Как найти ошибки в молекуле рнк

Найдите ошибку в молекуле рнк : А — А — Т — Г — У — А — Т — Ц.

На этой странице находится ответ на вопрос Найдите ошибку в молекуле рнк : А — А — Т — Г — У — А — Т — Ц?, из категории
Биология, соответствующий программе для 5 — 9 классов. Чтобы посмотреть
другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов
подберите похожие вопросы и ответы в категории Биология. Ответ, полностью
соответствующий критериям вашего поиска, можно найти с помощью простого
интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе.
Обратите внимание на варианты ответов других пользователей, которые можно не
только просмотреть, но и прокомментировать.

Найдите ошибки в молекуле рнк а-у-т-г-ц-у-а-у-т-ц



  • 0




  • 0


У РНК Т замінюється на У

  • Комментариев (0)



  • 0


В РНК нет тимина, а вместо него должен быть урацил-> а-у-Т-г-ц-у-а-у-Т-ц  

  • Комментариев (0)

Ваш ответ

Сахар в зеленых листьях растений образуется из углекислого газа и воды.

Этот отряд — Приматы

Из чего состоит клетка?

1. Эритроциты красные безъядерные (у лягушки ядра есть), и их больше всего, поэтому мы четко видим цвет крови. Лейкоцити разных форм и видов. Тромбоциты мелкие и бесцветные тельца двояковыгнутой формы.

3. В эритроцитах лягушки наявны ядра

2. У человека эритроциты и лейкоциты почти одинаковые. У лягушки они в три раза больше лейкоцитов. В крови лошади лейкоциты в

3-4 раза больше.Во всех случих тромбоциты самые маленькие клетки крови.

4. Лейкоциты явно отличаются размером и формой, потомучто могут быть разных видов)

Метод-способ изучения,познания окружающего мира основные методы-наблюдения,измерение,опыт

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе :)

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.

Транскрипция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
    быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
    соответствующую кодону АУГ — метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
    Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
    В основе этого также лежит принцип комплементарности.

    Трансляция

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
    иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

    Полисома

  • Терминация
  • Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
    в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота :)

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Задача на транскрипцию и трансляцию

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.

Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? :)

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Наталья Резник
«Троицкий вариант» №24(218), 6 декабря 2016 года

Наталья Резник

Языки людей неоднозначны, многие слова в них имеют не одно, а несколько значений. Обычно мы улавливаем смысл исходя из контекста сказанного. У клеток свой язык, который они используют при синтезе белка. Это генетический код, состоящий из 64 нуклеотидных триплетов (кодонов), 61 из которых, смысловые, кодируют определенные аминокислоты, а три стоп-кодона вызывают завершение синтеза белковой молекулы (трансляции). Но кодоны, оказывается, могут иметь разный смысл, и, чтобы его понять, приходится, опять-таки, ориентироваться на контекст.

Про инвариантность генетического кода написано в учебниках, однако специалисты знают, что это не так. Впервые его неоднозначность обнаружили еще в 1985 году у инфузорий, а затем у зеленых водорослей и дипломонад, а также в митохондриальных геномах. В этих случаях стоп-кодоны не только терминируют синтез белка, но и кодируют в нем какую-нибудь аминокислоту. И как, спрашивается, рибосомы различают, в каких случаях этот кодон следует прочесть, а в каких — на нем остановиться? Ответ на этот вопрос искали специалисты Бернского и Пизанского университетов под руководством бернского профессора Мариуша Новацки (Mariusz Nowacki).

Исследователи проанализировали обширную базу данных транскриптомов (совокупностей всех молекул РНК) морских одноклеточных эукариот (Marine Microbial Eukaryote Transcriptome Sequencing Project, MMETSP), чтобы обнаружить и классифицировать переназначенные кодоны. Три переназначенных стоп-кодона они нашли в геномах нескольких видов инфузорий: UAA и UAG кодируют глютамин, цистеин или тирозин, а UGA — триптофан. Каждому смысловому кодону соответствует тРНК, подносящая определенную аминокислоту, а со стоп-кодонами взаимодействуют особые белки — факторы терминации трансляции. Таким образом, за каждый из переназначенных кодонов конкурируют по крайней мере одна тРНК и фактор терминации трансляции eRF1.

У большинства исследованных видов инфузорий с переназначенными стоп-кодонами оставался хотя бы один инвариантный, но у Condylostoma magnum и Parduzcia sp. переназначенными оказались все три: UAA и UAG кодируют глютамин, UGA — триптофан. Именно с этими двумя видами исследователи и продолжили работу. Изучение начали с последовательности гистона Н4 — одной из самых консервативных. Она обычно заканчивается стоп-кодонами UAG или UGA. Эксперименты показали, что рибосома проскакивает эту позицию крайне редко, с частотой менее 1,8%, обычно в этом месте происходит терминация. Однако в тех случаях, когда стоп-кодоны находятся в середине кодирующей последовательности, рибосома воспринимает их как смысловые. Ученые нашли тРНК, которая распознает UAA и UAG. Досрочной терминации трансляции при этом не происходит.

