Как называется процесс выявления ошибок в программном продукте

Фундаментальная теория тестирования

Время на прочтение
15 мин

Количество просмотров 744K

В тестировании нет четких определений, как в физике, математике, которые при перефразировании становятся абсолютно неверными. Поэтому важно понимать процессы и подходы. В данной статье разберем основные определения теории тестирования.

Перейдем к основным понятиям

Тестирование программного обеспечения (Software Testing) — проверка соответствия реальных и ожидаемых результатов поведения программы, проводимая на конечном наборе тестов, выбранном определённым образом.

Цель тестирования — проверка соответствия ПО предъявляемым требованиям, обеспечение уверенности в качестве ПО, поиск очевидных ошибок в программном обеспечении, которые должны быть выявлены до того, как их обнаружат пользователи программы.

Для чего проводится тестирование ПО?

  • Для проверки соответствия требованиям.
  • Для обнаружение проблем на более ранних этапах разработки и предотвращение повышения стоимости продукта.
  • Обнаружение вариантов использования, которые не были предусмотрены при разработке. А также взгляд на продукт со стороны пользователя.
  • Повышение лояльности к компании и продукту, т.к. любой обнаруженный дефект негативно влияет на доверие пользователей.

Принципы тестирования

  • Принцип 1 — Тестирование демонстрирует наличие дефектов (Testing shows presence of defects).
    Тестирование только снижает вероятность наличия дефектов, которые находятся в программном обеспечении, но не гарантирует их отсутствия.
  • Принцип 2 — Исчерпывающее тестирование невозможно (Exhaustive testing is impossible).
    Полное тестирование с использованием всех входных комбинаций данных, результатов и предусловий физически невыполнимо (исключение — тривиальные случаи).
  • Принцип 3 — Раннее тестирование (Early testing).
    Следует начинать тестирование на ранних стадиях жизненного цикла разработки ПО, чтобы найти дефекты как можно раньше.
  • Принцип 4 — Скопление дефектов (Defects clustering).
    Большая часть дефектов находится в ограниченном количестве модулей.
  • Принцип 5 — Парадокс пестицида (Pesticide paradox).
    Если повторять те же тестовые сценарии снова и снова, в какой-то момент этот набор тестов перестанет выявлять новые дефекты.
  • Принцип 6 — Тестирование зависит от контекста (Testing is context depending). Тестирование проводится по-разному в зависимости от контекста. Например, программное обеспечение, в котором критически важна безопасность, тестируется иначе, чем новостной портал.
  • Принцип 7 — Заблуждение об отсутствии ошибок (Absence-of-errors fallacy). Отсутствие найденных дефектов при тестировании не всегда означает готовность продукта к релизу. Система должна быть удобна пользователю в использовании и удовлетворять его ожиданиям и потребностям.

Обеспечение качества (QA — Quality Assurance) и контроль качества (QC — Quality Control) — эти термины похожи на взаимозаменяемые, но разница между обеспечением качества и контролем качества все-таки есть, хоть на практике процессы и имеют некоторую схожесть.

QC (Quality Control) — Контроль качества продукта — анализ результатов тестирования и качества новых версий выпускаемого продукта.

К задачам контроля качества относятся:

  • проверка готовности ПО к релизу;
  • проверка соответствия требований и качества данного проекта.

QA (Quality Assurance) — Обеспечение качества продукта — изучение возможностей по изменению и улучшению процесса разработки, улучшению коммуникаций в команде, где тестирование является только одним из аспектов обеспечения качества.

К задачам обеспечения качества относятся:

  • проверка технических характеристик и требований к ПО;
  • оценка рисков;
  • планирование задач для улучшения качества продукции;
  • подготовка документации, тестового окружения и данных;
  • тестирование;
  • анализ результатов тестирования, а также составление отчетов и других документов.

Скриншот

Верификация и валидация — два понятия тесно связаны с процессами тестирования и обеспечения качества. К сожалению, их часто путают, хотя отличия между ними достаточно существенны.

Верификация (verification) — это процесс оценки системы, чтобы понять, удовлетворяют ли результаты текущего этапа разработки условиям, которые были сформулированы в его начале.

Валидация (validation) — это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, его требованиям к системе.

Пример: когда разрабатывали аэробус А310, то надо было сделать так, чтобы закрылки вставали в положение «торможение», когда шасси коснулись земли. Запрограммировали так, что когда шасси начинают крутиться, то закрылки ставим в положение «торможение». Но вот во время испытаний в Варшаве самолет выкатился за пределы полосы, так как была мокрая поверхность. Он проскользил, только потом был крутящий момент и они, закрылки, открылись. С точки зрения «верификации» — программа сработала, с точки зрения «валидации» — нет. Поэтому код изменили так, чтобы в момент изменения давления в шинах открывались закрылки.

Документацию, которая используется на проектах по разработке ПО, можно условно разделить на две группы:

  1. Проектная документация — включает в себя всё, что относится к проекту в целом.
  2. Продуктовая документация — часть проектной документации, выделяемая отдельно, которая относится непосредственно к разрабатываемому приложению или системе.

Этапы тестирования:

  1. Анализ продукта
  2. Работа с требованиями
  3. Разработка стратегии тестирования и планирование процедур контроля качества
  4. Создание тестовой документации
  5. Тестирование прототипа
  6. Основное тестирование
  7. Стабилизация
  8. Эксплуатация

Стадии разработки ПО — этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широкого круга пользователей.

Программный продукт проходит следующие стадии:

  1. анализ требований к проекту;
  2. проектирование;
  3. реализация;
  4. тестирование продукта;
  5. внедрение и поддержка.

Требования

Требования — это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения.

Атрибуты требований:

  1. Корректность — точное описание разрабатываемого функционала.
  2. Проверяемость — формулировка требований таким образом, чтобы можно было выставить однозначный вердикт, выполнено все в соответствии с требованиями или нет.
  3. Полнота — в требовании должна содержаться вся необходимая для реализации функциональности информация.
  4. Недвусмысленность — требование должно содержать однозначные формулировки.
  5. Непротиворечивость — требование не должно содержать внутренних противоречий и противоречий другим требованиям и документам.
  6. Приоритетность — у каждого требования должен быть приоритет(количественная оценка степени значимости требования). Этот атрибут позволит грамотно управлять ресурсами на проекте.
  7. Атомарность — требование нельзя разбить на отдельные части без потери деталей.
  8. Модифицируемость — в каждое требование можно внести изменение.
  9. Прослеживаемость — каждое требование должно иметь уникальный идентификатор, по которому на него можно сослаться.

Дефект (bug) — отклонение фактического результата от ожидаемого.

Отчёт о дефекте (bug report) — документ, который содержит отчет о любом недостатке в компоненте или системе, который потенциально может привести компонент или систему к невозможности выполнить требуемую функцию.

Атрибуты отчета о дефекте:

  1. Уникальный идентификатор (ID) — присваивается автоматически системой при создании баг-репорта.
  2. Тема (краткое описание, Summary) — кратко сформулированный смысл дефекта, отвечающий на вопросы: Что? Где? Когда(при каких условиях)?
  3. Подробное описание (Description) — более широкое описание дефекта (указывается опционально).
  4. Шаги для воспроизведения (Steps To Reproduce) — описание четкой последовательности действий, которая привела к выявлению дефекта. В шагах воспроизведения должен быть описан каждый шаг, вплоть до конкретных вводимых значений, если они играют роль в воспроизведении дефекта.
  5. Фактический результат (Actual result) — описывается поведение системы на момент обнаружения дефекта в ней. чаще всего, содержит краткое описание некорректного поведения(может совпадать с темой отчета о дефекте).
  6. Ожидаемый результат (Expected result) — описание того, как именно должна работать система в соответствии с документацией.
  7. Вложения (Attachments) — скриншоты, видео или лог-файлы.
  8. Серьёзность дефекта (важность, Severity) — характеризует влияние дефекта на работоспособность приложения.
  9. Приоритет дефекта (срочность, Priority) — указывает на очерёдность выполнения задачи или устранения дефекта.
  10. Статус (Status) — определяет текущее состояние дефекта. Статусы дефектов могут быть разными в разных баг-трекинговых системах.
  11. Окружение (Environment) – окружение, на котором воспроизвелся баг.

Жизненный цикл бага

Скриншот

Severity vs Priority

Серьёзность (severity) показывает степень ущерба, который наносится проекту существованием дефекта. Severity выставляется тестировщиком.

Градация Серьезности дефекта (Severity):

  • Блокирующий (S1 – Blocker)
    тестирование значительной части функциональности вообще недоступно. Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна.
  • Критический (S2 – Critical)
    критическая ошибка, неправильно работающая ключевая бизнес-логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, то есть не работает важная часть одной какой-либо функции либо не работает значительная часть, но имеется workaround (обходной путь/другие входные точки), позволяющий продолжить тестирование.
  • Значительный (S3 – Major)
    не работает важная часть одной какой-либо функции/бизнес-логики, но при выполнении специфических условий, либо есть workaround, позволяющий продолжить ее тестирование либо не работает не очень значительная часть какой-либо функции. Также относится к дефектам с высокими visibility – обычно не сильно влияющие на функциональность дефекты дизайна, которые, однако, сразу бросаются в глаза.
  • Незначительный (S4 – Minor)
    часто ошибки GUI, которые не влияют на функциональность, но портят юзабилити или внешний вид. Также незначительные функциональные дефекты, либо которые воспроизводятся на определенном устройстве.
  • Тривиальный (S5 – Trivial)
    почти всегда дефекты на GUI — опечатки в тексте, несоответствие шрифта и оттенка и т.п., либо плохо воспроизводимая ошибка, не касающаяся бизнес-логики, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Срочность (priority) показывает, как быстро дефект должен быть устранён. Priority выставляется менеджером, тимлидом или заказчиком

Градация Приоритета дефекта (Priority):

  • P1 Высокий (High)
    Критическая для проекта ошибка. Должна быть исправлена как можно быстрее.
  • P2 Средний (Medium)
    Не критичная для проекта ошибка, однако требует обязательного решения.
  • P3 Низкий (Low)
    Наличие данной ошибки не является критичным и не требует срочного решения. Может быть исправлена, когда у команды появится время на ее устранение.

Существует шесть базовых типов задач:

  • Эпик (epic) — большая задача, на решение которой команде нужно несколько спринтов.
  • Требование (requirement ) — задача, содержащая в себе описание реализации той или иной фичи.
  • История (story) — часть большой задачи (эпика), которую команда может решить за 1 спринт.
  • Задача (task) — техническая задача, которую делает один из членов команды.
  • Под-задача (sub-task) — часть истории / задачи, которая описывает минимальный объем работы члена команды.
  • Баг (bug) — задача, которая описывает ошибку в системе.

Тестовые среды

  • Среда разработки (Development Env) – за данную среду отвечают разработчики, в ней они пишут код, проводят отладку, исправляют ошибки
  • Среда тестирования (Test Env) – среда, в которой работают тестировщики (проверяют функционал, проводят smoke и регрессионные тесты, воспроизводят.
  • Интеграционная среда (Integration Env) – среда, в которой проводят тестирование взаимодействующих друг с другом модулей, систем, продуктов.
  • Предпрод (Preprod Env) – среда, которая максимально приближена к продакшену. Здесь проводится заключительное тестирование функционала.
  • Продакшн среда (Production Env) – среда, в которой работают пользователи.

Основные фазы тестирования

  • Pre-Alpha: прототип, в котором всё ещё присутствует много ошибок и наверняка неполный функционал. Необходим для ознакомления с будущими возможностями программ.
  • Alpha: является ранней версией программного продукта, тестирование которой проводится внутри фирмы-разработчика.
  • Beta: практически готовый продукт, который разработан в первую очередь для тестирования конечными пользователями.
  • Release Candidate (RC): возможные ошибки в каждой из фичей уже устранены и разработчики выпускают версию на которой проводится регрессионное тестирование.
  • Release: финальная версия программы, которая готова к использованию.

Основные виды тестирования ПО

Вид тестирования — это совокупность активностей, направленных на тестирование заданных характеристик системы или её части, основанная на конкретных целях.

Скриншот

  1. Классификация по запуску кода на исполнение:
    • Статическое тестирование — процесс тестирования, который проводится для верификации практически любого артефакта разработки: программного кода компонент, требований, системных спецификаций, функциональных спецификаций, документов проектирования и архитектуры программных систем и их компонентов.
    • Динамическое тестирование — тестирование проводится на работающей системе, не может быть осуществлено без запуска программного кода приложения.

  2. Классификация по доступу к коду и архитектуре:
    • Тестирование белого ящика — метод тестирования ПО, который предполагает полный доступ к коду проекта.
    • Тестирование серого ящика — метод тестирования ПО, который предполагает частичный доступ к коду проекта (комбинация White Box и Black Box методов).
    • Тестирование чёрного ящика — метод тестирования ПО, который не предполагает доступа (полного или частичного) к системе. Основывается на работе исключительно с внешним интерфейсом тестируемой системы.

