=1..n. При
нормальном законе распределения примерно 68% измерений попадают в
интервал ⟨x⟩±σx;

величина σ⟨x⟩ — погрешность
среднего
— характеризует точность, с которой определено
среднее значение измеряемой физической величины ⟨x⟩ относительно
предельного («истинного») среднего x¯;
при этом с доверительной вероятностью P=68% искомая величина x¯
лежит в интервале
⟨x⟩-σ⟨x⟩<x¯<⟨x⟩+σ⟨x⟩.

2.5 Результирующая погрешность опыта

Пусть для некоторого результата измерения известна оценка его максимальной
систематической погрешности Δсист и случайная
среднеквадратичная
погрешность σслуч. Какова «полная»
погрешность измерения?

Предположим для простоты, что измеряемая величина в принципе
может быть определена сколь угодно точно, так что можно говорить о
некотором её «истинном» значении xист
(иными словами, погрешность результата связана в основном именно с
процессом измерения). Назовём полной погрешностью измерения
среднеквадратичное значения отклонения от результата измерения от
«истинного»:

Отклонение x-xист можно представить как сумму случайного
отклонения от среднего δ⁢xслуч=x-x¯
и постоянной (но, вообще говоря, неизвестной) систематической составляющей
δ⁢xсист=x¯-xист=const:

Причём случайную составляющую можно считать независимой от систематической.
В таком случае из (2.7) находим:

σполн2=⟨δ⁢xсист2⟩+⟨δ⁢xслуч2⟩≤Δсист2+σслуч2. (2.9)

Таким образом, для получения максимального значения полной
погрешности некоторого измерения нужно квадратично сложить максимальную
систематическую и случайную погрешности.

Если измерения проводятся многократно, то согласно (2.8)
случайная составляющая погрешности может быть уменьшена, а систематическая
составляющая при этом остаётся неизменной:

Отсюда следует важное практическое правило
(см. также обсуждение в п. 2.3): если случайная погрешность измерений
в 2–3 раза меньше предполагаемой систематической, то
нет смысла проводить многократные измерения в попытке уменьшить погрешность
всего эксперимента. В такой ситуации измерения достаточно повторить
2–3 раза — чтобы убедиться в повторяемости результата, исключить промахи
и проверить, что случайная ошибка действительно мала.
В противном случае повторение измерений может иметь смысл до
тех пор, пока погрешность среднего
σ⟨x⟩=σxn
не станет меньше систематической.


Замечание. Поскольку конкретная
величина систематической погрешности, как правило, не известна, её
можно в некотором смысле рассматривать наравне со случайной —
предположить, что её величина была определена по некоторому случайному
закону перед началом измерений (например, при изготовлении линейки
на заводе произошло некоторое случайное искажение шкалы). При такой
трактовке формулу (2.9) можно рассматривать просто
как частный случай формулы сложения погрешностей независимых величин
(2.7).

Подчеркнем, что вероятностный закон, которому подчиняется
систематическая ошибка, зачастую неизвестен. Поэтому неизвестно и
распределение итогового результата. Из этого, в частности, следует,
что мы не можем приписать интервалу x±Δсист какую-либо
определённую доверительную вероятность — она равна 0,68
только если систематическая ошибка имеет нормальное распределение.
Можно, конечно, предположить,
— и так часто делают — что, к примеру, ошибки
при изготовлении линеек на заводе имеют гауссов характер. Также часто
предполагают, что систематическая ошибка имеет равномерное
распределение (то есть «истинное» значение может с равной вероятностью
принять любое значение в пределах интервала ±Δсист).
Строго говоря, для этих предположений нет достаточных оснований.


