Как найти абсолютную ошибку прибора

18

Ч
а с т ь
I

ОБРАБОТКА РЕЗУЛЬТАТОВ
ИЗМЕРЕНИЙ

1.
КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ ОШИБОК

Абсолютная
и относительная ошибки

Никакую
физическую величину невозможно измерить
абсолютно точно: как бы тщательно ни
был поставлен опыт, измеренное значение
величины х
будет
отличаться от ее истинного значения Х.
Разница между этими значениями
представляет собой абсолютную
ошибку
(или
абсолютную
погрешность
*)
измерения  х :

 х
= х – Х.
(1)

Абсолютная погрешность
является размерной величиной: она
выражается в тех же единицах, что и сама
измеряемая величина (например, абсолютная
погрешность измерения длины выражается
в метрах, силы тока – в амперах и т.д.).
Как следует из выражения (1),  х
может быть как положительной, так и
отрицательной величиной.

Хотя
величина  х
показывает, насколько измеренное
значение отличается от истинного, одной
лишь абсолютной ошибкой нельзя полностью
характеризовать точность проделанного
измерения. Пусть, например, известно,
что абсолютная погрешность измерения
расстояния равна 1 м.
Если измерялось расстояние между
географическими пунктами (порядка
нескольких километров), то точность
такого измерения следует признать
весьма высокой; если же измерялись
размеры помещения (не превышающие
десятка метров), то измерение является
грубым. Для характеристики точности
существует понятие относительной
ошибки

(или относительной
погрешности
)
Е,
представляющей собой отношение модуля
абсолютной ошибки к измеряемой величине:

.
(2)

Очевидно, что
относительная погрешность – величина
безразмерная, чаще всего ее выражают в
процентах.

При
определении ошибок измерений важно
иметь в виду следующее. Выражения (1) и
(2) содержат истинное значение измеряемой
величины Х,
которое точно знать невозможно: поэтому
значения  х
и Е
в принципе не могут быть рассчитаны
точно. Можно лишь оценить
эти значения, т.е. найти их приближенно
с той или иной степенью достоверности.
Поэтому все расчеты, связанные с
определением погрешностей, должны
носить приближенный (оценочный) характер.

Случайная
и приборная погрешности

Разнообразные ошибки,
возникающие при измерениях, можно
классифицировать как по их происхождению,
так и по характеру их проявления.

По происхождению
ошибки делятся на инструментальные и
методические.

Инструментальные
погрешности обусловлены несовершенством
применяемых измерительных приборов и
приспособлений. Эти погрешности могут
быть уменьшены за счет применения более
точных приборов. Так, размер детали
можно измерить линейкой или штанген-циркулем.
Очевидно, что во втором случае ошибка
измерения меньше, чем в первом.

Методические
погрешности возникают из-за того, что
реальные физические процессы всегда в
той или иной степени отличаются от их
теоретических моделей. Например, формула
для периода колебаний математического
маятника в точности верна лишь при
бесконечно малой амплитуде колебаний;
формула Стокса, определяющая силу трения
при движении шарика в вязкой жидкости,
справедлива только в случае идеально
сферической формы и т.д. Обнаружить и
учесть методическую погрешность можно
путем измерения той же величины совершенно
иным независимым методом.

По характеру проявления
ошибки бывают систематические и
случайные.

Систематическая
погрешность может быть обусловлена как
приборами, так и методикой измерения.
Она имеет две характерные особенности.
Во-первых, систематическая погрешность
всегда либо положительна, либо отрицательна
и не меняет своего знака от опыта к
опыту. Во-вторых, систематическую
погрешность нельзя уменьшить за счет
увеличения числа измерений. Например,
если при отсутствии внешних воздействий
стрелка измерительного прибора показывает
величину х, отличную от
нуля, то во всех дальнейших измерениях
будет присутствовать систематическая
ошибка, равная х.

Случайная
ошибка также может быть как инструментальной,
так и методической. Причину ее появления
установить трудно, а чаще всего –
невозможно (это могут быть различные
помехи, случайные толчки, вибрации,
неверно взятый отсчет по прибору и
т.д.). Случайная погрешность бывает и
положительной и отрицательной, причем
непредсказуемо изменяет свой знак от
опыта к опыту. Значение ее можно уменьшить
путем увеличения числа измерений.

Детальный
анализ погрешностей измерения представляет
собой сложную задачу, для решения которой
не существует единого рецепта. Поэтому
в каждом конкретном случае этот анализ
проводят по-разному. Однако, в первом
приближении, если исключена систематическая
ошибка, то остальные можно условно
свести к следующим двум видам: приборная
и случайная.

Приборной
погрешностью в дальнейшем будем
называть случайную ошибку, обусловленную
измерительными приборами и приспособлениями,
а случайной – ошибку, причина
появления которой неизвестна. Приборную
погрешность измерения величины х
будем обозначать как  х,
случайную – как x.