  3. Классификация по уровню детализации приложения:
    • Модульное тестирование — проводится для тестирования какого-либо одного логически выделенного и изолированного элемента (модуля) системы в коде. Проводится самими разработчиками, так как предполагает полный доступ к коду.
    • Интеграционное тестирование — тестирование, направленное на проверку корректности взаимодействия нескольких модулей, объединенных в единое целое.
    • Системное тестирование — процесс тестирования системы, на котором проводится не только функциональное тестирование, но и оценка характеристик качества системы — ее устойчивости, надежности, безопасности и производительности.
    • Приёмочное тестирование — проверяет соответствие системы потребностям, требованиям и бизнес-процессам пользователя.

  4. Классификация по степени автоматизации:
    • Ручное тестирование.
    • Автоматизированное тестирование.

  5. Классификация по принципам работы с приложением
    • Позитивное тестирование — тестирование, при котором используются только корректные данные.
    • Негативное тестирование — тестирование приложения, при котором используются некорректные данные и выполняются некорректные операции.

  6. Классификация по уровню функционального тестирования:
    • Дымовое тестирование (smoke test) — тестирование, выполняемое на новой сборке, с целью подтверждения того, что программное обеспечение стартует и выполняет основные для бизнеса функции.
    • Тестирование критического пути (critical path) — направлено для проверки функциональности, используемой обычными пользователями во время их повседневной деятельности.
    • Расширенное тестирование (extended) — направлено на исследование всей заявленной в требованиях функциональности.

  7. Классификация в зависимости от исполнителей:
    • Альфа-тестирование — является ранней версией программного продукта. Может выполняться внутри организации-разработчика с возможным частичным привлечением конечных пользователей.
    • Бета-тестирование — программное обеспечение, выпускаемое для ограниченного количества пользователей. Главная цель — получить отзывы клиентов о продукте и внести соответствующие изменения.

  8. Классификация в зависимости от целей тестирования:
    • Функциональное тестирование (functional testing) — направлено на проверку корректности работы функциональности приложения.
    • Нефункциональное тестирование (non-functional testing) — тестирование атрибутов компонента или системы, не относящихся к функциональности.
      1. Тестирование производительности (performance testing) — определение стабильности и потребления ресурсов в условиях различных сценариев использования и нагрузок.
      2. Нагрузочное тестирование (load testing) — определение или сбор показателей производительности и времени отклика программно-технической системы или устройства в ответ на внешний запрос с целью установления соответствия требованиям, предъявляемым к данной системе (устройству).
      3. Тестирование масштабируемости (scalability testing) — тестирование, которое измеряет производительность сети или системы, когда количество пользовательских запросов увеличивается или уменьшается.
      4. Объёмное тестирование (volume testing) — это тип тестирования программного обеспечения, которое проводится для тестирования программного приложения с определенным объемом данных.
      5. Стрессовое тестирование (stress testing) — тип тестирования направленный для проверки, как система обращается с нарастающей нагрузкой (количеством одновременных пользователей).
      6. Инсталляционное тестирование (installation testing) — тестирование, направленное на проверку успешной установки и настройки, обновления или удаления приложения.
      7. Тестирование интерфейса (GUI/UI testing) — проверка требований к пользовательскому интерфейсу.
      8. Тестирование удобства использования (usability testing) — это метод тестирования, направленный на установление степени удобства использования, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий.
      9. Тестирование локализации (localization testing) — проверка адаптации программного обеспечения для определенной аудитории в соответствии с ее культурными особенностями.
      10. Тестирование безопасности (security testing) — это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.
      11. Тестирование надёжности (reliability testing) — один из видов нефункционального тестирования ПО, целью которого является проверка работоспособности приложения при длительном тестировании с ожидаемым уровнем нагрузки.
      12. Регрессионное тестирование (regression testing) — тестирование уже проверенной ранее функциональности после внесения изменений в код приложения, для уверенности в том, что эти изменения не внесли ошибки в областях, которые не подверглись изменениям.
      13. Повторное/подтверждающее тестирование (re-testing/confirmation testing) — тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.

Тест-дизайн — это этап тестирования ПО, на котором проектируются и создаются тестовые случаи (тест-кейсы).

Техники тест-дизайна

Автор книги «A Practitioner’s Guide to Software Test Design», Lee Copeland, выделяет следующие техники тест-дизайна:

  1. Тестирование на основе классов эквивалентности (equivalence partitioning) — это техника, основанная на методе чёрного ящика, при которой мы разделяем функционал (часто диапазон возможных вводимых значений) на группы эквивалентных по своему влиянию на систему значений.
  2. Техника анализа граничных значений (boundary value testing) — это техника проверки поведения продукта на крайних (граничных) значениях входных данных.
  3. Попарное тестирование (pairwise testing) — это техника формирования наборов тестовых данных из полного набора входных данных в системе, которая позволяет существенно сократить количество тест-кейсов.
  4. Тестирование на основе состояний и переходов (State-Transition Testing) — применяется для фиксирования требований и описания дизайна приложения.
  5. Таблицы принятия решений (Decision Table Testing) — техника тестирования, основанная на методе чёрного ящика, которая применяется для систем со сложной логикой.
  6. Доменный анализ (Domain Analysis Testing) — это техника основана на разбиении диапазона возможных значений переменной на поддиапазоны, с последующим выбором одного или нескольких значений из каждого домена для тестирования.
  7. Сценарий использования (Use Case Testing) — Use Case описывает сценарий взаимодействия двух и более участников (как правило — пользователя и системы).

Методы тестирования

Скриншот

Тестирование белого ящика — метод тестирования ПО, который предполагает, что внутренняя структура/устройство/реализация системы известны тестировщику.

Согласно ISTQB, тестирование белого ящика — это:

  • тестирование, основанное на анализе внутренней структуры компонента или системы;
  • тест-дизайн, основанный на технике белого ящика — процедура написания или выбора тест-кейсов на основе анализа внутреннего устройства системы или компонента.
  • Почему «белый ящик»? Тестируемая программа для тестировщика — прозрачный ящик, содержимое которого он прекрасно видит.

Тестирование серого ящика — метод тестирования ПО, который предполагает комбинацию White Box и Black Box подходов. То есть, внутреннее устройство программы нам известно лишь частично.

Тестирование чёрного ящика — также известное как тестирование, основанное на спецификации или тестирование поведения — техника тестирования, основанная на работе исключительно с внешними интерфейсами тестируемой системы.

Согласно ISTQB, тестирование черного ящика — это:

  • тестирование, как функциональное, так и нефункциональное, не предполагающее знания внутреннего устройства компонента или системы;
  • тест-дизайн, основанный на технике черного ящика — процедура написания или выбора тест-кейсов на основе анализа функциональной или нефункциональной спецификации компонента или системы без знания ее внутреннего устройства.

Тестовая документация

Тест план (Test Plan) — это документ, который описывает весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков.

Тест план должен отвечать на следующие вопросы:

  • Что необходимо протестировать?
  • Как будет проводиться тестирование?
  • Когда будет проводиться тестирование?
  • Критерии начала тестирования.
  • Критерии окончания тестирования.

Основные пункты тест плана:

  1. Идентификатор тест плана (Test plan identifier);
  2. Введение (Introduction);
  3. Объект тестирования (Test items);
  4. Функции, которые будут протестированы (Features to be tested;)
  5. Функции, которые не будут протестированы (Features not to be tested);
  6. Тестовые подходы (Approach);
  7. Критерии прохождения тестирования (Item pass/fail criteria);
  8. Критерии приостановления и возобновления тестирования (Suspension criteria and resumption requirements);
  9. Результаты тестирования (Test deliverables);
  10. Задачи тестирования (Testing tasks);
  11. Ресурсы системы (Environmental needs);
  12. Обязанности (Responsibilities);
  13. Роли и ответственность (Staffing and training needs);
  14. Расписание (Schedule);
  15. Оценка рисков (Risks and contingencies);
  16. Согласования (Approvals).

Чек-лист (check list) — это документ, который описывает что должно быть протестировано. Чек-лист может быть абсолютно разного уровня детализации.

Чаще всего чек-лист содержит только действия, без ожидаемого результата. Чек-лист менее формализован.

Тестовый сценарий (test case) — это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.

Атрибуты тест кейса:

  • Предусловия (PreConditions) — список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
  • Шаги (Steps) — список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям.
  • Ожидаемый результат (Expected result) — что по факту должны получить.

Резюме

Старайтесь понять определения, а не зазубривать. Если хотите узнать больше про тестирование, то можете почитать Библию QA. А если возникнет вопрос, всегда можете задать его нам в телеграм-канале @qa_chillout.

Отладка программы — один их самых сложных этапов разработки программного обеспечения, требующий глубокого знания:

специфики управления используемыми техническими средствами,

операционной системы,

среды и языка программирования,

реализуемых процессов,

природы и специфики различных ошибок,

методик отладки и соответствующих программных средств. 

Отладка — это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Доя исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.

Вцелом сложность отладки обусловлена следующими причинами:

требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;

психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;

возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;

отсутствуют четко сформулированные методики отладки.

Всоответствии с этапом обработки, на котором проявляются ошибки, различают (рис. 10.1):


    синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы; ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;

    ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы.

Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.

Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах. В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым — Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:

if (c = n) x = 0; /* в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых */ 

Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами,

обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.

    Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:

• появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление на ноль», нарушении адресации и т. п.;

появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении защиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;

«зависание» компьютера, как простое, когда удается завершить программу без перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;

несовпадение полученных результатов с ожидаемыми.

Примечание. Отметим, что, если ошибки этапа выполнения обнаруживает пользователь, то в двух первых случаях, получив соответствующее сообщение, пользователь в зависимости от своего характера, степени необходимости и опыта работы за компьютером, либо попробует понять, что произошло, ища свою вину, либо обратится за помощью, либо постарается никогда больше не иметь дела с этим продуктом. При «зависании» компьютера пользователь может даже не сразу понять, что происходит что-то не то, хотя его печальный опыт и заставляет волноваться каждый раз, когда компьютер не выдает быстрой реакции на введенную команду, что также целесообразно иметь в виду. Также опасны могут быть ситуации, при которых пользователь получает неправильные результаты и использует их в своей работе.

Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:

неверное определение исходных данных,

логические ошибки,

накопление погрешностей результатов вычислений (рис. 10.2).

Н е в е р н о е о п р е д е л е н и е и с х о д н ы х д а н н ы х происходит, если возникают любые ошибки при выполнении операций ввода-вывода: ошибки передачи, ошибки преобразования, ошибки перезаписи и ошибки данных. Причем использование специальных технических средств и программирование с защитой от ошибок (см.§ 2.7) позволяет обнаружить и предотвратить только часть этих ошибок, о чем безусловно не следует забывать.

Л о г и ч е с к и е о ш и б к и имеют разную природу. Так они могут следовать из ошибок, допущенных при проектировании, например, при выборе методов, разработке алгоритмов или определении структуры классов, а могут быть непосредственно внесены при кодировании модуля.

Кпоследней группе относят:

ошибки некорректного использования переменных, например, неудачный выбор типов данных, использование переменных до их инициализации, использование индексов, выходящих за границы определения массивов, нарушения соответствия типов данных при использовании явного или неявного переопределения типа данных, расположенных в памяти при использовании нетипизированных переменных, открытых массивов, объединений, динамической памяти, адресной арифметики и т. п.;

ошибки вычислений, например, некорректные вычисления над неарифметическими переменными, некорректное использование целочисленной арифметики, некорректное преобразование типов данных в процессе вычислений, ошибки, связанные с незнанием приоритетов выполнения операций для арифметических и логических выражений, и т. п.;

ошибки межмодульного интерфейса, например, игнорирование системных соглашений, нарушение типов и последовательности при передачи параметров, несоблюдение единства единиц измерения формальных и фактических параметров, нарушение области действия локальных и глобальных переменных;

другие ошибки кодирования, например, неправильная реализация логики программы при кодировании, игнорирование особенностей или ограничений конкретного языка программирования.

На к о п л е н и е п о г р е ш н о с т е й результатов числовых вычислений возникает, например, при некорректном отбрасывании дробных цифр чисел, некорректном использовании приближенных методов вычислений, игнорировании ограничения разрядной сетки представления вещественных чисел в ЭВМ и т. п.

Все указанные выше причины возникновения ошибок следует иметь в виду в процессе отладки. Кроме того, сложность отладки увеличивается также вследствие влияния следующих факторов:

опосредованного проявления ошибок;

возможности взаимовлияния ошибок;

возможности получения внешне одинаковых проявлений разных ошибок;

отсутствия повторяемости проявлений некоторых ошибок от запуска к запуску – так называемые стохастические ошибки;

возможности устранения внешних проявлений ошибок в исследуемой ситуации при внесении некоторых изменений в программу, например, при включении в программу диагностических фрагментов может аннулироваться или измениться внешнее проявление ошибок;

написания отдельных частей программы разными программистами.

Методы отладки программного обеспечения

Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:

ручного тестирования;

индукции;

дедукции;

обратного прослеживания.

Метод ручного тестирования. Это — самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которым была обнаружена ошибка.

Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций.

Данный метод часто используют как составную часть других методов отладки.

Метод индукции. Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе — выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рис. 10.3 в виде схемы алгоритма.

Самый ответственный этап — выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о ее проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов.

В процессе доказательства пытаются выяснить, все ли проявления ошибки объясняет данная гипотеза, если не все, то либо гипотеза не верна, либо ошибок несколько.