Пример. В результате измерения диаметра проволоки микрометрическим винтом,
имеющим цену деления h=0,01 мм, получен следующий набор из n=8 значений:

Вычисляем среднее значение: ⟨d⟩≈386,3 мкм.
Среднеквадратичное отклонение:
σd≈9,2 мкм. Случайная погрешность среднего согласно
(2.8):
σ⟨d⟩=σd8≈3,2
мкм. Все результаты лежат в пределах ±2⁢σd, поэтому нет
причин сомневаться в нормальности распределения. Максимальную погрешность
микрометра оценим как половину цены деления, Δ=h2=5 мкм.
Результирующая полная погрешность
σ≤Δ2+σd28≈6,0 мкм.
Видно, что σслуч≈Δсист и проводить дополнительные измерения
особого смысла нет. Окончательно результат измерений может быть представлен
в виде (см. также правила округления
результатов измерений в п. 4.3.2)



d=386±6⁢мкм,εd=1,5%.


Заметим, что поскольку случайная погрешность и погрешность
прибора здесь имеют один порядок величины, наблюдаемый случайный разброс
данных может быть связан как с неоднородностью сечения проволоки,
так и с дефектами микрометра (например, с неровностями зажимов, люфтом
винта, сухим трением, деформацией проволоки под действием микрометра
и т. п.). Для ответа на вопрос, что именно вызвало разброс, требуются
дополнительные исследования, желательно с использованием более точных
приборов.


Пример. Измерение скорости
полёта пули было осуществлено с погрешностью δ⁢v=±1 м/c.
Результаты измерений для n=6 выстрелов представлены в таблице:

Усреднённый результат ⟨v⟩=162,0⁢м/с,
среднеквадратичное отклонение σv=13,8⁢м/c, случайная
ошибка для средней скорости
σv¯=σv/6=5,6⁢м/с.
Поскольку разброс экспериментальных данных существенно превышает погрешность
каждого измерения, σv≫δ⁢v, он почти наверняка связан
с реальным различием скоростей пули в разных выстрелах, а не с ошибками
измерений. В качестве результата эксперимента представляют интерес
как среднее значение скоростей ⟨v⟩=162±6⁢м/с
(ε≈4%), так и значение σv≈14⁢м/с,
характеризующее разброс значений скоростей от выстрела к выстрелу.
Малая инструментальная погрешность в принципе позволяет более точно
измерить среднее и дисперсию, и исследовать закон распределения выстрелов
по скоростям более детально — для этого требуется набрать
бо́льшую статистику по выстрелам.


Пример. Измерение скорости
полёта пули было осуществлено с погрешностью δ⁢v=10 м/c. Результаты
измерений для n=6 выстрелов представлены в таблице:

Усреднённый результат ⟨v⟩=163,3⁢м/с,
σv=12,1⁢м/c, σ⟨v⟩=5⁢м/с,
σполн≈11,2⁢м/с. Инструментальная
погрешность каждого измерения превышает разброс данных, поэтому в
этом опыте затруднительно сделать вывод о различии скоростей от выстрела
к выстрелу. Результат измерений скорости пули:
⟨v⟩=163±11⁢м/с,
ε≈7%. Проводить дополнительные выстрелы при такой
большой инструментальной погрешности особого смысла нет —
лучше поработать над точностью приборов и методикой измерений.

2.6 Обработка косвенных измерений

Косвенными называют измерения, полученные в результате расчётов,
использующих результаты прямых (то есть «непосредственных»)
измерений физических величин. Сформулируем основные правила пересчёта
погрешностей при косвенных измерениях.

2.6.1 Случай одной переменной

Пусть в эксперименте измеряется величина x, а её «наилучшее»
(в некотором смысле) значение равно x⋆ и оно известно с
погрешностью σx. После чего с помощью известной функции
вычисляется величина y=f⁢(x).

В качестве «наилучшего» приближения для y используем значение функции
при «наилучшем» x:

Найдём величину погрешности σy. Обозначая отклонение измеряемой
величины как Δ⁢x=x-x⋆, и пользуясь определением производной,
при условии, что функция y⁢(x) — гладкая
вблизи x≈x⋆, запишем

где f′≡d⁢yd⁢x — производная фукнции f⁢(x), взятая в точке
x⋆. Возведём полученное в квадрат, проведём усреднение
(σy2=⟨Δ⁢y2⟩,
σx2=⟨Δ⁢x2⟩), и затем снова извлечём
корень. В результате получим


Пример. Для степенной функции
y=A⁢xn имеем σy=n⁢A⁢xn-1⁢σx, откуда



σyy=n⁢σxx,или  εy=n⁢εx,


то есть относительная погрешность степенной функции возрастает пропорционально
показателю степени n.