Оценка
случайной погрешности. Доверительный
интервал

Методика оценки
случайной погрешности основана на
положениях теории вероятностей и
математической статистики. Оценить
случайную ошибку можно только в том
случае, когда проведено неоднократное
измерение одной и той же величины.

Пусть
в результате проделанных измерений
получено п
значений величины х:
х,
х,
…, хп .
Обозначим через

среднеарифметическое значение

.
(3)

В
теории вероятностей доказано, что при
увеличении числа измерений п
среднеарифметическое значение измеряемой
величины приближается к истинному:

При
небольшом числе измерений (п  10)
среднее значение может существенно
отличаться от истинного. Для того, чтобы
знать, насколько точно значение

характеризует измеряемую величину,
необходимо определить так называемый
доверительный интервал полученного
результата.

Поскольку
абсолютно точное измерение невозможно,
то вероятность правильности утверждения
«величина х
имеет значение, в точности равное

»
равна нулю. Вероятность же утверждения
«величина х
имеет какое-либо значение
»
равна единице (100%). Таким образом,
вероятность правильности любого
промежуточного утверждения лежит в
пределах от 0 до 1. Цель измерения – найти
такой интервал, в котором с наперед
заданной вероятностью
(0 <  < 1)
находится истинное значение измеряемой
величины. Этот интервал называется
доверительным
интервалом
,
а неразрывно связанная с ним величина


доверительной вероятностью

(или коэффициентом
надежности
).
За середину интервала принимается
среднее значение, рассчитанное по
формуле (3). Половина ширины доверительного
интервала представляет собой случайную
погрешность x
(рис. 1).

Рис.1

Очевидно,
что
ширина доверительного интервала (а
следовательно, и ошибка x)
зависит от того, насколько сильно
отличаются отдельные измерения величины
хi
от среднего
значения
.
«Разброс» результатов измерений
относительно среднего характеризуется
среднеквадратичной
ошибкой
 ,
которую находят по формуле

,
(4)

где
.

Ширина
искомого доверительного интервала
прямо пропорциональна среднеквадратичной
ошибке:

.
(5)

Коэффициент
пропорциональности tn,
называется
коэффициентом
Стьюдента
;
он зависит от числа опытов п
и доверительной вероятности .

На
рис. 1, а, б
наглядно
показано, что при прочих равных условиях
для увеличения вероятности попадания
истинного значения в доверительный
интервал необходимо увеличить ширину
последнего (вероятность «накрывания»
значения Х
более широким интервалом выше).
Следовательно, величина tn,
должна быть тем больше, чем выше
доверительная вероятность
 .

С
увеличением количества опытов среднее
значение приближается к истинному;
поэтому при той же вероятности
доверительный интервал можно взять
более узким (см. рис. 1, а,в).
Таким образом, с ростом п
коэффициент Сьюдента должен
уменьшаться. Таблица значений коэффи-циента
Стьюдента в зависимости от п
и
дана в приложениях к настоящему пособию.

Следует
отметить, что доверительная вероятность
никак не связана с точностью результата
измерений. Величиной
задаются
заранее, исходя из требований к их
надежности. В большинстве технических
экспериментов и в лабораторном практикуме
значение
принимается
равным 0,95.

Расчет
случайной погрешности измерения величины
х проводится
в следующем порядке:

1) вычисляется
сумма измеренных значений, а затем –
среднее значение величины

по формуле (3);

2) для
каждого i-го
опыта рассчитываются разность между
измеренным и средним значениями
,
а также квадрат этой разности (отклонения)
( хi);

3) находится
сумма квадратов отклонений, а затем –
средне-квадратичная ошибка
по формуле (4);

4) по
заданной доверительной вероятности
и числу
проведенных опытов п
из таблицы на с. 149 приложений выбирается
соответствующее значение коэффициента
Стьюдента tn,
и определяется случайная погрешность
x
по формуле (5).

Для
удобства расчетов и проверки промежуточных
результатов данные заносятся в таблицу,
три последних столбца которой заполняются
по образцу табл.1.

Таблица
1

Номер опыта

х

 х

( х)

1

2

п

 =

 =

В
каждом конкретном случае величина х
имеет определенный физический смысл и
соответствующие единицы измерения. Это
может быть, например, ускорение свободного
падения g
(м/с2),
коэффициент вязкости жидкости
(Пас)
и т.д. Пропущенные столбцы табл. 1
могут содержать промежуточные измеряемые
величины, необходимые для расчета
соответствующих значений х.

Пример
1.
Для
определения ускорения а
движения тела измерялось время t
прохождения им пути S
без начальной
скорости. Используя известное соотношение
,
получим расчетную формулу

.
(6)

Результаты
измерений пути S
и времени t
приведены во втором и третьем столбцах
табл. 2. Проведя вычисления по формуле
(6), заполним

четвертый
столбец значениями ускорения ai
и найдем их сумму, которую запишем под
этим столбцом в ячейку « 
= ». Затем рассчитаем среднее значение

по формуле (3)

.