Метод дедукции. По методу дедукции вначале формируют множество причин, которые могли бы вызвать данное проявление ошибки. Затем анализируя причины, исключают те, которые противоречат имеющимся данным. Если все причины исключены, то следует выполнить дополнительное тестирование исследуемого фрагмента. В противном случае наиболее вероятную гипотезу пытаются доказать. Если гипотеза объясняет полученные признаки ошибки, то ошибка найдена, иначе — проверяют следующую причину (рис. 10.4).

Метод обратного прослеживания. Для небольших программ эффективно применение метода обратного прослеживания. Начинают с точки вывода неправильного результата. Для этой точки строится гипотеза о значениях основных переменных, которые могли бы привести к получению имеющегося результата. Далее, исходя из этой гипотезы, делают предложения о значениях переменных в предыдущей точке. Процесс продолжают, пока не обнаружат причину ошибки.

При разработке программного обеспечения значительная часть производственного процесса опирается на тестирование программ. Что это такое и как осуществляется подобная деятельность обсудим в данной статье.

Что называют тестированием?

тестирование программ

Верификация и валидация — два понятия тесно связаны с процессами тестирования и обеспечения качества. К сожалению, их часто путают, хотя отличия между ними достаточно существенны.

Верификация (verification) — это процесс оценки системы, чтобы понять, удовлетворяют ли результаты текущего этапа разработки условиям, которые были сформулированы в его начале.

Валидация (validation) — это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, его требованиям к системе.

Пример: когда разрабатывали аэробус А310, то надо было сделать так, чтобы закрылки вставали в положение «торможение», когда шасси коснулись земли. Запрограммировали так, что когда шасси начинают крутиться, то закрылки ставим в положение «торможение». Но вот во время испытаний в Варшаве самолет выкатился за пределы полосы, так как была мокрая поверхность. Он проскользил, только потом был крутящий момент и они, закрылки, открылись. С точки зрения «верификации» — программа сработала, с точки зрения «валидации» — нет. Поэтому код изменили так, чтобы в момент изменения давления в шинах открывались закрылки.

Документацию, которая используется на проектах по разработке ПО, можно условно разделить на две группы:

  1. Проектная документация — включает в себя всё, что относится к проекту в целом.
  2. Продуктовая документация — часть проектной документации, выделяемая отдельно, которая относится непосредственно к разрабатываемому приложению или системе.

Этапы тестирования:

  1. Анализ продукта
  2. Работа с требованиями
  3. Разработка стратегии тестирования и планирование процедур контроля качества
  4. Создание тестовой документации
  5. Тестирование прототипа
  6. Основное тестирование
  7. Стабилизация
  8. Эксплуатация

Стадии разработки ПО — этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широкого круга пользователей.

Программный продукт проходит следующие стадии:

  1. анализ требований к проекту;
  2. проектирование;
  3. реализация;
  4. тестирование продукта;
  5. внедрение и поддержка.

Требования

Требования — это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения.

Атрибуты требований:

  1. Корректность — точное описание разрабатываемого функционала.
  2. Проверяемость — формулировка требований таким образом, чтобы можно было выставить однозначный вердикт, выполнено все в соответствии с требованиями или нет.
  3. Полнота — в требовании должна содержаться вся необходимая для реализации функциональности информация.
  4. Недвусмысленность — требование должно содержать однозначные формулировки.
  5. Непротиворечивость — требование не должно содержать внутренних противоречий и противоречий другим требованиям и документам.
  6. Приоритетность — у каждого требования должен быть приоритет(количественная оценка степени значимости требования). Этот атрибут позволит грамотно управлять ресурсами на проекте.
  7. Атомарность — требование нельзя разбить на отдельные части без потери деталей.
  8. Модифицируемость — в каждое требование можно внести изменение.
  9. Прослеживаемость — каждое требование должно иметь уникальный идентификатор, по которому на него можно сослаться.

Дефект (bug) — отклонение фактического результата от ожидаемого.

Отчёт о дефекте (bug report) — документ, который содержит отчет о любом недостатке в компоненте или системе, который потенциально может привести компонент или систему к невозможности выполнить требуемую функцию.

Атрибуты отчета о дефекте:

  1. Уникальный идентификатор (ID) — присваивается автоматически системой при создании баг-репорта.
  2. Тема (краткое описание, Summary) — кратко сформулированный смысл дефекта, отвечающий на вопросы: Что? Где? Когда(при каких условиях)?
  3. Подробное описание (Description) — более широкое описание дефекта (указывается опционально).
  4. Шаги для воспроизведения (Steps To Reproduce) — описание четкой последовательности действий, которая привела к выявлению дефекта. В шагах воспроизведения должен быть описан каждый шаг, вплоть до конкретных вводимых значений, если они играют роль в воспроизведении дефекта.
  5. Фактический результат (Actual result) — описывается поведение системы на момент обнаружения дефекта в ней. чаще всего, содержит краткое описание некорректного поведения(может совпадать с темой отчета о дефекте).
  6. Ожидаемый результат (Expected result) — описание того, как именно должна работать система в соответствии с документацией.
  7. Вложения (Attachments) — скриншоты, видео или лог-файлы.
  8. Серьёзность дефекта (важность, Severity) — характеризует влияние дефекта на работоспособность приложения.
  9. Приоритет дефекта (срочность, Priority) — указывает на очерёдность выполнения задачи или устранения дефекта.
  10. Статус (Status) — определяет текущее состояние дефекта. Статусы дефектов могут быть разными в разных баг-трекинговых системах.
  11. Окружение (Environment) – окружение, на котором воспроизвелся баг.

Жизненный цикл бага

Скриншот

Severity vs Priority

Серьёзность (severity) показывает степень ущерба, который наносится проекту существованием дефекта. Severity выставляется тестировщиком.

Градация Серьезности дефекта (Severity):

  • Блокирующий (S1 – Blocker)
    тестирование значительной части функциональности вообще недоступно. Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна.
  • Критический (S2 – Critical)
    критическая ошибка, неправильно работающая ключевая бизнес-логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, то есть не работает важная часть одной какой-либо функции либо не работает значительная часть, но имеется workaround (обходной путь/другие входные точки), позволяющий продолжить тестирование.
  • Значительный (S3 – Major)
    не работает важная часть одной какой-либо функции/бизнес-логики, но при выполнении специфических условий, либо есть workaround, позволяющий продолжить ее тестирование либо не работает не очень значительная часть какой-либо функции. Также относится к дефектам с высокими visibility – обычно не сильно влияющие на функциональность дефекты дизайна, которые, однако, сразу бросаются в глаза.
  • Незначительный (S4 – Minor)
    часто ошибки GUI, которые не влияют на функциональность, но портят юзабилити или внешний вид. Также незначительные функциональные дефекты, либо которые воспроизводятся на определенном устройстве.
  • Тривиальный (S5 – Trivial)
    почти всегда дефекты на GUI — опечатки в тексте, несоответствие шрифта и оттенка и т.п., либо плохо воспроизводимая ошибка, не касающаяся бизнес-логики, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Срочность (priority) показывает, как быстро дефект должен быть устранён. Priority выставляется менеджером, тимлидом или заказчиком

Градация Приоритета дефекта (Priority):

  • P1 Высокий (High)
    Критическая для проекта ошибка. Должна быть исправлена как можно быстрее.
  • P2 Средний (Medium)
    Не критичная для проекта ошибка, однако требует обязательного решения.
  • P3 Низкий (Low)
    Наличие данной ошибки не является критичным и не требует срочного решения. Может быть исправлена, когда у команды появится время на ее устранение.

Существует шесть базовых типов задач:

  • Эпик (epic) — большая задача, на решение которой команде нужно несколько спринтов.
  • Требование (requirement ) — задача, содержащая в себе описание реализации той или иной фичи.
  • История (story) — часть большой задачи (эпика), которую команда может решить за 1 спринт.
  • Задача (task) — техническая задача, которую делает один из членов команды.
  • Под-задача (sub-task) — часть истории / задачи, которая описывает минимальный объем работы члена команды.
  • Баг (bug) — задача, которая описывает ошибку в системе.

Тестовые среды

  • Среда разработки (Development Env) – за данную среду отвечают разработчики, в ней они пишут код, проводят отладку, исправляют ошибки
  • Среда тестирования (Test Env) – среда, в которой работают тестировщики (проверяют функционал, проводят smoke и регрессионные тесты, воспроизводят.
  • Интеграционная среда (Integration Env) – среда, в которой проводят тестирование взаимодействующих друг с другом модулей, систем, продуктов.
  • Предпрод (Preprod Env) – среда, которая максимально приближена к продакшену. Здесь проводится заключительное тестирование функционала.
  • Продакшн среда (Production Env) – среда, в которой работают пользователи.

Основные фазы тестирования

  • Pre-Alpha: прототип, в котором всё ещё присутствует много ошибок и наверняка неполный функционал. Необходим для ознакомления с будущими возможностями программ.
  • Alpha: является ранней версией программного продукта, тестирование которой проводится внутри фирмы-разработчика.
  • Beta: практически готовый продукт, который разработан в первую очередь для тестирования конечными пользователями.
  • Release Candidate (RC): возможные ошибки в каждой из фичей уже устранены и разработчики выпускают версию на которой проводится регрессионное тестирование.
  • Release: финальная версия программы, которая готова к использованию.

Основные виды тестирования ПО

Вид тестирования — это совокупность активностей, направленных на тестирование заданных характеристик системы или её части, основанная на конкретных целях.

Скриншот

  1. Классификация по запуску кода на исполнение:
    • Статическое тестирование — процесс тестирования, который проводится для верификации практически любого артефакта разработки: программного кода компонент, требований, системных спецификаций, функциональных спецификаций, документов проектирования и архитектуры программных систем и их компонентов.
    • Динамическое тестирование — тестирование проводится на работающей системе, не может быть осуществлено без запуска программного кода приложения.

  2. Классификация по доступу к коду и архитектуре:
    • Тестирование белого ящика — метод тестирования ПО, который предполагает полный доступ к коду проекта.
    • Тестирование серого ящика — метод тестирования ПО, который предполагает частичный доступ к коду проекта (комбинация White Box и Black Box методов).
    • Тестирование чёрного ящика — метод тестирования ПО, который не предполагает доступа (полного или частичного) к системе. Основывается на работе исключительно с внешним интерфейсом тестируемой системы.

  3. Классификация по уровню детализации приложения:
    • Модульное тестирование — проводится для тестирования какого-либо одного логически выделенного и изолированного элемента (модуля) системы в коде. Проводится самими разработчиками, так как предполагает полный доступ к коду.
    • Интеграционное тестирование — тестирование, направленное на проверку корректности взаимодействия нескольких модулей, объединенных в единое целое.
    • Системное тестирование — процесс тестирования системы, на котором проводится не только функциональное тестирование, но и оценка характеристик качества системы — ее устойчивости, надежности, безопасности и производительности.
    • Приёмочное тестирование — проверяет соответствие системы потребностям, требованиям и бизнес-процессам пользователя.

  4. Классификация по степени автоматизации:
    • Ручное тестирование.
    • Автоматизированное тестирование.

  5. Классификация по принципам работы с приложением
    • Позитивное тестирование — тестирование, при котором используются только корректные данные.
    • Негативное тестирование — тестирование приложения, при котором используются некорректные данные и выполняются некорректные операции.

  6. Классификация по уровню функционального тестирования:
    • Дымовое тестирование (smoke test) — тестирование, выполняемое на новой сборке, с целью подтверждения того, что программное обеспечение стартует и выполняет основные для бизнеса функции.
    • Тестирование критического пути (critical path) — направлено для проверки функциональности, используемой обычными пользователями во время их повседневной деятельности.
    • Расширенное тестирование (extended) — направлено на исследование всей заявленной в требованиях функциональности.

  7. Классификация в зависимости от исполнителей:
    • Альфа-тестирование — является ранней версией программного продукта. Может выполняться внутри организации-разработчика с возможным частичным привлечением конечных пользователей.
    • Бета-тестирование — программное обеспечение, выпускаемое для ограниченного количества пользователей. Главная цель — получить отзывы клиентов о продукте и внести соответствующие изменения.

  8. Классификация в зависимости от целей тестирования:
    • Функциональное тестирование (functional testing) — направлено на проверку корректности работы функциональности приложения.
    • Нефункциональное тестирование (non-functional testing) — тестирование атрибутов компонента или системы, не относящихся к функциональности.
      1. Тестирование производительности (performance testing) — определение стабильности и потребления ресурсов в условиях различных сценариев использования и нагрузок.
      2. Нагрузочное тестирование (load testing) — определение или сбор показателей производительности и времени отклика программно-технической системы или устройства в ответ на внешний запрос с целью установления соответствия требованиям, предъявляемым к данной системе (устройству).
      3. Тестирование масштабируемости (scalability testing) — тестирование, которое измеряет производительность сети или системы, когда количество пользовательских запросов увеличивается или уменьшается.
      4. Объёмное тестирование (volume testing) — это тип тестирования программного обеспечения, которое проводится для тестирования программного приложения с определенным объемом данных.
      5. Стрессовое тестирование (stress testing) — тип тестирования направленный для проверки, как система обращается с нарастающей нагрузкой (количеством одновременных пользователей).
      6. Инсталляционное тестирование (installation testing) — тестирование, направленное на проверку успешной установки и настройки, обновления или удаления приложения.
      7. Тестирование интерфейса (GUI/UI testing) — проверка требований к пользовательскому интерфейсу.
      8. Тестирование удобства использования (usability testing) — это метод тестирования, направленный на установление степени удобства использования, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий.
      9. Тестирование локализации (localization testing) — проверка адаптации программного обеспечения для определенной аудитории в соответствии с ее культурными особенностями.
      10. Тестирование безопасности (security testing) — это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.
      11. Тестирование надёжности (reliability testing) — один из видов нефункционального тестирования ПО, целью которого является проверка работоспособности приложения при длительном тестировании с ожидаемым уровнем нагрузки.
      12. Регрессионное тестирование (regression testing) — тестирование уже проверенной ранее функциональности после внесения изменений в код приложения, для уверенности в том, что эти изменения не внесли ошибки в областях, которые не подверглись изменениям.
      13. Повторное/подтверждающее тестирование (re-testing/confirmation testing) — тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.