Пример. Для y=1/x имеем ε1/x=εx
— при обращении величины сохраняется её относительная
погрешность.

Упражнение. Найдите погрешность логарифма y=ln⁡x, если известны x
и σx.

Упражнение. Найдите погрешность показательной функции y=ax,
если известны x и σx. Коэффициент a задан точно.

2.6.2 Случай многих переменных

Пусть величина u вычисляется по измеренным значениям нескольких
различных независимых физических величин x, y, …
на основе известного закона u=f⁢(x,y,…). В качестве
наилучшего значения можно по-прежнему взять значение функции f
при наилучших значениях измеряемых параметров:

Для нахождения погрешности σu воспользуемся свойством,
известным из математического анализа, — малые приращения гладких
функции многих переменных складываются линейно, то есть справедлив
принцип суперпозиции малых приращений:

где символом fx′≡∂⁡f∂⁡x обозначена
частная производная функции f по переменной x —
то есть обычная производная f по x, взятая при условии, что
все остальные аргументы (кроме x) считаются постоянными параметрами.
Тогда пользуясь формулой для нахождения дисперсии суммы независимых
величин (2.7), получим соотношение, позволяющее вычислять
погрешности косвенных измерений для произвольной функции
u=f⁢(x,y,…):

σu2=fx′⁣2⁢σx2+fy′⁣2⁢σy2+… (2.11)

Это и есть искомая общая формула пересчёта погрешностей при косвенных
измерениях.

Отметим, что формулы (2.10) и (2.11) применимы
только если относительные отклонения всех величин малы
(εx,εy,…≪1),
а измерения проводятся вдали от особых точек функции f (производные
fx′, fy′ … не должны обращаться в бесконечность).
Также подчеркнём, что все полученные здесь формулы справедливы только
для независимых переменных x, y, …

Остановимся на некоторых важных частных случаях формулы
(2.11).


Пример. Для суммы (или разности) u=∑i=1nai⁢xi имеем



σu2=∑i=1nai2⁢σxi2.

(2.12)



Пример. Найдём погрешность степенной функции:
u=xα⋅yβ⋅…. Тогда нетрудно получить,
что



σu2u2=α2⁢σx2x2+β2⁢σy2y2+…


или через относительные погрешности



εu2=α2⁢εx2+β2⁢εy2+…

(2.13)



Пример. Вычислим погрешность произведения и частного: u=x⁢y или u=x/y.
Тогда в обоих случаях имеем



εu2=εx2+εy2,

(2.14)


то есть при умножении или делении относительные погрешности складываются
квадратично.


Пример. Рассмотрим несколько более сложный случай: нахождение угла по его тангенсу



u=arctgyx.


В таком случае, пользуясь тем, что (arctgz)′=11+z2,
где z=y/x, и используя производную сложной функции, находим
ux′=uz′⁢zx′=-yx2+y2,
uy′=uz′⁢zy′=xx2+y2, и наконец



σu2=y2⁢σx2+x2⁢σy2(x2+y2)2.


Упражнение. Найти погрешность вычисления гипотенузы z=x2+y2
прямоугольного треугольника по измеренным катетам x и y.

По итогам данного раздела можно дать следующие практические рекомендации.

  • Как правило, нет смысла увеличивать точность измерения какой-то одной
    величины, если другие величины, используемые в расчётах, остаются
    измеренными относительно грубо — всё равно итоговая погрешность
    скорее всего будет определяться самым неточным измерением. Поэтому
    все измерения имеет смысл проводить примерно с одной и той же
    относительной погрешностью
    .