Таблица
2

Номер
опыта

S,

м

t,

c

а,

м/с2

а,

м/с2

(а)2,

(м/с2)2

1

5

2,20

2,07

0,04

0,0016

2

7

2,68

1,95

-0,08

0,0064

3

9

2,91

2,13

0,10

0,0100

4

11

3,35

1,96

-0,07

0,0049

 =

8,11

 =

0,0229

Вычитая
из каждого значения ai
среднее, найдем разности  ai

и занесем их в пятый столбец таблицы.
Возводя эти разности в квадрат, заполним
последний столбец. Затем рассчитаем
сумму квадратов отклонений и запишем
ее во вторую ячейку « 
= ». По формуле (4) определим
среднеквадратичную погрешность:

.

Задавшись
величиной доверительной вероятности
 = 0,95,
для числа опытов п = 4
из таблицы в приложениях (с. 149) выбираем
значение коэффициента Стьюдента tn,
 = 3,18; с помощью формулы (5) оценим
случайную погрешность измерения
ускорения

а
= 3,180,0437  0,139 (м/с2) .

Способы
определения приборных ошибок

Основными характеристиками
измерительных приборов являются предел
измерения и цена деления, а также –
главным образом для электро-измерительных
приборов – класс точности.

Предел
измерения П

– это максимальное значение величины,
которое может быть измерено с помощью
данной шкалы прибора. Если
предел измерения не указан отдельно,
то его определяют по оцифровке шкалы.
Так, если рис. 2
изображает шкалу миллиамперметра, то
его предел измерения равен 100 мА.

Р
ис.2

Цена
деления Ц

значение измеряемой величины,
соответствующее самому малому делению
шкалы. Если шкала начинается с нуля, то

,

где
N
– общее количество делений (например,
на рис. 2
N = 50).
Если эта шкала принадлежит амперметру
с пределом измерения 5 А,
то цена деления равна 5/50 = 0,1 (А).
Если шкала принадлежит термометру и
проградуирована в С,
то цена деления Ц = 100/50 = 2 (С).
Многие электроизмерительные приборы
имеют несколько пределов измерения.
При переключении их с одного предела
на другой изменяется и цена деления
шкалы.

Класс
точности К

представляет собой отношение абсолютной
приборной погрешности к пределу измерения
шкалы, выраженное в процентах:

.
(7)

Значение класса
точности (без символа «%») указывается,
как правило, на электроизмерительных
приборах.

В зависимости от вида
измерительного устройства абсолютная
приборная погрешность определяется
одним из нижеперечисленных способов.

1. Погрешность
указана непосредственно на приборе.
Так, на микрометре есть надпись «0,01 мм».
Если с помощью этого прибора измеряется,
например, диаметр шарика D
(лабораторная работа 1.2), то погрешность
его измерения D = 0,01 мм.
Абсолютная ошибка указывается обычно
на жидкостных (ртутных, спиртовых)
термометрах, штангенциркулях и др.

2. На приборе указан
класс точности. Согласно определению
этой величины, из формулы (7) имеем

.
(8)

Например, для вольтметра
с классом точности 2,5 и пределом измерения
600 В абсолютная приборная ошибка
измерения напряжения

.

3. Если на приборе
не указаны ни абсолютная погрешность,
ни класс точности, то в зависимости от
характера работы прибора возможны два
способа определения величины  х:

а) указатель
значения измеряемой величины может
занимать только определенные (дискретные)
положения, соответствующие делениям
шкалы (например, электронные часы,
секундомеры, счетчики импульсов и т.п.).
Такие приборы являются приборами
дискретного действия
, и их абсолютная
погрешность равна цене деления шкалы:
 х = Ц.
Так, при измерении промежутка времени
t секундомером с ценой
деления 0,2 с погрешность  t = 0,2 с;


б) указатель
значения измеряемой величины может
занимать любое положение на шкале
(линейки, рулетки, стрелочные весы,
термометры и т.п.). В этом случае абсолютная
приборная погрешность равна половине
цены деления:  х = Ц/2.
Точность снимаемых показаний прибора
не должна превышать его возможностей.
Например, при показанном на рис. 3
положении стрелки прибора следует
записать либо 62,5 либо 63,0 – в обоих
случаях ошибка не превысит половины
цены деления. Записи же типа 62,7 или 62,8
не имеют смысла.

Рис.3

4. Если какая-либо
величина не измеряется в данном оыте,
а была измерена независимо и известно
лишь ее значение, то она является заданным
параметром
. Так, в работе 2.1 по
определению коэффициента вязкости
воздуха такими параметрами являются
размеры капилляра, в опыте Юнга по
интерференции света (работа 5.1) –
расстояние между щелями и т.д. Погрешность
заданного параметра принимается равной
половине единицы последнего разряда
числа, которым задано значение этого
параметра. Например, если радиус капилляра
r задан с точностью
до сотых долей миллиметра, то его
погрешность  r = 0,005 мм.