Как можно различать смысл неоднозначных кодонов? Исследователи предложили две гипотезы: либо рядом с кодонами находятся специфические последовательности, позволяющие тРНК или eRF1 сделать правильный выбор, или же значение кодона определяется его положением в молекуле РНК. Если стоп-кодон находится в конце молекулы, регуляторные белки воспринимают его как сигнал остановки. Подходящих последовательностей-маркеров, позволяющих определить значение кодона, ученые не обнаружили, поэтому сосредоточились на второй гипотезе.

Молекулы мРНК, с которых в рибосоме считываются белковые молекулы, имеют характерное строение. Их кодирующая последовательность оканчивается стоп-кодоном, за ним следует короткая 3’-некодирующая область и несколько адениловых остатков — поли(А)-хвост (см. рисунок). 3’-некодирующая область может быть настолько короткой, что поли(А)-хвост порой находится практически вплотную к стоп-кодону, поэтому ученые полагают, что именно положение стоп-кодона относительно поли(А)-хвоста позволяет определить его значение. Если хвост совсем рядом, надо ставить «точку»; стоп-кодоны, расположенные чуть дальше от поли(А), в 24–66 нуклеотидах от последнего кодона, читаются как смысловые.

Значение стоп-кодона зависит от его положения в молекуле мРНК относительно поли(А)-хвоста (Swart et al., 2016) («Троицкий вариант» №24(218), 06.12.2016)

Если какой-либо смысловой кодон в определенном положении часто читают как «стоп», отбор его оттуда уберет, потому что ошибка обойдется слишком дорого. Если гипотеза о том, что значение стоп-кодона зависит от его положения относительно 3’-конца молекулы, верна, подобные ошибки должны чаще всего происходить в тех случаях, когда смысловые стоп-кодоны расположены не в самом конце молекулы, но поблизости от него, и приводить к досрочной терминации. В таком случае в ходе эволюции они должны были исчезнуть. И действительно, в конце кодирующей области мРНК, перед настоящим стоп-кодоном, его смысловых собратьев нет. Ни для каких других кодонов таких позиционных эффектов не отмечено.

Итак, Мариуш Новацки и его коллеги предложили модель, согласно которой стоп-кодоны в молекулах мРНК инфузорий C. magnum и Parduczia sp. по умолчанию читаются как смысловые, а не служат стоп-сигналом. Терминация трансляции происходит, когда стоп-кодон расположен в самом конце молекулы. Исследователи пришли к выводу, что на срабатывание кодона как стоп-сигнала влияет близость поли(А)-хвоста и белков, с ним взаимодействующих. Особую роль они отводят белку РАВР.

Поскольку стоп-кодоны распределены по всей длине гена и благополучно транслируются, речь идет не о мутациях, а об изменении генетического кода. Бросается в глаза, что такие изменения произошли только у инфузорий, у других 265 эукариотических видов из MMETSP их нет.

По мнению исследователей, неоднозначность генетического кода инфузорий отражает первоначальную неоднозначность кода, когда каждый кодон имел несколько значений. Возникновение в ходе эволюции очень короткой 3’-нетранслируемой области и поли(А)-хвоста позволило переобозначить стоп-кодоны, использовать их в качестве сигнала терминации. Такое контекстное прочтение делает генетический код устойчивее к мутациям, превращающим значащие кодоны в стоп-кодоны. Если такая мутация произойдет в геноме с инвариантным кодом, она приведет к образованию короткого мутантного белка и преждевременной терминации трансляции. Но когда подобное случится в неоднозначном геноме инфузории, стоп-кодон будет прочитан, поскольку находится на месте смыслового, а для терминации трансляции нужен не только определенный триплет, но и его особое положение.

По мнению профессора Новацки и его соавторов, предки инфузорий долгое время прекрасно существовали с неоднозначными генетическими кодами. Нынешний инвариантный генетический код вовсе не последнее слово эволюции: генетические коды иногда изменяются.

Swart Е. С., Serra V., Petroni G., Nowacki M. Genetic Codes with No Dedicated Stop Codon Context-Dependent Translation Termination // Cell. 2016. 166. Р. 691–702. DOI:10.1016/j.cell.2016.06.020.

Понравилась статья? Поделить с друзьями:
  • Как найти ошибки в машине
  • Как найти ошибки в курсовой
  • Как найти ошибки в кредитном договоре
  • Как найти ошибки в композиции
  • Как найти ошибки в компиляции