  • При этом, как следует из (2.13), особое внимание
    следует уделять измерению величин, возводимых при расчётах в степени
    с большими показателями. А при сложных функциональных зависимостях
    имеет смысл детально проанализировать структуру формулы
    (2.11):
    если вклад от некоторой величины в общую погрешность мал, нет смысла
    гнаться за высокой точностью её измерения, и наоборот, точность некоторых
    измерений может оказаться критически важной.

  • Следует избегать измерения малых величин как разности двух близких
    значений (например, толщины стенки цилиндра как разности внутреннего
    и внешнего радиусов): если u=x-y, то абсолютная погрешность
    σu=σx2+σy2
    меняется мало, однако относительная погрешность
    εu=σux-y
    может оказаться неприемлемо большой, если x≈y.

Абсолютная погрешность

  1. Причины возникновения погрешности измерения
  2. Систематическая и случайная погрешности
  3. Определение абсолютной погрешности
  4. Алгоритм оценки абсолютной погрешности в серии прямых измерений
  5. Значащие цифры и правила округления результатов измерений
  6. Примеры

Причины возникновения погрешности измерения

Погрешность измерения – это отклонение измеренного значения величины от её истинного (действительного) значения.

Обычно «истинное» значение неизвестно, и можно только оценить погрешность, приняв в качестве «истинного» среднее значение, полученное в серии измерений. Таким образом, процесс оценки проводится статистическими методами.

Виды погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Теоретическая погрешность

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Систематическая и случайная погрешности

Систематической погрешностью называют погрешность, которая остаётся постоянной или изменяется закономерно во времени при повторных измерениях одной и той же величины.

Систематическая погрешность всегда имеет знак «+» или «-», т.е. говорят о систематическом завышении или занижении результатов измерений.

Систематическую погрешность можно легко определить, если известно эталонное (табличное) значение измеряемой величины. Для других случаев разработаны эффективные статистические методы выявления систематических погрешностей. Причиной систематической погрешности может быть неправильная настройка приборов или неправильная оценка параметров (завышенная или заниженная) в расчётных формулах.

Случайной погрешностью называют погрешность, которая не имеет постоянного значения при повторных измерениях одной и той же величины.

Случайные погрешности неизбежны и всегда присутствуют при измерениях.

Определение абсолютной погрешности

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины:

$$ Delta x = |x_{изм}-x_{ист} | $$

Например:

При пяти взвешиваниях гири с маркировкой 100 г были получены различные значения массы. Если принять маркировку за истинное значение, то получаем следующие значения абсолютной погрешности:

$m_i,г$

98,4

99,2

98,1

100,3

98,5

$Delta m_i, г$

1,6

0,8

1,9

0,3

1,5

Граница абсолютной погрешности – это величина h: $ |x-x_{ист}| le h $

Для оценки границы абсолютной погрешности на практике используются статистические методы.

Алгоритм оценки абсолютной погрешности в серии прямых измерений

Шаг 1. Проводим серию из N измерений, в каждом из которых получаем значение измеряемой величины $x_i, i = overline{1, N}$.

Шаг 2. Находим оценку истинного значения x как среднее арифметическое данной серии измерений:

$$ a = x_{cp} = frac{x_1+x_2+ cdots +x_N}{N} = frac{1}{N} sum_{i = 1}^N x_i $$

Шаг 3. Рассчитываем абсолютные погрешности для каждого измерения:

$$ Delta x_i = |x_i-a| $$

Шаг 4. Находим среднее арифметическое абсолютных погрешностей:

$$ Delta x_{cp} = frac{Delta x_1+ Delta x_2+ cdots + Delta x_N}{N} = frac{1}{N} sum_{i = 1}^N Delta x_i $$

Шаг 5. Определяем инструментальную погрешность при измерении как цену деления прибора (инструмента) d.

Шаг 6. Проводим оценку границы абсолютной погрешности серии измерений, выбирая большую из двух величин:

$$ h = max {d; Delta x_{cp} } $$

Шаг 7. Округляем и записываем результаты измерений в виде:

$$ a-h le x le a+h или x = a pm h $$

Значащие цифры и правила округления результатов измерений

Значащими цифрами – называют все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Например:

0,00501 — три значащие цифры 5,0 и 1.