Погрешности
косвенных измерений

В большинстве физических
экспериментов искомая величина и
не измеряется непосредственно каким-либо
одним прибором, а рассчитывается на
основе измерения ряда промежуточных
величин x, y, z,…
Расчет проводится по определенной
формуле, которую в общем виде можно
записать как

и = и ( x, y, z,…).
(9)

В этом случае говорят,
что величина и представляет собой
результат косвенного измерения в
отличие от x, y, z,…,
являющихся результатами прямых
измерений
. Например, в
работе 1.2 коэффициент вязкости жидкости

рассчитывается по формуле

,
(10)

где ш
– плотность материала шарика; ж
– плотность жидкости; g
– ускорение свободного падения; D
– диаметр шарика; t
время его падения в жидкости; l
– расстояние между метками на сосуде.
В данном случае результатами прямых
измерений являются величины l,
D
и t,
а коэффициент вязкости
– результат косвенного
измерения. Величины ш,
ж
и g представляют
собой заданные параметры.

Абсолютная
погрешность косвенного измерения  и
зависит от погрешностей прямых измерений
 x,
 y,
 z…и
от вида функции (9). Как правило, величину
 и
можно оценить по формуле
вида

,
(11)

где
коэффициенты kx ,
ky ,
kz ,…
определяются видом зависимостей величины
и от x,
y, z,…
Приведенная ниже табл. 3 позволяет
найти эти коэффициенты для наиболее
распространенных элементарных функций
(abcn
– заданные константы).

Таблица
3

и(х)

kx

На
практике зависимость (9) чаще всего имеет
вид степенной функции

,

показатели степеней
которой k,
m
, n,…
– вещественные (положительные или
отрицательные, целые или дробные) числа;
С – постоянный коэффициент. В этом
случае абсолютная приборная погрешность
 и
оценивается по формуле

,
(12)

где

– среднее значение величины и;

– относительные приборные погрешности
прямых измерений величин x,
y, z,…
Для подстановки в формулу (12) выбираются
наиболее представительные, т.е.
близкие к средним значения x,
y, z,…

При расчетах по
формулам типа (12) необходимо помнить
следующее.

1. Измеряемые
величины и их абсолютные погрешности
(например, х и  х)
должны быть выражены в одних и тех же
единицах.

2. Расчеты не требуют
высокой точности вычислений и должны
иметь оценочный характер. Так, входящие
в подкоренное выражение и возводимые
в квадрат величины ( kEx ,
 mEy ,
 nEz ,…)
обычно округляются с точностью до
двух значащих цифр (напомним, что ноль
является значащей цифрой только тогда,
когда перед ним слева есть хотя бы одна
цифра, отличная от нуля). Далее, если
одна из этих величин (например, | kE| ) по
модулю превышает наибольшую из остальных
( | mE| ,
 | nE| ,…)
более чем в три раза, то можно, не прибегая
к вычислениям по формуле (12), принять
абсолютную ошибку равной
.
Если же одна из них более чем в три раза
меньше наименьшей из остальных, то при
расчете по формуле (12) ею можно пренебречь.

Пример 2.
Пусть при определении ускорения тела
(см. пример 1) путь S
измерялся рулеткой с ценой деления
мм, а время t
– электронным секундомером. Тогда, в
соответствии с изложенными в п.3, а, б
(с. 13) правилами, погрешности прямых
измерений будут равны

 S = 0,5 мм = 0,0005 м;

 t = 0,01 с.

Расчетную формулу
(6) можно записать в виде степенной
функции

a( S, t ) = 2S 1t – 2 ;

тогда на основании
(12) погрешность косвенного измерения
ускорения  а
определится выражением

.

В
качестве наиболее представительных
значений измеренных величин возьмем
(см. табл. 2)  8 м;
 3 с
и оценим по модулю относительные
приборные ошибки прямых измерений с
учетом их весовых коэффициентов:

;

.

Очевидно,
что в данном случае величиной ES
можно пренебречь и принять погрешность
 а
равной

Пример 3.
Вернемся к определению коэффициента
вязкости жидкости (работа 1.2). Расчетную
формулу (10) можно представить в виде

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Величина приборной погрешности
может быть найдена одним из следующих
способов:

  1. Приборная погрешность может быть
    указана или на самом приборе, или в
    его паспорте (в описании лабораторной
    работы).

  1. Приборная погрешность электроизмерительных
    приборов определяется по классу
    точности прибора. Класс точности
    указывается в нижней части шкалы
    прибора, как правило, в виде числа,
    обведенного в кружочек.