Тест-дизайн — это этап тестирования ПО, на котором проектируются и создаются тестовые случаи (тест-кейсы).

Техники тест-дизайна

Автор книги «A Practitioner’s Guide to Software Test Design», Lee Copeland, выделяет следующие техники тест-дизайна:

  1. Тестирование на основе классов эквивалентности (equivalence partitioning) — это техника, основанная на методе чёрного ящика, при которой мы разделяем функционал (часто диапазон возможных вводимых значений) на группы эквивалентных по своему влиянию на систему значений.
  2. Техника анализа граничных значений (boundary value testing) — это техника проверки поведения продукта на крайних (граничных) значениях входных данных.
  3. Попарное тестирование (pairwise testing) — это техника формирования наборов тестовых данных из полного набора входных данных в системе, которая позволяет существенно сократить количество тест-кейсов.
  4. Тестирование на основе состояний и переходов (State-Transition Testing) — применяется для фиксирования требований и описания дизайна приложения.
  5. Таблицы принятия решений (Decision Table Testing) — техника тестирования, основанная на методе чёрного ящика, которая применяется для систем со сложной логикой.
  6. Доменный анализ (Domain Analysis Testing) — это техника основана на разбиении диапазона возможных значений переменной на поддиапазоны, с последующим выбором одного или нескольких значений из каждого домена для тестирования.
  7. Сценарий использования (Use Case Testing) — Use Case описывает сценарий взаимодействия двух и более участников (как правило — пользователя и системы).

Методы тестирования

Скриншот

Тестирование белого ящика — метод тестирования ПО, который предполагает, что внутренняя структура/устройство/реализация системы известны тестировщику.

Согласно ISTQB, тестирование белого ящика — это:

  • тестирование, основанное на анализе внутренней структуры компонента или системы;
  • тест-дизайн, основанный на технике белого ящика — процедура написания или выбора тест-кейсов на основе анализа внутреннего устройства системы или компонента.
  • Почему «белый ящик»? Тестируемая программа для тестировщика — прозрачный ящик, содержимое которого он прекрасно видит.

Тестирование серого ящика — метод тестирования ПО, который предполагает комбинацию White Box и Black Box подходов. То есть, внутреннее устройство программы нам известно лишь частично.

Тестирование чёрного ящика — также известное как тестирование, основанное на спецификации или тестирование поведения — техника тестирования, основанная на работе исключительно с внешними интерфейсами тестируемой системы.

Согласно ISTQB, тестирование черного ящика — это:

  • тестирование, как функциональное, так и нефункциональное, не предполагающее знания внутреннего устройства компонента или системы;
  • тест-дизайн, основанный на технике черного ящика — процедура написания или выбора тест-кейсов на основе анализа функциональной или нефункциональной спецификации компонента или системы без знания ее внутреннего устройства.

Тестовая документация

Тест план (Test Plan) — это документ, который описывает весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков.

Тест план должен отвечать на следующие вопросы:

  • Что необходимо протестировать?
  • Как будет проводиться тестирование?
  • Когда будет проводиться тестирование?
  • Критерии начала тестирования.
  • Критерии окончания тестирования.

Основные пункты тест плана:

  1. Идентификатор тест плана (Test plan identifier);
  2. Введение (Introduction);
  3. Объект тестирования (Test items);
  4. Функции, которые будут протестированы (Features to be tested;)
  5. Функции, которые не будут протестированы (Features not to be tested);
  6. Тестовые подходы (Approach);
  7. Критерии прохождения тестирования (Item pass/fail criteria);
  8. Критерии приостановления и возобновления тестирования (Suspension criteria and resumption requirements);
  9. Результаты тестирования (Test deliverables);
  10. Задачи тестирования (Testing tasks);
  11. Ресурсы системы (Environmental needs);
  12. Обязанности (Responsibilities);
  13. Роли и ответственность (Staffing and training needs);
  14. Расписание (Schedule);
  15. Оценка рисков (Risks and contingencies);
  16. Согласования (Approvals).

Чек-лист (check list) — это документ, который описывает что должно быть протестировано. Чек-лист может быть абсолютно разного уровня детализации.

Чаще всего чек-лист содержит только действия, без ожидаемого результата. Чек-лист менее формализован.

Тестовый сценарий (test case) — это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.

Атрибуты тест кейса:

  • Предусловия (PreConditions) — список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
  • Шаги (Steps) — список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям.
  • Ожидаемый результат (Expected result) — что по факту должны получить.

Резюме

Старайтесь понять определения, а не зазубривать. Если хотите узнать больше про тестирование, то можете почитать Библию QA. А если возникнет вопрос, всегда можете задать его нам в телеграм-канале @qa_chillout.

Отладка программы — один их самых сложных этапов разработки программного обеспечения, требующий глубокого знания:

специфики управления используемыми техническими средствами,

операционной системы,

среды и языка программирования,

реализуемых процессов,

природы и специфики различных ошибок,

методик отладки и соответствующих программных средств. 

Отладка — это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Доя исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.

Вцелом сложность отладки обусловлена следующими причинами:

требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;

психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;

возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;

отсутствуют четко сформулированные методики отладки.

Всоответствии с этапом обработки, на котором проявляются ошибки, различают (рис. 10.1):


    синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы; ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;

    ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы.

Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.

Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах. В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым — Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:

if (c = n) x = 0; /* в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых */ 

Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами,

обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.

    Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:

• появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление на ноль», нарушении адресации и т. п.;

появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении защиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;

«зависание» компьютера, как простое, когда удается завершить программу без перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;

несовпадение полученных результатов с ожидаемыми.

Примечание. Отметим, что, если ошибки этапа выполнения обнаруживает пользователь, то в двух первых случаях, получив соответствующее сообщение, пользователь в зависимости от своего характера, степени необходимости и опыта работы за компьютером, либо попробует понять, что произошло, ища свою вину, либо обратится за помощью, либо постарается никогда больше не иметь дела с этим продуктом. При «зависании» компьютера пользователь может даже не сразу понять, что происходит что-то не то, хотя его печальный опыт и заставляет волноваться каждый раз, когда компьютер не выдает быстрой реакции на введенную команду, что также целесообразно иметь в виду. Также опасны могут быть ситуации, при которых пользователь получает неправильные результаты и использует их в своей работе.

Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:

неверное определение исходных данных,

логические ошибки,

накопление погрешностей результатов вычислений (рис. 10.2).

Н е в е р н о е о п р е д е л е н и е и с х о д н ы х д а н н ы х происходит, если возникают любые ошибки при выполнении операций ввода-вывода: ошибки передачи, ошибки преобразования, ошибки перезаписи и ошибки данных. Причем использование специальных технических средств и программирование с защитой от ошибок (см.§ 2.7) позволяет обнаружить и предотвратить только часть этих ошибок, о чем безусловно не следует забывать.

Л о г и ч е с к и е о ш и б к и имеют разную природу. Так они могут следовать из ошибок, допущенных при проектировании, например, при выборе методов, разработке алгоритмов или определении структуры классов, а могут быть непосредственно внесены при кодировании модуля.

Кпоследней группе относят:

ошибки некорректного использования переменных, например, неудачный выбор типов данных, использование переменных до их инициализации, использование индексов, выходящих за границы определения массивов, нарушения соответствия типов данных при использовании явного или неявного переопределения типа данных, расположенных в памяти при использовании нетипизированных переменных, открытых массивов, объединений, динамической памяти, адресной арифметики и т. п.;

ошибки вычислений, например, некорректные вычисления над неарифметическими переменными, некорректное использование целочисленной арифметики, некорректное преобразование типов данных в процессе вычислений, ошибки, связанные с незнанием приоритетов выполнения операций для арифметических и логических выражений, и т. п.;

ошибки межмодульного интерфейса, например, игнорирование системных соглашений, нарушение типов и последовательности при передачи параметров, несоблюдение единства единиц измерения формальных и фактических параметров, нарушение области действия локальных и глобальных переменных;

другие ошибки кодирования, например, неправильная реализация логики программы при кодировании, игнорирование особенностей или ограничений конкретного языка программирования.

На к о п л е н и е п о г р е ш н о с т е й результатов числовых вычислений возникает, например, при некорректном отбрасывании дробных цифр чисел, некорректном использовании приближенных методов вычислений, игнорировании ограничения разрядной сетки представления вещественных чисел в ЭВМ и т. п.

Все указанные выше причины возникновения ошибок следует иметь в виду в процессе отладки. Кроме того, сложность отладки увеличивается также вследствие влияния следующих факторов:

опосредованного проявления ошибок;

возможности взаимовлияния ошибок;

возможности получения внешне одинаковых проявлений разных ошибок;

отсутствия повторяемости проявлений некоторых ошибок от запуска к запуску – так называемые стохастические ошибки;

возможности устранения внешних проявлений ошибок в исследуемой ситуации при внесении некоторых изменений в программу, например, при включении в программу диагностических фрагментов может аннулироваться или измениться внешнее проявление ошибок;

написания отдельных частей программы разными программистами.

Методы отладки программного обеспечения

Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:

ручного тестирования;

индукции;

дедукции;

обратного прослеживания.

Метод ручного тестирования. Это — самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которым была обнаружена ошибка.

Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций.

Данный метод часто используют как составную часть других методов отладки.

Метод индукции. Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе — выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рис. 10.3 в виде схемы алгоритма.

Самый ответственный этап — выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о ее проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов.

В процессе доказательства пытаются выяснить, все ли проявления ошибки объясняет данная гипотеза, если не все, то либо гипотеза не верна, либо ошибок несколько.

Метод дедукции. По методу дедукции вначале формируют множество причин, которые могли бы вызвать данное проявление ошибки. Затем анализируя причины, исключают те, которые противоречат имеющимся данным. Если все причины исключены, то следует выполнить дополнительное тестирование исследуемого фрагмента. В противном случае наиболее вероятную гипотезу пытаются доказать. Если гипотеза объясняет полученные признаки ошибки, то ошибка найдена, иначе — проверяют следующую причину (рис. 10.4).

Метод обратного прослеживания. Для небольших программ эффективно применение метода обратного прослеживания. Начинают с точки вывода неправильного результата. Для этой точки строится гипотеза о значениях основных переменных, которые могли бы привести к получению имеющегося результата. Далее, исходя из этой гипотезы, делают предложения о значениях переменных в предыдущей точке. Процесс продолжают, пока не обнаружат причину ошибки.

При разработке программного обеспечения значительная часть производственного процесса опирается на тестирование программ. Что это такое и как осуществляется подобная деятельность обсудим в данной статье.

Что называют тестированием?

тестирование программ

Под этим понимают процесс, во время которого выполняется программное обеспечение с целью обнаружения мест некорректного функционирования кода. Для достижения наилучшего результата намеренно конструируются трудные наборы входных данных. Главная цель проверяющего заключается в том, чтобы создать оптимальные возможности для отказа программного продукта. Хотя иногда тестирование разработанной программы может быть упрощено до обычной проверки работоспособности и выполнения функций. Это позволяет сэкономить время, но часто сопровождается ненадежностью программного обеспечения, недовольством пользователей и так далее.

Эффективность

То, насколько хорошо и быстро находятся ошибки, существенным образом влияет на стоимость и длительность разработки программного обеспечения необходимого качества. Так, несмотря на то, что тестеры получают заработную плату в несколько раз меньшую, чем программисты, стоимость их услуг обычно достигает 30 – 40 % от стоимости всего проекта. Это происходит из-за численности личного состава, поскольку искать ошибку – это необычный и довольно трудный процесс. Но даже если программное обеспечение прошло солидное количество тестов, то нет 100 % гарантии, что ошибок не будет. Просто неизвестно, когда они проявятся. Чтобы стимулировать тестеров выбирать типы проверки, которые с большей вероятностью найдут ошибку, применяются различные средства мотивации: как моральные, так и материальные.

Подход к работе

тестирование компьютера

Оптимальной является ситуация, когда реализовываются различные механизмы, направленные на то, чтобы ошибок в программном обеспечении не было с самого начала. Для этого необходимо позаботится о грамотном проектировании архитектуры, четком техническом задании, а также важно не вносить коррективы в связи, когда работа над проектом уже начата. В таком случае перед тестером стоит задача нахождения и определения небольшого количества ошибок, которые остаются в конечном результате. Это сэкономит и время, и деньги.

Что такое тест?