5,01 — три значащие цифры.

5,0100 – пять значащих цифр; такая запись означает, что величина измерена с точностью 0,0001.

Внимание!

Правила округления.

Погрешность измерения округляют до первой значащей цифры, всегда увеличивая ее на единицу (округление по избытку, “ceiling”).

Округлять результаты измерений и вычислений нужно так, чтобы последняя значащая цифра находилась в том же десятичном разряде, что и абсолютная погрешность измеряемой величины.

Например: если при расчетах по результатам серии измерений получена оценка истинного значения a=1,725, а оценка абсолютной погрешности h = 0,11, то результат записывается так:

$$ a approx 1,7; h approx ↑0,2; 1,5 le x le 1,9 или x = 1,7 pm 0,2 $$

Примеры

Пример 1. При измерении температура воды оказалась в пределах от 11,55 ℃ до 11,63 ℃. Какова абсолютная погрешность этих измерений?

По условию $11,55 le t le 11,63$. Получаем систему уравнений:

$$ {left{ begin{array}{c} a-h = 11,55 \ a+h = 11,63 end{array} right.} Rightarrow {left{ begin{array}{c} 2a = 11,55+11,63 = 23,18 \ 2h = 11,63-11,55 = 0,08 end{array} right.} Rightarrow {left{ begin{array}{c} a = 11,59 \ h = 0,04end{array} right.} $$

$$ t = 11,59 pm 0,04 ℃ $$

Ответ: 0,04 ℃

Пример 2. По результатам измерений найдите границы измеряемой величины. Инструментальная погрешность d = 0,1.

$x_i$

15,3

16,4

15,3

15,8

15,7

16,2

15,9

Находим среднее арифметическое:

$$ a = x_{ср} = frac{15,3+16,4+ cdots +15,9}{7} = 15,8 $$

Находим абсолютные погрешности:

$$ Delta x_i = |x_i-a| $$

$ Delta x_i$

0,5

0,6

0,5

0

0,1

0,4

0,1

Находим среднее арифметическое:

$$ Delta x_{ср} = frac{0,5+0,6+ cdots + 0,1}{7} approx 0,31 gt d $$

Выбираем большую величину:

$$ h = max {d; Delta x_{ср} } = max⁡ {0,1; 0,31} = 0,31 $$

Округляем по правилам округления по избытку: $h approx ↑0,4$.

Получаем: x = 15, $8 pm 0,4$

Границы: $15,4 le x le 16,2$

Ответ: $15,4 le x le 16,2$

Пример 3*. В первой серии экспериментов было получено значение $x = a pm 0,3$. Во второй серии экспериментов было получено более точное значение $x = 5,631 pm 0,001$. Найдите оценку средней a согласно полученным значениям x.

Более точное значение определяет более узкий интервал для x. По условию:

$$ {left{ begin{array}{c} a-0,3 le x le a+0,3 \ 5,630 le x le 5,632 end{array} right.} Rightarrow a-0,3 le 5,630 le x le 5,632 le a+0,3 Rightarrow $$

$$ Rightarrow {left{ begin{array}{c} a-0,3 le 5,630 \ 5,632 le a+0,3 end{array} right.} Rightarrow {left{ begin{array}{c} a le 5,930 \ 5,332 le a end{array} right.} Rightarrow 5,332 le a le 5,930 $$

Т.к. a получено в серии экспериментов с погрешностью h=0,3, следует округлить полученные границы до десятых:

$$ 5,3 le a le 5,9 $$

Ответ: $ 5,3 le a le 5,9 $

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

Понравилась статья? Поделить с друзьями:
  • Как определить что ошибка в компиляторе а не программы
  • Как определить уровень существенности допущенной ошибки
  • Как определить уровень существенности для ошибки
  • Как определить уровень допустимой ошибки
  • Как определить тип ошибки в сложном предложении