Например:2.0 или 0.5 . Класс точности
прибора равен

приборной погрешности, выраженной в
процентах от максимального значения,
измеряемого на данной шкале. Обозначим
класс точности прибора буквой N.
Тогда:

% . (3)

Таким образом, зная класс точности
прибора Nможно рассчитать
приборную погрешностьxпо формуле:

. (4)

Пример.Пусть необходимо
измерить силу тока амперметром класса

точности 0,05 и с диапазоном измерения
(0 — 10) А. Абсолютную погрешность определим
по формуле (4):

А.

Так как относительная погрешность
зависит от значения измеряемой величины,
то она оказывается тем меньше, чем ближе
значение измеряемой величины к предельному
значению шкалы. Так, в рассматриваемом
примере, если измеренное значение тока
оказалось бы равным 10А, то %, а если 1А, тоI= 0,5 %.

Следовательно, при работе с
многопредельными приборами, в целях
получения наименьшей погрешности
измерения, следует выбирать такой
предел измерения, при котором стрелка
прибора имела бы максимальное отклонение.

3. В остальных случаях, когда
отсутствует паспорт прибора и не указан
класс точности, приборную погрешность
следует считать равной половине
наименьшего деления шкалы прибора
(половине цены деления шкалы).

Пример.При измерении длины
обычной линейкой, у которой наименьшее
деление шкалы равно 1 мм, следует
считать приборную погрешность равной
0,5 мм.

2. Как определить случайную погрешность X?

Если после проведения нескольких
измерений одной и той же физической
величины обнаруживается, что она
принимает различные значения после
каждого измерения, то это свидетельствует
о наличии случайной погрешности
.

Допустим, что проделано nизмерений физической величиныx,
и полученыnеё различных
значений.

Оценку истинного значения
измеряемой величины
x
принято находить как среднее арифметическое
значение результатов измерений:

.
(5)

Для того, чтобы вычислить
абсолютную погрешность xследует найти разности между каждым
из результатов отдельных измерений
и среднеарифметическим значением:

(6)

Величины
являютсяслучайными отклоненияминаблюдаемой величины от среднеарифметического
значения и могут оказаться как
положительными (еслиxx),
так и отрицательными (еслиxx).

За величину погрешности
принимается средняя абсолютная ошибка
измерения, равная среднему арифметическому
значению модулей случайных отклонений
:

(7)

или

. (8)

Соседние файлы в папке Matobrabotka

  • #

    16.04.201531.74 Кб18МНК1.xls

  • #

    16.04.201522.02 Кб8МНК2.xls

  • #

    16.04.201518.43 Кб8МНК3.xls

  • #
  • #
  • #
  • #


Загрузить PDF


Загрузить PDF

Абсолютная ошибка – это разность между измеренным значением и фактическим значением.[1]
Эта ошибка характеризует точность измерений. Если вам известны фактическое и измеренное значения, можно с легкостью вычислить абсолютную ошибку. Но иногда фактическое значение не дано, поэтому в качестве абсолютной ошибки пользуются максимально возможной ошибкой.[2]
Если даны фактическое значение и относительная ошибка, можно вычислить абсолютную ошибку.

  1. Изображение с названием Calculate Absolute Error Step 1

    1

    Запишите формулу для вычисления абсолютной ошибки. Формула: Delta x=x_{{0}}-x, где Delta x – абсолютная ошибка (разность между измеренным и фактическим значениями), x_{{0}} – измеренное значение, x – фактическое значение.[3]

  2. Изображение с названием Calculate Absolute Error Step 2

    2

    Подставьте в формулу фактическое значение. Фактическое значение должно быть дано; в противном случае используйте принятое опорное значение. Фактическое значение подставьте вместо x.

    • Например, нужно измерить длину футбольного поля. Фактическая длина (принятая опорная длина) футбольного поля равна 105 м (именно такое значение рекомендуется FIFA). Таким образом, фактическое значение равно 105 м: Delta x=x_{{0}}-105.
  3. Изображение с названием Calculate Absolute Error Step 3

    3

    Подставьте в формулу измеренное значение. Оно будет дано; в противном случае измерьте величину (длину или ширину и так далее). Измеренное значение подставьте вместо x_{0}.

    • Например, вы измерили длину футбольного поля и получили значение 104 м. Таким образом, измеренное значение равно 104 м: Delta x=104-105.
  4. Изображение с названием Calculate Absolute Error Step 4

    4

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[4]
    Так вы вычислите абсолютную ошибку.

    • В нашем примере: Delta x=104-105=-1, то есть абсолютная ошибка измерения равна 1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 5

    1

    Запишите формулу для вычисления относительной ошибки. Формула: delta x={frac  {x_{{0}}-x}{x}}, где delta x – относительная ошибка (отношение абсолютной ошибки к фактическому значению), x_{{0}} – измеренное значение, x – фактическое значение.[5]

  2. Изображение с названием Calculate Absolute Error Step 6

    2

    Подставьте в формулу относительную ошибку. Скорее всего, она будет дана в виде десятичной дроби. Относительную ошибку подставьте вместо delta x.