Это немаловажный аспект деятельности проверяющего, который необходим для успешного выявления недочетов программного кода. Они необходимы для того, чтобы контролировать правильность приложения. Что входит в тест? Он состоит их начальных данных и значений, которые должны получиться как результирующие (или промежуточные). Для того чтобы успешнее выявлять проблемы и несоответствия, тесты необходимо составлять после того, как был разработан алгоритм, но не началось программирование. Причем желательно использовать несколько подходов при расчете необходимых данных. В таком случае растёт вероятность обнаружения ошибки благодаря тому, что можно исследовать код с другой точки зрения. Комплексно тесты должны обеспечивать проверку внешних эффектов готового программного изделия, а также его алгоритмов работы. Особенный интерес предоставляют предельные и вырожденные случаи. Так, в практике деятельности с ошибками часто можно выявить, что цикл работает на один раз меньше или больше, чем было запланировано. Также важным является тестирование компьютера, благодаря которому можно проверить соответствие желаемому результату на различных машинах. Это необходимо для того, чтобы удостовериться, что программное обеспечение сможет работать на всех ЭВМ. Кроме того, тестирование компьютера, на котором будет выполняться разработка, является важным при создании мультиплатформенных разработок.

Искусство поиска ошибок

тестирование по

Оптимальной является ситуация, когда реализовываются различные механизмы, направленные на то, чтобы ошибок в программном обеспечении не было с самого начала. Для этого необходимо позаботится о грамотном проектировании архитектуры, четком техническом задании, а также важно не вносить коррективы в связи, когда работа над проектом уже начата. В таком случае перед тестером стоит задача нахождения и определения небольшого количества ошибок, которые остаются в конечном результате. Это сэкономит и время, и деньги.

Что такое тест?

Это немаловажный аспект деятельности проверяющего, который необходим для успешного выявления недочетов программного кода. Они необходимы для того, чтобы контролировать правильность приложения. Что входит в тест? Он состоит их начальных данных и значений, которые должны получиться как результирующие (или промежуточные). Для того чтобы успешнее выявлять проблемы и несоответствия, тесты необходимо составлять после того, как был разработан алгоритм, но не началось программирование. Причем желательно использовать несколько подходов при расчете необходимых данных. В таком случае растёт вероятность обнаружения ошибки благодаря тому, что можно исследовать код с другой точки зрения. Комплексно тесты должны обеспечивать проверку внешних эффектов готового программного изделия, а также его алгоритмов работы. Особенный интерес предоставляют предельные и вырожденные случаи. Так, в практике деятельности с ошибками часто можно выявить, что цикл работает на один раз меньше или больше, чем было запланировано. Также важным является тестирование компьютера, благодаря которому можно проверить соответствие желаемому результату на различных машинах. Это необходимо для того, чтобы удостовериться, что программное обеспечение сможет работать на всех ЭВМ. Кроме того, тестирование компьютера, на котором будет выполняться разработка, является важным при создании мультиплатформенных разработок.

Искусство поиска ошибок

тестирование по

Программы часто нацелены на работу с огромным массивом данных. Неужели его необходимо создавать полностью? Нет. Широкое распространение приобрела практика «миниатюризации» программы. В данном случае происходит разумное сокращение объема данных по сравнению с тем, что должно использоваться. Давайте рассмотрим такой пример: есть программа, в которой создаётся матрица размером 50×50. Иными словами – необходимо вручную ввести 2500 тысячи значений. Это, конечно, возможно, но займёт очень много времени. Но чтобы проверить работоспособность, программный продукт получает матрицу, размерность которой составляет 5×5. Для этого нужно будет ввести уже 25 значений. Если в данном случае наблюдается нормальная, безошибочная работа, то это значит, что всё в порядке. Хотя и здесь существуют подводные камни, которые заключаются в том, что при миниатюризации происходит ситуация, в результате которой изменения становятся неявными и временно исчезают. Также очень редко, но всё же случается и такое, что появляются новые ошибки.

Преследуемые цели

Тестирование ПО не является легким делом из-за того, что данный процесс не поддаётся формализации в полном объеме. Большие программы почти никогда не обладают необходимым точным эталоном. Поэтому в качестве ориентира используют ряд косвенных данных, которые, правда, не могут полностью отражать характеристики и функции программных разработок, что отлаживаются. Причем они должны быть подобраны таким образом, чтобы правильный результат вычислялся ещё до того, как программный продукт будет тестирован. Если этого не сделать заранее, то возникает соблазн считать всё приблизительно, и если машинный результат попадёт в предполагаемый диапазон, то будет принято ошибочное решение, что всё правильно.

Проверка в различных условиях

программный продукт

Как правило, тестирование программ происходит в объемах, которые необходимы для минимальной проверки функциональности в ограниченных пределах. Деятельность ведётся с изменением параметров, а также условий их работы. Процесс тестирования можно поделить на три этапа:

  • Проверка в обычных условиях. В данном случае тестируется основной функционал разработанного программного обеспечения. Полученный результат должен соответствовать ожидаемому.
  • Проверка в чрезвычайных условиях. В этих случаях подразумевается получение граничных данных, которые могут негативно повлиять на работоспособность созданного программного обеспечения. В качестве примера можно привести работу с чрезвычайно большими или малыми числами, или вообще, полное отсутствие получаемой информации.
  • Проверка при исключительных ситуациях. Она предполагает использование данных, которые лежат за гранью обработки. В таких ситуациях очень плохо, когда программное обеспечение воспринимает их как пригодные к расчету и выдаёт правдоподобный результат. Необходимо позаботиться, чтобы в подобных случаях происходило отвержение любых данных, которые не могут быть корректно обработаны. Также необходимо предусмотреть информирование об этом пользователя

Тестирование ПО: виды

ошибка приложения

Как правило, тестирование программ происходит в объемах, которые необходимы для минимальной проверки функциональности в ограниченных пределах. Деятельность ведётся с изменением параметров, а также условий их работы. Процесс тестирования можно поделить на три этапа:

  • Проверка в обычных условиях. В данном случае тестируется основной функционал разработанного программного обеспечения. Полученный результат должен соответствовать ожидаемому.
  • Проверка в чрезвычайных условиях. В этих случаях подразумевается получение граничных данных, которые могут негативно повлиять на работоспособность созданного программного обеспечения. В качестве примера можно привести работу с чрезвычайно большими или малыми числами, или вообще, полное отсутствие получаемой информации.
  • Проверка при исключительных ситуациях. Она предполагает использование данных, которые лежат за гранью обработки. В таких ситуациях очень плохо, когда программное обеспечение воспринимает их как пригодные к расчету и выдаёт правдоподобный результат. Необходимо позаботиться, чтобы в подобных случаях происходило отвержение любых данных, которые не могут быть корректно обработаны. Также необходимо предусмотреть информирование об этом пользователя

Тестирование ПО: виды

ошибка приложения

Создавать программное обеспечение без ошибок весьма трудно. Это требует значительного количества времени. Чтобы получить хороший продукт часто применяются два вида тестирования: «Альфа» и «Бета». Что они собой представляют? Когда говорят об альфа-тестировании, то под ним подразумевают проверку, которую проводит сам штат разработчиков в «лабораторных» условиях. Это последний этап проверки перед тем, как программа будет передана конечным пользователям. Поэтому разработчики стараются развернуться по максимуму. Для легкости работы данные могут протоколироваться, чтобы создавать хронологию проблем и их устранения. Под бета-тестированием понимают поставку программного обеспечения ограниченному кругу пользователей, чтобы они смогли поэксплуатировать программу и выявить пропущенные ошибки. Особенностью в данном случае является то, что часто ПО используется не по своему целевому назначению. Благодаря этому неисправности будут выявляться там, где ранее ничего не было замечено. Это вполне нормально и переживать по этому поводу не нужно.

Завершение тестирования

Если предыдущие этапы были успешно завершены, то остаётся провести приемочный тест. Он в данном случае становиться простой формальностью. Во время данной проверки происходит подтверждение, что никаких дополнительных проблем не найдено и программное обеспечение можно выпускать на рынок. Чем большую важность будет иметь конечный результат, тем внимательней должна проводиться проверка. Необходимо следить за тем, чтобы все этапы были пройдены успешно. Вот так выглядит процесс тестирования в целом. А теперь давайте углубимся в технические детали и поговорим о таких полезных инструментах, как тестовые программы. Что они собой представляют и в каких случаях используются?

Автоматизированное тестирование

тестирование разработанной программы

Ранее считалось, что динамический анализ разработанного ПО – это слишком тяжелый подход, который неэффективно использовать для обнаружения дефектов. Но из-за увеличения сложности и объема программ появился противоположный взгляд. Автоматическое тестирование применяется там, где самыми важными приоритетами является работоспособность и безопасность. И они должны быть при любых входных данных. В качестве примера программ, для которых целесообразным является такое тестирование, можно привести следующие: сетевые протоколы, веб-сервер, sandboxing. Мы далее рассмотрим несколько образцов, которые можно использовать для такой деятельности. Если интересуют бесплатные программы тестирования, то среди них качественные найти довольно сложно. Но существуют взломанные «пиратские» версии хорошо зарекомендовавших себя проектов, поэтому можно обратиться к их услугам.

Avalanche

Этот инструмент помогает обнаружить дефекты, проходя тестирование программ в режиме динамического анализа. Он собирает данные и анализирует трассу выполнения разработанного объекта. Тестеру же предоставляется набор входных данных, которые вызывают ошибку или обходят набор имеющихся ограничений. Благодаря наличию хорошего алгоритма проверки разрабатывается большое количество возможных ситуаций. Программа получает различные наборы входных данных, которые позволяют смоделировать значительное число ситуаций и создать такие условия, когда наиболее вероятным является возникновение сбоя. Важным преимуществом программы считается применение эвристической метрики. Если есть проблема, то ошибка приложения находится с высокой вероятностью. Но эта программа имеет ограничения вроде проверки только одного помеченного входного сокета или файла. При проведении такой операции, как тестирование программ, будет содержаться детальная информация о наличие проблем с нулевыми указателями, бесконечными циклами, некорректными адресами или неисправностями из-за использования библиотек. Конечно, это не полный список обнаруживаемых ошибок, а только их распространённые примеры. Исправлять недочеты, увы, придётся разработчикам – автоматические средства для этих целей не подходят.

KLEE

тестовые программы

Ранее считалось, что динамический анализ разработанного ПО – это слишком тяжелый подход, который неэффективно использовать для обнаружения дефектов. Но из-за увеличения сложности и объема программ появился противоположный взгляд. Автоматическое тестирование применяется там, где самыми важными приоритетами является работоспособность и безопасность. И они должны быть при любых входных данных. В качестве примера программ, для которых целесообразным является такое тестирование, можно привести следующие: сетевые протоколы, веб-сервер, sandboxing. Мы далее рассмотрим несколько образцов, которые можно использовать для такой деятельности. Если интересуют бесплатные программы тестирования, то среди них качественные найти довольно сложно. Но существуют взломанные «пиратские» версии хорошо зарекомендовавших себя проектов, поэтому можно обратиться к их услугам.

Avalanche

Этот инструмент помогает обнаружить дефекты, проходя тестирование программ в режиме динамического анализа. Он собирает данные и анализирует трассу выполнения разработанного объекта. Тестеру же предоставляется набор входных данных, которые вызывают ошибку или обходят набор имеющихся ограничений. Благодаря наличию хорошего алгоритма проверки разрабатывается большое количество возможных ситуаций. Программа получает различные наборы входных данных, которые позволяют смоделировать значительное число ситуаций и создать такие условия, когда наиболее вероятным является возникновение сбоя. Важным преимуществом программы считается применение эвристической метрики. Если есть проблема, то ошибка приложения находится с высокой вероятностью. Но эта программа имеет ограничения вроде проверки только одного помеченного входного сокета или файла. При проведении такой операции, как тестирование программ, будет содержаться детальная информация о наличие проблем с нулевыми указателями, бесконечными циклами, некорректными адресами или неисправностями из-за использования библиотек. Конечно, это не полный список обнаруживаемых ошибок, а только их распространённые примеры. Исправлять недочеты, увы, придётся разработчикам – автоматические средства для этих целей не подходят.

KLEE

тестовые программы

Это хорошая программа для тестирования памяти. Она может перехватывать примерно 50 системных вызовов и большое количество виртуальных процессов, таким образом, выполняется параллельно и отдельно. Но в целом программа не ищет отдельные подозрительные места, а обрабатывает максимально возможное количество кода и проводит анализ используемых путей передачи данных. Из-за этого время тестирования программы зависит от размера объекта. При проверке ставка сделана на символические процессы. Они являются одним из возможных путей выполнения задач в программе, которая проверяется. Благодаря параллельной работе можно анализировать большое количество вариантов работы исследуемого приложения. Для каждого пути после окончания его тестирования сохраняются наборы входных данных, с которых начиналась проверка. Следует отметить, что тестирование программ с помощью KLEE помогает выявлять большое количество отклонений, которых не должно быть. Она может найти проблемы даже в приложениях, которые разрабатываются десятилетиями.



О чем речь?
Тестирование программного обеспечения – это необходимый процесс в ходе разработки, во время которого выявляются все проблемы в работе софта. Какими бы классными не были программисты, ошибки будут всегда, поэтому необходима регулярная проверка.