    • Например, если относительная ошибка равна 0,02, формула запишется так: 0,02={frac  {x_{{0}}-x}{x}}.
  3. Изображение с названием Calculate Absolute Error Step 7

    3

    Подставьте в формулу фактическое значение. Оно будет дано. Фактическое значение подставьте вместо x.

    • Например, если фактическое значение равно 105 м, формула запишется так: 0,02={frac  {x_{{0}}-105}{105}}.
  4. Изображение с названием Calculate Absolute Error Step 8

    4

    Умножьте обе стороны уравнения на фактическое значение. Так вы избавитесь от дроби.

  5. Изображение с названием Calculate Absolute Error Step 9

    5

    Прибавьте фактическое значение к каждой стороне уравнения. Так вы найдете x_{{0}}, то есть измеренное значение.

  6. Изображение с названием Calculate Absolute Error Step 10

    6

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[6]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренное значение равно 107,1 м, а фактическое значение равно 105 м, вычисления запишутся так: 107,1-105=2,1. Таким образом, абсолютная ошибка равна 2,1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 11

    1

    Определите единицу измерения. То есть выясните, было ли значение измерено с точностью до сантиметра, метра и так далее. Возможно, эта информация будет дана (например, «длина поля измерена с точностью до метра»). Чтобы определить единицу измерения, посмотрите на то, как округлено данное значение.[7]

    • Например, если измеренная длина поля равна 106 м, значение было округлено до метров. Таким образом, единица измерения равна 1 м.
  2. Изображение с названием Calculate Absolute Error Step 12

    2

  3. Изображение с названием Calculate Absolute Error Step 13

    3

    Используйте максимально возможную ошибку в качестве абсолютной ошибки.[9]
    Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[10]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренная длина поля равна 106pm 0,5 м, то есть абсолютная ошибка равна 0,5 м.

    Реклама

Советы

  • Если фактическое значение не указано, найдите принятое опорное или теоретическое значение.

Реклама

Об этой статье

Эту страницу просматривали 25 760 раз.

Была ли эта статья полезной?

Как Найти Погрешность Измерений Формула
Физические величины и погрешности их измерений — Задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Сразу оговоримся, что при выборе измерительного оборудования часто нужно также знать диапазон измерения и какое именно значение интересует: например, среднеквадратическое значение (СКЗ) измеряемой величины в определённом интервале времени, или требуется измерять среднеквадратическое отклонение (СКО) (для измерения переменной составляющей величины), или требуется измерять мгновенное (пиковое) значение.

  • При измерении переменных физических величин (например, напряжение переменного тока) требуется знать динамические характеристики измеряемой физической величины: диапазон частот или максимальную скорость изменения физической величины,
  • Эти данные, необходимые при выборе измерительного оборудования, зависят от физического смысла задачи измерения в конкретном физическом эксперименте,

Итак, повторимся: задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Эта задача решается с помощью прямых или косвенных измерений, При прямом измерении осуществляется количественное сравнение физической величины с соответствующим эталоном при помощи измерительных приборов.

  • Отсчет по шкале прибора указывает непосредственно измеряемое значение.
  • Например, термометр дает значения измеряемой температуры, а вольтметр – значение напряжения.
  • При косвенных измерениях интересующая нас физическая величина находится при помощи математических операций над непосредственно измеренными физическими величинами (непосредственно измеряя напряжение U на резисторе и ток I через него, вычисляем значение сопротивления R = U / I ).

Точность прямых измерений некоторой величины X оценивается величиной погрешности или ошибки, измерений относительно действительного значения физической величины X Д, Действительное значение величины X Д (согласно РМГ 29-99 ) – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

  • Различают абсолютную (∆ X) и относительную (δ) погрешности измерений.
  • Абсолютная погрешность измерения – это п огрешность средства измерений, выраженная в единицах измеряемой физической величины, характеризующая абсолютное отклонение измеряемой величины от действительного значения физической величины: ∆X = X – X Д,

Относительная погрешность измерения – это п огрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному значению измеряемой величины. Обычно относительную погрешность выражают в процентах: δ = (∆X / Xд) * 100%, При оценке точности косвенных измерений некоторой величины X 1, функционально связанной с физическими величинами X 2, X 3,, X 1 = F (X 2, X 3, ), учитывают погрешности прямых измерений каждой из величин X 2, X 3, и характер функциональной зависимости F (),

Как вычислить погрешность измерений?

Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе. Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована ( эталоны ).

расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой. Рис. (1). Линейка и брусок Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.

У нас есть два варианта определения длины этого бруска. (1). Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм). (2). Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного. Погрешность измерительного прибора равна цене деления прибора. Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см. Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. Рис. (2). Деревянная линейка Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм, Рис. (3). Штангенциркуль На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений. Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

В чем измеряется погрешность?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

  1. Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.
  2. Инструментальные и методические погрешности.
  3. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях.
  4. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Как найти абсолютную погрешность измерительного прибора?

Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δx = Δ и x + Δ о x при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Что такое погрешность метода измерений?

По источнику возникновения — Инструментальная погрешность Эта погрешность определяется несовершенством прибора, возникающим, например, из-за неточной калибровки, Методическая погрешность Методической называют погрешность, обусловленную несовершенством метода измерений.

Что такое погрешность измерительного прибора?

Определение — Проводя измерение параметров рынка, маркетолог получает результаты в виде таблиц, графиков и пр. Эти данные он предоставляет заказчику. Но в отчетах не все специалисты указывают важную величину — погрешность, о которой клиент не подозревает.

Как определить погрешность деления?

Как определить погрешность и объем жидкости — Погрешность равна половине цены деления мензурки. В нашем случае погрешность составляет 2,5 мл. Чтобы определить объем, берем ближайшее число от верхней границы жидкости (на рисунке — это значение 40 мл) и прибавляем количество штрихов (на рисунке — 2 штриха) по 5 мл: V = 40 + 2 × 5 = 50 мл.

Как рассчитывается приведенная погрешность?

Программа КИП и А Дмитрий Бебякин, инженер — метролог, ИЛИМ Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений.

  1. Общие требования» и им подобных.
  2. Но открывая эти документы сразу возникает чувство тоски Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия.
  3. Давайте же пока откинем такие вычурные и непонятные нам определения, как « среднее квадратическое отклонение случайной составляющей погрешности » или « нормализованная автокорреляционная функция » или « характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений » и т.п.

Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает. Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.

  1. Абсолютная погрешность: Δ = X д — X изм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы. где X д – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений; X изм – измеренное значение.
  2. Относительная погрешность: δ = (Δ ⁄ X д ) · 100, выражается в % от действительного значения измеренной величины.
  3. Приведённая погрешность: γ = (Δ ⁄ X н ) · 100, выражается в % от нормирующего значения. где X н – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).

По характеру проявления:

  • систематические (могут быть исключены из результатов);
  • случайные;
  • грубые или промахи (как правило не включаются в результаты измерений).

В зависимости от эксплуатации приборов:

  • основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
  • дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.
Наимено вание погреш ности Формула Форма выражения, записи Обозначение класса точности
В докумен тации На сред стве изме рений
Абсолют ная Δ = X д — X изм Δ = ±50 мг Примеры: Номинальная масса гири 1 кг ±50 мг Диапазон измерения весов среднего III класса точности от 20 г до 15 кг ±10 г Класс точности: М 1 Класс точности: средний III Примечание: на многие виды измерений есть свои НД по выражению погрешностей, здесь для примера взято для гирь и весов. М 1
Относи тельная δ = (Δ ⁄ X д ) · 100 δ = ±0,5 Пример: Измеренное значение изб.

Как вычислить абсолютную погрешность формула?

Поиск: Абсолютная погрешность Δ измерений, выражаемая в единицах измеряемой величины, представляется разностью между измеренным и истинным (действительным) значениями измеряемой величины: Δ = х изм — х и (х д ).

Чему равна абсолютная погрешность?

При измерении каких-либо величин важным понятием является понятие о погрешности. Это связано с тем, что абсолютно точно измерить какую либо величину невозможно. Поэтому вводят понятие погрешности. Есть очень много видов погрешности, связанных с человеческим фактором или процессом измерения.

Для чего нужна погрешность измерений?

Каждое физическое измерение в исследованиях и промышленности сопровождается определенной погрешностью. Даже незначительные колебания в условиях окружающей среды могут влиять на измерение и вызывать отклонения, которые делают результат измерения ненадежным.

Для получения правильных результатов измерений необходимо учитывать связанную с результатами погрешность. Погрешность измерений указывает на недостающую информацию о настоящем значении измеряемой величины. Она определяется параметром, выраженным в процентах и относящимся к результату измерения, который обозначает отклонение значений, которое обоснованно можно присвоить измеряемой величине на основе имеющейся информации.

Другими словами, это диапазон, в пределах которого с определенной вероятностью находится истинное значение измеряемой величины.

Как найти абсолютную погрешность пример?

Абсолютная погрешность — Абсолютной погрешностью числа называют разницу между этим числом и его точным значением. Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26. Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

  1. Существует формула абсолютной погрешности.
  2. Обозначим точное число буквой А, а буквой а – приближение к точному числу.
  3. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях.
  4. Тогда формула будет выглядеть следующим образом: Δа=А-а.
  5. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой.

Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения. Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см.

Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Как определить цену деления и погрешность?

Найти две соседних отметки шкалы, возле которых написаны величины, соответствующие этим отметкам шкалы; найти разность этих величин; сосчитать количество промежутков между величинами отметок шкалы; полученную разность величин разделить на количество промежутков.

Что такое максимальная погрешность измерений?

Предельная погрешность измерения в ряду измерений – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи.

Как рассчитывается приведенная погрешность?

Программа КИП и А Дмитрий Бебякин, инженер — метролог, ИЛИМ Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений.