Каким бывает?
Тестирование бывает разных видов: автоматическое и ручное, функциональное и нефункциональное, с доступом к исходному коду и без него. В любом случае важно придерживаться определенных правил, чтобы продукт был проверен от и до.

В статье рассказывается:

  1. Необходимость тестирования программного обеспечения
  2. Формы тестирования программного обеспечения
  3. Виды тестирования ПО
  4. Тестирование «белого ящика» и «чёрного ящика»
  5. Место тестирования в процессе создания ПО
  6. Этапы тестирования программного обеспечения
  7. Документация для тестирования ПО
  8. Правила качественного тестирования ПО
  9. Навыки и качества специалиста по тестированию программного обеспечения
  10. Лучшие курсы по специальности тестировщика ПО
  11. 7 книг про тестирование программного обеспечения
  12. Пройди тест и узнай, какая сфера тебе подходит:
    айти, дизайн или маркетинг.

    Бесплатно от Geekbrains

Необходимость тестирования программного обеспечения

Перечислим классические программные ошибки:

  • Пользователь вбивает в поле ответ на вопрос и жмет клавишу Далее программа завершает работу, а информация не сохраняется. То же самое происходит и при следующей попытке.
  • Пользователь играет в шутер. Вдруг персонажи начинают странно двигаться, подергиваться и т.д. Сначала программа попросту не реагирует на нажатие клавиш, а потом и вовсе выдаёт «Game over».
  • Пользователь заходит в личный кабинет интернет-магазина и нажимает «Оплатить». Однако его перебрасывает на главную страницу. Кроме того, в аккаунт приходится заново входить.

При этом не существует безошибочных программ, которые всегда выдают лишь нужные результаты. Разработчики, как правило, допускают некоторые ошибки в коде, что впоследствии усложняет пользователю процесс взаимодействия с приложением. В некоторых случаях дефекты несущественны и малозаметны, но встречаются и такие недочёты, из-за которых программа вообще не может работать.

Необходимость тестирования программного обеспечения

Необходимость тестирования программного обеспечения

Перед тем как человек начнет пользоваться новой версией компьютерной программы, сайта или мобильного приложения, продукт должен быть проверен инженерами-тестировщиками. Они отыскивают слабые места в коде, из-за которых программа начинает работать неправильно. Для этого тестировщики создают различные ситуации, при которых возможно возникновение ошибок.

Формы тестирования программного обеспечения

Выделяют два вида тестирования программного обеспечения: ручное и автоматическое. В первом случае человек либо самостоятельно проверяет функциональность программы, либо делает это с помощью специального ПО и API с использованием некоторого набора инструментов.

Скачать
файл

Ручной метод является наиболее сложным, так как специалисту необходимо настраивать среду и проводить тесты. Плюс ко всему, нельзя забывать о человеческом факторе: тестировщик может ошибиться или пропустить ту или иную стадию тестового скрипта.

В случае автоматического тестирования все мероприятия выполняет машина, работающая по определенному скрипту. Эти тесты отличаются друг от друга по уровню сложности: от проверки одного метода в классе до обеспечения условий, в которых выполнение последовательности сложных операций в пользовательском интерфейсе приводит к одним и тем же результатам.

Данный способ намного стабильнее и точнее, чем ручной. Но стоит учитывать, что эффективность автоматического тестирования зависит от правильности тестовых скриптов.

Автоматическое тестирование представляет собой важнейший элемент беспрерывной интеграции и бесперебойной поставки. Кроме того, это хороший метод масштабирования процесса контроля качества по мере добавления новых функций в программу. При этом выполнять ручное глубокое тестирование все же полезно.

Виды тестирования ПО

Существует несколько видов тестирования программного обеспечения. Поговорим о каждом из них более подробно.

Функциональное и нефункциональное

Функциональное тестирование — это проверка функций программы. Специалист нажимает на всевозможные клавиши и пытается вести себя необычно, дабы обнаружить недочеты проекта.

Как правило, тестируются только готовые функции, которые уже должны правильно работать. Однако объектами проверки могут стать и «неожидаемые» функций и варианты поведения приложения.

Нефункциональное тестирование представляет собой проверку производительности, надежности и отзывчивости приложения, а также ее соответствия нормам безопасности.

Статическое и динамическое

Статическая проверка выполняется с выключенной программой. Специалисты открывают документацию приложения, анализируют указанные в ней функции, а затем изучают код для оценки качества реализации.

Динамическое тестирование выполняется после статического. В этом случае необходимо включить программу и на практике узнать, насколько работоспособными являются ее функции.

Обе эти стадии являются необходимыми.

Прочие разновидности тестирования

Можно выделить и некоторые другие типы проверки. Каждая, даже самая маленькая, задача может быть выделена как отдельная разновидность. Однако мы приведем список только самых распространённых вариантов:

  • Нагрузочное. Речь идёт о тестировании программы в условиях высоких нагрузок, которые могут быть больше, чем планировали разработчики. Эти тесты обязательны для онлайн-сервисов, которые должны правильно работать даже при наличии большого числа посетителей на пиковой или регулярной основе (онлайн-магазины во время распродаж, новостные ресурсы при резонансных событиях и т.д.).
  • Тестирование UX. В этом случае специалист сосредотачивается на пользовательском опыте. Тестировщику необходимо поставить себя на место клиента. На основе составленных им замёток в процессе взаимодействия с приложением будут вноситься соответствующие изменения.
  • Конфигурационное. Это проверка совместимости программы с аппаратным обеспечением и прочими software-элементами (различными версиями OS и процессоров). Конфигурационное тестирование необходимо для межплатформенных программ и в процессе перехода поставщика платформы на принципиально новую аппаратную базу (яркий пример — появление ноутбуков с чипами М1 от Apple).

Тестирование «белого ящика» и «чёрного ящика»

При проверке программного и аппаратного обеспечения термины «тестирование белого ящика» и «тестирование чёрного ящика» указывают на то, есть ли у разработчика тестов доступ к исходному коду программы (если нет, то проверка выполняется посредством пользовательского интерфейса или прикладного программного интерфейса, предоставленного тестируемым модулем).

Тестирование белого/прозрачного ящика (от английского white-box testing) подразумевает, что у разработчика теста есть доступ к исходному коду приложения и он имеет возможность писать код, связанный с библиотеками тестируемого ПО. Такое положение дел часто встречается при юнит-тестировании (англ. unit testing). В этом случае проверке подвергаются лишь определенные элементы системы.

Благодаря такому тестированию выявляется функциональность и стабильность тех или иных частей программы. В процессе проверки белого ящика применяются метрики покрытия кода.

Тестирование черного ящика имеет смысл в том случае, если специалист может взаимодействовать с программным обеспечением через интерфейсы, доступные для заказчика или пользователя, либо через внешние интерфейсы, которые дают возможность другому компьютеру или другому процессу подключиться к системе для тестирования.

К примеру, тестирующий модуль виртуально нажимает на клавиши или на кнопки мыши в проверяемом приложении посредством механизма взаимодействия процессов. Эти операции должны приводить к такому же результату, что и реальные нажатия.

pdf иконка

Топ-30 самых востребованных и высокооплачиваемых профессий 2023

Поможет разобраться в актуальной ситуации на рынке труда

doc иконка

Подборка 50+ ресурсов об IT-сфере

Только лучшие телеграм-каналы, каналы Youtube, подкасты, форумы и многое другое для того, чтобы узнавать новое про IT

pdf иконка

ТОП 50+ сервисов и приложений от Geekbrains

Безопасные и надежные программы для работы в наши дни

Уже скачали 21221 pdf иконка

Чаще всего такое тестирование выполняется с применением спецификаций или иных документов, в которых указаны требования к системе. Критерий покрытия формируются из покрытия структуры входных данных, покрытия требований и покрытия модели (при проверке на базе моделей).

Тестирование «белого ящика» и «чёрного ящика»

Тестирование «белого ящика» и «чёрного ящика»

Понятия «альфа-тестирование» и «бета-тестирование» связаны с этапом до выпуска продукта, объёмом тестирующего сообщества и ограничениями по способам проверки. Тестирование «белого ящика» и «чёрного ящика» относятся к методам, которыми пользуется специалист.

Бета-тестирование ограничивается техникой чёрного ящика (однако постоянная часть тестировщиков, как правило, продолжает проверку белого ящика одновременно с бета-тестированием). Исходя из этого, понятие бета-тестирования описывает этап реализации программного продукта (ближе к выпуску, чем «альфа») или определенную команду тестировщиков и процесс, выполняемый этой командой.

Таким образом, тестировщик может проводить мероприятия по тестированию белого ящика даже после того, как программа перейдет на этап «бета». Однако это возможно в том случае, если специалист не является частью «бета-тестирования» (группы/процесса).

Место тестирования в процессе создания ПО

Если вовремя приступить к тестированию, то можно уменьшить расходы и сроки, необходимые для исправления ошибок. При этом в жизненном цикле разработки ПО (SDLC) проверка может начинаться со стадии сбора требований и продолжаться до развертывания программного обеспечения.

Многое зависит и от принятой модели развития. К примеру, модель «Водопад» предполагает, что формальное тестирование выполняется на этапе тестирования. Если же используется инкрементальная модель, то проверка осуществляется в конце каждого приращения/итерации и вся программа тестируется на конечном этапе.

Тестирование программного обеспечения выполняется в различных формах на каждой стадии SDLC:

  • На стадии сбора требований тестированием является проверка этих требований.
  • На стадии проектирования тестированием является проверка проекта для повышения качества дизайна.
  • После написания кода тестированием считается итоговая проверка.

Этапы тестирования программного обеспечения

Анализ тестирования

На этой стадии выполняется анализ функциональных и нефункциональных требований. К примеру, бизнес-требований, функциональной документации, документа технической спецификации и так далее.

Функциональное тестирование ПО: задачи, виды, методы проведения

Читайте также

При сборе требований необходимо учесть мнение клиентов. Это нужно для того, чтобы определить реальные и предполагаемые результаты тестирования, которые чаще всего являются нефункциональными. Например, удобство пользования, масштабируемость, тестируемость, производительность и безопасность.

Если выявляются требования, которые нельзя проверить в связи с теми или иными ограничениями системы и среды тестирования, то о них нужно уведомить бизнес-команду.

На данной стадии тестировщики рассматривают и анализируют требования, а также формируют соответствующие тесты. Кроме того, они определяют приоритеты для проверки — членов команды.

В список требований к среде тестирования входят требования к аппаратному и программному обеспечению. На их основе нужно будет выполнять проверку ПО. Одновременно с этим начинаются планирование и разработка программного обеспечения.

Анализ тестирования

Анализ тестировани

Планирование и подготовка теста

На этой стадии разрабатываются план тестирования, тестовый набор, данные теста. Кроме того, выполняется подготовка среды тестирования.

План тестирования — важнейший документ, который нужно составить в первую очередь. В нем указываются цели, объём, характеристики, проверяемые и непроверяемые функции, разновидности проверок, которые будут производиться, роли и обязанности группы тестирования, критерии входа и выхода, а также предположения.

Параллельно с этим специалисты подготавливают тестовые наборы и тестовые данные.

Поговорим о нескольких важных моментах более подробно. Тестовый пример представляет собой документ, в котором указываются этапы, которые следует реализовать для тестирования любой функциональности с предполагаемым и реальным результатом. Если реальный результат противоречит предполагаемому, то открывается ошибка. Для каждого отдельно взятого требования формируются положительные и отрицательные тестовые примеры.

Это делается с помощью матрицы прослеживаемости требований (RTM) — документа, который сравнивает требования с тестовыми примерами. Нужно это для того, чтобы удостовериться в полноценном выполнении проверки.

Каждый действительный и недействительный набор тестовых данных необходимо подготовить для всех тестовых случаев. Кроме того, нужно составить документ с тестовыми данными, которые создаются с помощью определенных алгоритмов и инструментов. В процесс подготовки тестового набора входят несколько стадий: его разработка, выбор, оценка, расстановка приоритетов и т.д.

Эрик Д. Свайн создал метод генерации тестовых случаев, в котором применяются соответствующие диаграммы последовательности. Данный способ позволяет выявить ограничения для конкретных артефактов. Техники генерации тестовых наборов имеют смысл при необходимости выявления синхронизации и зависимости вариантов использования и сообщений, взаимодействия объектов и недочетов функционирования.

Планирование и подготовка теста

Планирование и подготовка теста

Подготовка тестовой среды — крайне важная стадия. После написания фрагмента кода его необходимо проверить с помощью инструмента управления конфигурацией. Далее подготавливается тестовая сборка.

Выполнение теста

На данной стадии специалисты выполняют ПО с учетом контрольных примеров. При выявлении несоответствий между реальными и предполагаемыми результатами тестировщик открывает ошибки и передаёт их разработчикам.

Закрытие теста

На этой немаловажной стадии составляются отчёты о тестировании, которые свидетельствуют о том, что вся система, интеграция, приемочное тестирование пользователя выполнены. Кроме того, в документах указывается, что было сформировано решение, все требования проверены и нет критической ошибки, ожидающей исправления или перепроверки.

Все тестовые артефакты просматриваются менеджером. После этого специалисты приступают к выпуску ПО. Выполняется анализ первопричин для последующего проведения мозгового штурма касательно удачных и неудачных моментов, а также зон роста. На данный момент сформировано множество инструментов и техник анализа первопричин, которые послужили базой для многочисленных исследований.

Документация для тестирования ПО

Тест план (Test Plan) представляет собой документ, в котором указываются все необходимые для тестирования мероприятия. В нем описываются объект, стратегии, расписания, критерии начала и завершения проверки, указывается требуемое оборудование и специальные знания, а также выполняется оценка рисков.

В данном документе должны иметься ответы на нижеперечисленные вопросы:

  • Что нужно протестировать?
  • Каким образом должно осуществляться тестирование?
  • Когда будет выполняться проверка?
  • Каковы критерии начала тестирования?
  • Каковы критерии завершения тестирования.

Только до 15.06

Скачай подборку тестов, чтобы определить свои самые конкурентные скиллы

Список документов:

Тест на определение компетенций

Чек-лист «Как избежать обмана при трудоустройстве»

Инструкция по выходу из выгорания

Чтобы получить файл, укажите e-mail:

Подтвердите, что вы не робот,
указав номер телефона:


Уже скачали 7503

Важнейшие разделы:

  • Идентификатор тест плана (Test plan identifier).
  • Введение (Introduction).
  • Объект тестирования (Test items).
  • Функции, которые следует проверить(Features to be tested).
  • Функции, которые не нужно проверять (Features not to be tested).
  • Тестовые подходы (Approach).
  • Критерии прохождения тестирования (Item pass/fail criteria).
  • Критерии приостановления и возобновления тестирования (Suspension criteria and resumption requirements).
  • Результаты тестирования (Test deliverables).
  • Задачи тестирования (Testing tasks).
  • Ресурсы системы (Environmental needs).
  • Обязанности (Responsibilities).
  • Роли и ответственность (Staffing and training needs).
  • Расписание (Schedule).
  • Оценка рисков (Risks and contingencies).
  • Согласования (Approvals).

Нельзя не упомянуть чек-лист (check list). В данном документе указываются объекты, которые необходимо протестировать. При этом чек-листы могут различаться по степени детализации.

Как правило, документ включает в себя лишь операции, которые нужно выполнить, а не предполагаемые результаты.

Тестовый сценарий (test case) представляет собой артефакт, в котором описывается комплекс мероприятий, определенных условий и параметров, требуемых для проверки реализации тестируемой функции или её элемента.

Перечислим составные части тест кейса:

  • Предусловия (PreConditions). Это перечень операций, которые необходимы для приведения системы к пригодному для выполнения основного теста состоянию. Иногда под PreConditions подразумевается набор условий, реализация которых указывает на то, что система пригодна для проведения основного теста.
  • Шаги (Steps). Речь идет о перечне операций, с помощью которых одно состояние системы сменяется другим. Это нужно для того, чтобы получить результат, с помощью которого можно будет сделать вывод об удовлетворении реализации поставленным требованиям.
  • Ожидаемый результат (Expected result). Это то, что необходимо получить в конечном итоге.

Правила качественного тестирования ПО

Перечислим правила, которым нужно следовать для эффективного выполнения проверки:

  • Не стоит пренебрегать ручным тестированием. Автоматические проверки помогут отыскать лишь те ошибки, которые предусмотрены в скрипте тестирования. С помощью ручных методов можно найти непредсказуемые дефекты.
  • Следует писать тестовые примеры на простом языке или псевдокоде вместе с вашим кодом. В противном случае новым специалистам и менеджерам придётся тратить много времени на синтаксический анализ сценария проверки.
  • Необходимо применять только контролируемые изолированные испытательные среды во избежание влияния извне. Если вы будете пользоваться ПК или открытым облаком, то на тесты могут повлиять посторонние факторы. Это скажется на производительности и результате.
  • Нужно выбирать конкретные метрики, которые подвергаются количественной оценке. Показатели должны описывать лишь один атрибут и строиться из чисел, дабы упростить процесс формирования отчетов. Это относится как к спецификациям, так и к тестовым случаям.
  • Стоит провести тестирование до того, как вы приступите к проверке качества. Благодаря такому подходу вы распределите рабочую нагрузку тестирования по всему процессу и снизите потери времени на исправление ошибок в центральном компоненте.
  • Не забывайте про пошаговые тесты. Разработайте подусловия в своих тестах. Это позволит выявить места, в которых приложение не проходит проверку.
  • Лучше обеспечить как можно большее тестовое покрытие. Если вы проверите все варианты применения программы, то продукт будет готов к самым разным входам и средам.

Навыки и качества специалиста по тестированию программного обеспечения

Система тестирования программного обеспечения не будет правильно работать, если у специалиста отсутствуют определенные личностные качества. Рассмотрим необходимые для данной работы характеристики:

  • Усидчивость и настойчивость. Специалист должен быть достаточно терпеливым, чтобы длительное время выполнять поиск ошибок. Профессионал своего дела знает, что не существует безошибочных приложений. Если в программе не было найдено никаких дефектов, то это указывает на низкое качество тестирования.
  • Критическое мышление, способность работать с информацией.
  • Умение подмечать даже самые, на первый взгляд, незначительные детали. Тестировщику необходимо проверять все возможные сценарии.
  • Коммуникабельность и навыки командной работы. Специалисту нужно будет общаться с разработчиками, дизайнерами, бизнес-аналитиками, представителями заказчика.
  • Самоконтроль. Разработчики далеко не всегда настроены на исправление дефектов, поэтому тестировщикам приходится по нескольку раз повторять, что была найдена ошибка. Таким образом, специалист должен сочетать в себе настойчивость и дипломатичность.
  • Ответственность и педантичность. Благодаря этим качествам тестировщик будет пытаться довести свою работу до конца.
  • Способность грамотно формулировать свои мысли. Это позволит разработать качественный план и тест-кейс. При обнаружении дефекта специалисту необходимо донести до разработчиков все нюансы его появления.
  • Желание оттачивать свои навыки. Специалист должен быть нацелен на обучение новым техникам тестирования. Для этого ему нужно работать с соответствующей литературой, ездить на конференции, семинары, проходить курсы и т.д.

Профессионал должен знать:

  • основы тестирования, его разновидности и техники;
  • способы разработки тест-кейсов, тест-планов;
  • языки запросов SQL, базы данных;
  • языки программирования;
  • системы контроля версий: Git, CVS ипр.

Плюс ко всему, специалист должен уметь работать с инструментами ручного и автоматического тестирования, к которым относятся:

  • Системы для разработки тест-кейсов и обнаружения ошибок.
  • Файловые менеджеры, текстовые и XML-редакторы.
  • Генераторы тестовых данных итак далее.

Чтобы автоматизировать проверки, можно пользоваться системами тестирования веб-приложений, программами для функционального и нагрузочного тестирования.

При этом необходимо знание английского языка. Без этого будет трудно понимать и составлять техническую документацию.

Лучшие курсы по специальности тестировщика ПО

  • Инженер по тестированию PRO

Данный курс по тестированию программного обеспечения рассчитан на три года. Он актуален для людей, которые планируют стать специалистами с твердыми знаниями. Вы освоите технологическую базу, сможете определиться с профилем, получите навыки ручного и автоматизированного тестирования, узнаете о нюансах каждого из направлений и сможете отыскать работу.

  • Инженер по ручному тестированию

Прохождение программы позволит определиться со специализацией, освоить базовые навыки, сформировать портфолио из проектов и устроиться на работу. Если вы будете усидчивы, то сможете начать зарабатывать уже через полгода после начала обучения.

  • Инженер по тестированию Мастер

Программа рассчитана на 2 года. Актуальна для людей, которые хотят получить твердые знания и быть уверенными в результате. Участники улучшат знание основ тестирования программного обеспечения, определятся со специализацией, научатся ручному и автоматизированному тестированию и устроятся на подходящую работу.

Лучшие курсы по специальности тестировщика ПО

Лучшие курсы по специальности тестировщика ПО
  • Инженер по тестированию

Программа рассчитана на 1 год. Участники получат теоретическую базу, смогут определиться со специализацией, найдут работу или откроют свое дело в сфере ИТ. При этом трудоустройство возможно уже через полгода после начала обучения.

  • Инженер по автоматизированному тестированию

В процессе прохождения программы, состоящей из одного года обучения и трех месяцев технологической специализации, участники получат необходимую теоретическую базу, смогут определиться с профилем, научатся применять техники ручного и автоматизированного тестирования.

  • Специалист по тестированию

Данная программа отличается высочайшей интенсивностью. Подойдет для людей, желающих в кратчайшие сроки получить навыки. Освоив специальность ручного тестировщика, вы сможете трудоустроиться уже через полгода после начала обучения.

7 книг о тестировании программного обеспечения

  • Р. Калбертсон, К. Браун, Г. Кобб «Быстрое тестирование»

Благодаря этой книге многие неопытные тестировщики смогли разобраться с нюансами профессии. Вы сможете понять, как лучше создавать тесты, прогнозировать ошибки, формировать итоговые отчеты.

  • С. Круг «Не заставляйте меня думать»

В книге объясняется, как проверять мобильные приложения и веб-сайты по критерию удобства пользования. Текстовую информацию дополняют исчерпывающие иллюстрации. Данное практическое руководство изобилует яркими пояснениями.

  • А.Купер «Психбольница в руках пациента»

Отличная литература, в которой объясняется, каким образом можно улучшить юзабилити программ посредством проектирования. Изучение данной книги поможет не только тестировщикам, но и программистам, аналитикам, руководителям многопрофильных команд.

  • Дж. Арбон, Дж. Каролло, Дж. Уиттакер «Как тестируют в Google»

Авторы делают упор на процессах отладки программ в известной во всем мире организации. При этом изложенные в книге правила могут применяться для любых проектов.

  • Э. Дастин, Д. Рэшка, Дж. Пол. «Автоматизированное тестирование программного обеспечения»

В пособии описываются различные детали процесса автоматического тестирования. Книга освещает тему увеличения скорости тестовых процедур на web-серверах. При этом авторы объясняют различные нюансы проектирования, разработки и выполнения тестов.

Что должен знать тестировщик: hard и soft skills профессии

Читайте также

  • Станислав Куликов «Тестирование программного обеспечения. Базовый курс»

Известный автор в мире IT сформировал пособие, в котором неопытные тестировщики смогут найти примеры всевозможных техник, подсказки в формате чек-листов, перечни тест-кейсов. Кроме того, вы сможете ознакомиться с важнейшими элементами работы в данной сфере – требованиями, планированием, отчетностью.

  • С. Слукин «Введение в тестирование программного обеспечения»

Очень информативная книга, с помощью которой вы сможете улучшить навыки работы с объектно-ориентированным ПО. В этом курсе указаны тестовые требования, изложены практические примеры, планы и образцы отчетов.

Главной целью тестирования программного обеспечения является нахождение ошибок. Благодаря этому потребитель сможет получить качественный продукт, который будет быстро работать и отвечать всем современным требованиям. Следовательно, тестировщик должен уметь вставать на место рядового пользователя. Именно такой подход позволит добиться высокого результата и закрыть все потребности клиентов.

При разработке программного обеспечения значительная часть производственного процесса опирается на тестирование программ. Что это такое и как осуществляется подобная деятельность обсудим в данной статье.

Что называют тестированием?

тестирование программ

Под этим понимают процесс, во время которого выполняется программное обеспечение с целью обнаружения мест некорректного функционирования кода. Для достижения наилучшего результата намеренно конструируются трудные наборы входных данных. Главная цель проверяющего заключается в том, чтобы создать оптимальные возможности для отказа программного продукта. Хотя иногда тестирование разработанной программы может быть упрощено до обычной проверки работоспособности и выполнения функций. Это позволяет сэкономить время, но часто сопровождается ненадежностью программного обеспечения, недовольством пользователей и так далее.

Компьютер — это немалое количество компонентов, из-за слаженной работы которых система работает…

Эффективность

То, насколько хорошо и быстро находятся ошибки, существенным образом влияет на стоимость и длительность разработки программного обеспечения необходимого качества. Так, несмотря на то, что тестеры получают заработную плату в несколько раз меньшую, чем программисты, стоимость их услуг обычно достигает 30 – 40 % от стоимости всего проекта. Это происходит из-за численности личного состава, поскольку искать ошибку – это необычный и довольно трудный процесс. Но даже если программное обеспечение прошло солидное количество тестов, то нет 100 % гарантии, что ошибок не будет. Просто неизвестно, когда они проявятся. Чтобы стимулировать тестеров выбирать типы проверки, которые с большей вероятностью найдут ошибку, применяются различные средства мотивации: как моральные, так и материальные.

Что представляет собой программный код? Для чего применяется и где? Как писать понятный,…

Подход к работе

тестирование компьютера

Под этим понимают процесс, во время которого выполняется программное обеспечение с целью обнаружения мест некорректного функционирования кода. Для достижения наилучшего результата намеренно конструируются трудные наборы входных данных. Главная цель проверяющего заключается в том, чтобы создать оптимальные возможности для отказа программного продукта. Хотя иногда тестирование разработанной программы может быть упрощено до обычной проверки работоспособности и выполнения функций. Это позволяет сэкономить время, но часто сопровождается ненадежностью программного обеспечения, недовольством пользователей и так далее.