Общие требования» и им подобных. Но открывая эти документы сразу возникает чувство тоски Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия. Давайте же пока откинем такие вычурные и непонятные нам определения, как « среднее квадратическое отклонение случайной составляющей погрешности » или « нормализованная автокорреляционная функция » или « характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений » и т.п.

Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает. Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.

  1. Абсолютная погрешность: Δ = X д — X изм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы. где X д – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений; X изм – измеренное значение.
  2. Относительная погрешность: δ = (Δ ⁄ X д ) · 100, выражается в % от действительного значения измеренной величины.
  3. Приведённая погрешность: γ = (Δ ⁄ X н ) · 100, выражается в % от нормирующего значения. где X н – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).

По характеру проявления:

  • систематические (могут быть исключены из результатов);
  • случайные;
  • грубые или промахи (как правило не включаются в результаты измерений).

В зависимости от эксплуатации приборов:

  • основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
  • дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.
Наимено вание погреш ности Формула Форма выражения, записи Обозначение класса точности
В докумен тации На сред стве изме рений
Абсолют ная Δ = X д — X изм Δ = ±50 мг Примеры: Номинальная масса гири 1 кг ±50 мг Диапазон измерения весов среднего III класса точности от 20 г до 15 кг ±10 г Класс точности: М 1 Класс точности: средний III Примечание: на многие виды измерений есть свои НД по выражению погрешностей, здесь для примера взято для гирь и весов. М 1
Относи тельная δ = (Δ ⁄ X д ) · 100 δ = ±0,5 Пример: Измеренное значение изб.

Как вычислить погрешность функции?

Главная страница УЧЕБНЫЕ МАТЕРИАЛЫ ПРОГРАММА КУРСА КОНСПЕКТЫ ЛЕКЦИЙ ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ВОПРОСЫ К ЗАЧЁТУ РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Кафедра физхимии ЮФУ (РГУ) ЧИСЛЕННЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ Материалы к лекционному курсу Лектор – Щербаков И.Н. Пусть X – некоторая величина, истинное значение которой известно или неизвестно и равно x*, Число x, которое можно принять за значение величины X, мы будем называть ее приближенным значением или просто приближенным числом. Число x называют приближенным значением по недостатку, если оно меньше истинного значения ( x < x* ), и по избытку, если оно больше ( x > x* ). Например, число 3,14 является приближенным значением числа π по недостатку, а 2,72 – приближенным значением числа е (основание натурального логарифма) по избытку. Абсолютная погрешность приближенного числа есть абсолютная величина разности между истинным значением величины и данным ее приближенным значением. Δx = | x * – x | Поскольку истинное значение величины обычно остается неизвестным, неизвестной остается также и абсолютная погрешность. Вместо нее приходится рассматривать оценку абсолютной погрешности, так называемою предельную абсолютную погрешность, которая означает число, не меньшее абсолютной погрешности (далее, в том случае, если это не принципиально, будем под абсолютной погрешностью понимать именно предельную абсолютную погрешность). Абсолютная погрешность приближенного числа не в полной мере характеризует его точность. Действительно, погрешность в 0,1 г слишком велика при взвешивании реактивов для проведения микро-синтеза, допустима при взвешивании 100 г колбасы, и не может быть замечена при измерении массы, например, железнодорожного вагона. Более информативным показателем точности приближенного числа является его относительная погрешность, Относительной погрешностью δx приближенного значения величины X называют абсолютную величину отношения его абсолютной погрешности к истинному значению этой величины. Часто эту относительную погрешность выражают в процентах. C учетом положительности абсолютной погрешности можно записать: δx = Δx / | x* | Ввиду того, что фактически вместо абсолютной погрешности приходится рассматривать предельную, относительную погрешность также заменяют предельной относительной погрешностью, которая означает число, не меньшее относительной погрешности. Более того, при отыскании предельной относительной погрешности приходится заменять неизвестное истинное значение величины x* приближенным – x, Последняя замена обычно не отражается на величине относительной погрешности ввиду близости этих значений и малости абсолютной погрешности. δx = Δx / | x | Например, для приближенного значения π = 3,14 предельная абсолютная погрешность составляет 0,0016, а относительная – 0,00051 или 0,051%. Выражение относительной погрешности в процентах иногда называют процентной погрешностью.

Как рассчитать абсолютную погрешность?

Абсолютная погрешность Δ измерений, выражаемая в единицах измеряемой величины, представляется разностью между измеренным и истинным (действительным) значениями измеряемой величины: Δ = х изм — х и (х д ).

Adblock
detector

Понравилась статья? Поделить с друзьями:
  • Как найти грамматические и пунктуационные ошибки
  • Как найти абсолютную ошибку отдельного измерения
  • Как найти все ошибки в тексте word
  • Как найти абсолютную ошибку определения
  • Как найти все ошибки в компьютере и удалить его