Компьютер — это немалое количество компонентов, из-за слаженной работы которых система работает…

Эффективность

То, насколько хорошо и быстро находятся ошибки, существенным образом влияет на стоимость и длительность разработки программного обеспечения необходимого качества. Так, несмотря на то, что тестеры получают заработную плату в несколько раз меньшую, чем программисты, стоимость их услуг обычно достигает 30 – 40 % от стоимости всего проекта. Это происходит из-за численности личного состава, поскольку искать ошибку – это необычный и довольно трудный процесс. Но даже если программное обеспечение прошло солидное количество тестов, то нет 100 % гарантии, что ошибок не будет. Просто неизвестно, когда они проявятся. Чтобы стимулировать тестеров выбирать типы проверки, которые с большей вероятностью найдут ошибку, применяются различные средства мотивации: как моральные, так и материальные.

Что представляет собой программный код? Для чего применяется и где? Как писать понятный,…

Подход к работе

тестирование компьютера

Оптимальной является ситуация, когда реализовываются различные механизмы, направленные на то, чтобы ошибок в программном обеспечении не было с самого начала. Для этого необходимо позаботится о грамотном проектировании архитектуры, четком техническом задании, а также важно не вносить коррективы в связи, когда работа над проектом уже начата. В таком случае перед тестером стоит задача нахождения и определения небольшого количества ошибок, которые остаются в конечном результате. Это сэкономит и время, и деньги.

Что такое тест?

Это немаловажный аспект деятельности проверяющего, который необходим для успешного выявления недочетов программного кода. Они необходимы для того, чтобы контролировать правильность приложения. Что входит в тест? Он состоит их начальных данных и значений, которые должны получиться как результирующие (или промежуточные). Для того чтобы успешнее выявлять проблемы и несоответствия, тесты необходимо составлять после того, как был разработан алгоритм, но не началось программирование. Причем желательно использовать несколько подходов при расчете необходимых данных. В таком случае растёт вероятность обнаружения ошибки благодаря тому, что можно исследовать код с другой точки зрения. Комплексно тесты должны обеспечивать проверку внешних эффектов готового программного изделия, а также его алгоритмов работы. Особенный интерес предоставляют предельные и вырожденные случаи. Так, в практике деятельности с ошибками часто можно выявить, что цикл работает на один раз меньше или больше, чем было запланировано. Также важным является тестирование компьютера, благодаря которому можно проверить соответствие желаемому результату на различных машинах. Это необходимо для того, чтобы удостовериться, что программное обеспечение сможет работать на всех ЭВМ. Кроме того, тестирование компьютера, на котором будет выполняться разработка, является важным при создании мультиплатформенных разработок.

Debug, или отладка, в компьютерном программировании и разработке — это многоэтапный процесс,…

Искусство поиска ошибок

тестирование по

Программы часто нацелены на работу с огромным массивом данных. Неужели его необходимо создавать полностью? Нет. Широкое распространение приобрела практика «миниатюризации» программы. В данном случае происходит разумное сокращение объема данных по сравнению с тем, что должно использоваться. Давайте рассмотрим такой пример: есть программа, в которой создаётся матрица размером 50×50. Иными словами – необходимо вручную ввести 2500 тысячи значений. Это, конечно, возможно, но займёт очень много времени. Но чтобы проверить работоспособность, программный продукт получает матрицу, размерность которой составляет 5×5. Для этого нужно будет ввести уже 25 значений. Если в данном случае наблюдается нормальная, безошибочная работа, то это значит, что всё в порядке. Хотя и здесь существуют подводные камни, которые заключаются в том, что при миниатюризации происходит ситуация, в результате которой изменения становятся неявными и временно исчезают. Также очень редко, но всё же случается и такое, что появляются новые ошибки.

Преследуемые цели

Тестирование ПО не является легким делом из-за того, что данный процесс не поддаётся формализации в полном объеме. Большие программы почти никогда не обладают необходимым точным эталоном. Поэтому в качестве ориентира используют ряд косвенных данных, которые, правда, не могут полностью отражать характеристики и функции программных разработок, что отлаживаются. Причем они должны быть подобраны таким образом, чтобы правильный результат вычислялся ещё до того, как программный продукт будет тестирован. Если этого не сделать заранее, то возникает соблазн считать всё приблизительно, и если машинный результат попадёт в предполагаемый диапазон, то будет принято ошибочное решение, что всё правильно.

Проверка в различных условиях

программный продукт

Программы часто нацелены на работу с огромным массивом данных. Неужели его необходимо создавать полностью? Нет. Широкое распространение приобрела практика «миниатюризации» программы. В данном случае происходит разумное сокращение объема данных по сравнению с тем, что должно использоваться. Давайте рассмотрим такой пример: есть программа, в которой создаётся матрица размером 50×50. Иными словами – необходимо вручную ввести 2500 тысячи значений. Это, конечно, возможно, но займёт очень много времени. Но чтобы проверить работоспособность, программный продукт получает матрицу, размерность которой составляет 5×5. Для этого нужно будет ввести уже 25 значений. Если в данном случае наблюдается нормальная, безошибочная работа, то это значит, что всё в порядке. Хотя и здесь существуют подводные камни, которые заключаются в том, что при миниатюризации происходит ситуация, в результате которой изменения становятся неявными и временно исчезают. Также очень редко, но всё же случается и такое, что появляются новые ошибки.

Преследуемые цели

Тестирование ПО не является легким делом из-за того, что данный процесс не поддаётся формализации в полном объеме. Большие программы почти никогда не обладают необходимым точным эталоном. Поэтому в качестве ориентира используют ряд косвенных данных, которые, правда, не могут полностью отражать характеристики и функции программных разработок, что отлаживаются. Причем они должны быть подобраны таким образом, чтобы правильный результат вычислялся ещё до того, как программный продукт будет тестирован. Если этого не сделать заранее, то возникает соблазн считать всё приблизительно, и если машинный результат попадёт в предполагаемый диапазон, то будет принято ошибочное решение, что всё правильно.

Проверка в различных условиях

программный продукт

Как правило, тестирование программ происходит в объемах, которые необходимы для минимальной проверки функциональности в ограниченных пределах. Деятельность ведётся с изменением параметров, а также условий их работы. Процесс тестирования можно поделить на три этапа:

  • Проверка в обычных условиях. В данном случае тестируется основной функционал разработанного программного обеспечения. Полученный результат должен соответствовать ожидаемому.
  • Проверка в чрезвычайных условиях. В этих случаях подразумевается получение граничных данных, которые могут негативно повлиять на работоспособность созданного программного обеспечения. В качестве примера можно привести работу с чрезвычайно большими или малыми числами, или вообще, полное отсутствие получаемой информации.
  • Проверка при исключительных ситуациях. Она предполагает использование данных, которые лежат за гранью обработки. В таких ситуациях очень плохо, когда программное обеспечение воспринимает их как пригодные к расчету и выдаёт правдоподобный результат. Необходимо позаботиться, чтобы в подобных случаях происходило отвержение любых данных, которые не могут быть корректно обработаны. Также необходимо предусмотреть информирование об этом пользователя

Тестирование ПО: виды

ошибка приложения

Создавать программное обеспечение без ошибок весьма трудно. Это требует значительного количества времени. Чтобы получить хороший продукт часто применяются два вида тестирования: «Альфа» и «Бета». Что они собой представляют? Когда говорят об альфа-тестировании, то под ним подразумевают проверку, которую проводит сам штат разработчиков в «лабораторных» условиях. Это последний этап проверки перед тем, как программа будет передана конечным пользователям. Поэтому разработчики стараются развернуться по максимуму. Для легкости работы данные могут протоколироваться, чтобы создавать хронологию проблем и их устранения. Под бета-тестированием понимают поставку программного обеспечения ограниченному кругу пользователей, чтобы они смогли поэксплуатировать программу и выявить пропущенные ошибки. Особенностью в данном случае является то, что часто ПО используется не по своему целевому назначению. Благодаря этому неисправности будут выявляться там, где ранее ничего не было замечено. Это вполне нормально и переживать по этому поводу не нужно.

Завершение тестирования

Если предыдущие этапы были успешно завершены, то остаётся провести приемочный тест. Он в данном случае становиться простой формальностью. Во время данной проверки происходит подтверждение, что никаких дополнительных проблем не найдено и программное обеспечение можно выпускать на рынок. Чем большую важность будет иметь конечный результат, тем внимательней должна проводиться проверка. Необходимо следить за тем, чтобы все этапы были пройдены успешно. Вот так выглядит процесс тестирования в целом. А теперь давайте углубимся в технические детали и поговорим о таких полезных инструментах, как тестовые программы. Что они собой представляют и в каких случаях используются?

Автоматизированное тестирование

тестирование разработанной программы

Создавать программное обеспечение без ошибок весьма трудно. Это требует значительного количества времени. Чтобы получить хороший продукт часто применяются два вида тестирования: «Альфа» и «Бета». Что они собой представляют? Когда говорят об альфа-тестировании, то под ним подразумевают проверку, которую проводит сам штат разработчиков в «лабораторных» условиях. Это последний этап проверки перед тем, как программа будет передана конечным пользователям. Поэтому разработчики стараются развернуться по максимуму. Для легкости работы данные могут протоколироваться, чтобы создавать хронологию проблем и их устранения. Под бета-тестированием понимают поставку программного обеспечения ограниченному кругу пользователей, чтобы они смогли поэксплуатировать программу и выявить пропущенные ошибки. Особенностью в данном случае является то, что часто ПО используется не по своему целевому назначению. Благодаря этому неисправности будут выявляться там, где ранее ничего не было замечено. Это вполне нормально и переживать по этому поводу не нужно.

Завершение тестирования

Если предыдущие этапы были успешно завершены, то остаётся провести приемочный тест. Он в данном случае становиться простой формальностью. Во время данной проверки происходит подтверждение, что никаких дополнительных проблем не найдено и программное обеспечение можно выпускать на рынок. Чем большую важность будет иметь конечный результат, тем внимательней должна проводиться проверка. Необходимо следить за тем, чтобы все этапы были пройдены успешно. Вот так выглядит процесс тестирования в целом. А теперь давайте углубимся в технические детали и поговорим о таких полезных инструментах, как тестовые программы. Что они собой представляют и в каких случаях используются?

Автоматизированное тестирование

тестирование разработанной программы

Ранее считалось, что динамический анализ разработанного ПО – это слишком тяжелый подход, который неэффективно использовать для обнаружения дефектов. Но из-за увеличения сложности и объема программ появился противоположный взгляд. Автоматическое тестирование применяется там, где самыми важными приоритетами является работоспособность и безопасность. И они должны быть при любых входных данных. В качестве примера программ, для которых целесообразным является такое тестирование, можно привести следующие: сетевые протоколы, веб-сервер, sandboxing. Мы далее рассмотрим несколько образцов, которые можно использовать для такой деятельности. Если интересуют бесплатные программы тестирования, то среди них качественные найти довольно сложно. Но существуют взломанные «пиратские» версии хорошо зарекомендовавших себя проектов, поэтому можно обратиться к их услугам.

Avalanche

Этот инструмент помогает обнаружить дефекты, проходя тестирование программ в режиме динамического анализа. Он собирает данные и анализирует трассу выполнения разработанного объекта. Тестеру же предоставляется набор входных данных, которые вызывают ошибку или обходят набор имеющихся ограничений. Благодаря наличию хорошего алгоритма проверки разрабатывается большое количество возможных ситуаций. Программа получает различные наборы входных данных, которые позволяют смоделировать значительное число ситуаций и создать такие условия, когда наиболее вероятным является возникновение сбоя. Важным преимуществом программы считается применение эвристической метрики. Если есть проблема, то ошибка приложения находится с высокой вероятностью. Но эта программа имеет ограничения вроде проверки только одного помеченного входного сокета или файла. При проведении такой операции, как тестирование программ, будет содержаться детальная информация о наличие проблем с нулевыми указателями, бесконечными циклами, некорректными адресами или неисправностями из-за использования библиотек. Конечно, это не полный список обнаруживаемых ошибок, а только их распространённые примеры. Исправлять недочеты, увы, придётся разработчикам – автоматические средства для этих целей не подходят.

KLEE

тестовые программы

Это хорошая программа для тестирования памяти. Она может перехватывать примерно 50 системных вызовов и большое количество виртуальных процессов, таким образом, выполняется параллельно и отдельно. Но в целом программа не ищет отдельные подозрительные места, а обрабатывает максимально возможное количество кода и проводит анализ используемых путей передачи данных. Из-за этого время тестирования программы зависит от размера объекта. При проверке ставка сделана на символические процессы. Они являются одним из возможных путей выполнения задач в программе, которая проверяется. Благодаря параллельной работе можно анализировать большое количество вариантов работы исследуемого приложения. Для каждого пути после окончания его тестирования сохраняются наборы входных данных, с которых начиналась проверка. Следует отметить, что тестирование программ с помощью KLEE помогает выявлять большое количество отклонений, которых не должно быть. Она может найти проблемы даже в приложениях, которые разрабатываются десятилетиями.

Понравилась статья? Поделить с друзьями:
  • Как называется процесс выполнения программы с намерением найти ошибки
  • Как называется профессия человека который проверяет ошибки в тексте
  • Как называется профессия человека который исправляет ошибки в тексте
  • Как называется профессия когда исправляешь ошибки в тексте
  • Как называется профессия где исправляют ошибки в тексте