Чтобы ошибка для средней не превышала

Избежать ошибки
репрезентативности нельзя но, пользуясь
методами теории вероятности эти ошибки
можно свести к min
значениям, границы которых устанавливаются
с достаточно большой точностью. Ошибка
выборочного наблюдения это разность
между величиной параметров в ген
совокупности и его величиной вычисленной
по результатам выборочного наблюдения.
В теории Чебышева доказано что величина
ошибки не должна превышать

;

.Где

-средняя квадратная стандартная ошибка
простой случайной повторной выборки,

;
G-
дисперсия; n-
объем выборочной совокупности;


генеральная дисперсия,t-коэффициент
доверия который приводится в спец
математических таблицах.В частности
при t=1
можно утверждать, что с вероятностью
0,683, разница между выборочной и генеральной
совокупностями не превышает средней
ошибки выборки. t=1,5
– вероятность Ф(t)=0,866;
t=1
— вероятность Ф(t)=0,683;
t=2
— вероятность Ф(t)=0,954;
t=2,5
— вероятность Ф(t)=0,988;
t=3
— вероятность Ф(t)=0,997;
t=3,2
— вероятность Ф(t)=0,999

При случайном
бесповторном отборе ср ошибка выборки
будет равно


;
Где n-объём
выборочной совокупности,N-объём
генеральной совокупности

Предельная ошибка
выборки при случайном бесповторном
отборе:


Возможные пределы
в которых будет находиться хар-ки ген
совок-ти:

Ошибка выборки
для альтернативного признака: у которого
только 2 исхода: а) наличие признака-р;
б) отсутствие признака-q.

Доля признака
выборочной совокупности нам неизвестна,
поэтому мы должны заменить p
на w
долю выборочной совокупности и тогда
получаем

;
q+p=1;
q+w=1
и из этого следует

;

-ср.ошибка
выборки по доле собственно случайной
и механической выборке при повторном
отборе; w-доля
единиц обладающих исследуемых признаков
выборочной совокупности; n-численность
единиц выборочной совокупности.
Предельная ошибка выборки по доле:

.
Предельная ошибка для собственной и
механической выборки:

.
При бесповторном отборе средняя ошибка
по доле:

.
Предельная ошибка выборки при бесповторном
отборе: 0

Вопрос 27.Понятие о малых выборках. Средние и предельные ошибки выборки.

В практике стат-го
исслед-я часто приходится встречаться
с небольшими по объему выборками. Под
малой
выборкой
понимается
такое
выборочное наблюд-е численность ед-ц
которого не превышает 30. Разработка
теории малой выборки была выполнена
англ статистиком Госсетом. Он доказал,
что оценка расхождения м/у средней малой
выборки и генеральной средней имеет
особый закон распределения. При оценке
результатов малой выборки величина
генеральной дисперсии в расчетах не
использ-ся. Для опр-я возможных пределов
ошибки пользуются критерием Стьюдента:

— коэффициент Стьюдента;

— ср.ариметическ. в малой выборке;

— ср.ариметическ. в генеральной
совокупности;

— мера случайн. колебаний выборочн.средней.


;
S-
величина ср.квадр.отклонения.

;

Избежать ошибки
репрезентативности нельзя но, пользуясь
методами теории вероятности эти ошибки
можно свести к min
значениям, границы которых устанавливаются
с достаточно большой точностью. Ошибка
выборочного наблюдения это разность
между величиной параметров в ген
совокупности и его величиной вычисленной
по результатам выборочного наблюдения.
В теории Чебышева доказано что величина
ошибки не должна превышать

;

Где

-средняя квадратная стандартная ошибка
простой случайной повторной выборки,

;
G-
дисперсия; n-
объем выборочной совокупности;


генеральная дисперсия,t-коэффициент
доверия который приводится в спец
математических таблицах.

В частности при
t=1
можно утверждать, что с вероятностью
0,683, разница между выборочной и генеральной
совокупностями не превышает средней
ошибки выборки. t=1,5
– вероятность Ф(t)=0,866;
t=1
— вероятность Ф(t)=0,683;
t=2
— вероятность Ф(t)=0,954;
t=2,5
— вероятность Ф(t)=0,988;
t=3
— вероятность Ф(t)=0,997;
t=3,2
— вероятность Ф(t)=0,999

При случайном
бесповторном отборе ср ошибка выборки
будет равно

;
Где n-объём
выборочной совокупности,N-объём
генеральной совокупности

Предельная ошибка
выборки при случайном бесповторном
отборе:

Возможные пределы
в которых будет находиться хар-ки ген
совок-ти:

Ошибка выборки
для альтернативного признака: у которого
только 2 исхода: а) наличие признака-р;
б) отсутствие признака-q.

Доля признака
выборочной совокупности нам неизвестна,
поэтому мы должны заменить p
на w
долю выборочной совокупности и тогда
получаем

;
q+p=1;
q+w=1
и из этого следует

;

-ср.ошибка
выборки по доле собственно случайной
и механической выборке при повторном
отборе; w-доля
единиц обладающих исследуемых признаков
выборочной совокупности; n-численность
единиц выборочной совокупности.
Предельная ошибка выборки по доле:

Предельная ошибка
выборки по доле:

Предельная ошибка
для собственной и механической выборки:

При бесповторном
отборе средняя ошибка по доле:

Предельная ошибка
выборки при бесповторном отборе:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

11.2. Оценка результатов выборочного наблюдения

11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли

Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки (mu).

В теории выборочного наблюдения выведены формулы для определения mu, которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.

Например, если применяется повторная собственно случайная выборка, то mu определяется как:

— при оценивании среднего значения признака;

— если признак альтернативный, и оценивается доля.

При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):

— для среднего значения признака;

— для доли.

Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.

Предельная ошибка выборки (Delta) равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):

Delta =t mu.

Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.

Уровень предельной ошибки выборки зависит от следующих факторов:

  • степени вариации единиц генеральной совокупности;
  • объема выборки;
  • выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
  • уровня доверительной вероятности.

Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.

Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.

Таблица
11.2.

Значение доверительной вероятности P 0,683 0,954 0,997
Значение коэффициента доверия t 1,0 2,0 3,0

Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:

Итак, определение границ генеральной средней и доли состоит из следующих этапов:

Ошибки выборки при различных видах отбора

  1. Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.

Таблица
11.3.
Формулы для расчета средней ошибки собственно случайной и механической выборки (mu)

где sigma^{2} — дисперсия признака в выборочной совокупности.

Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.

Таблица
11.4.

Уровень фондоотдачи, руб. До 1,4 1,4-1,6 1,6-1,8 1,8-2,0 2,0-2,2 2,2 и выше Итого
Количество предприятий 13 15 17 15 16 14 90

В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:

  1. По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:

Таблица
11.5.

Результаты наблюдения Расчетные значения
уровень фондоотдачи, руб., xi количество предприятий, fi середина интервала, xixb4 xixb4fi xixb42fi
До 1,4 13 1,3 16,9 21,97
1,4-1,6 15 1,5 22,5 33,75
1,6-1,8 17 1,7 28,9 49,13
1,8-2,0 15 1,9 28,5 54,15
2,0-2,2 16 2,1 33,6 70,56
2,2 и выше 14 2,3 32,2 74,06
Итого 90 162,6 303,62

Выборочная средняя

Выборочная дисперсия изучаемого признака

  1. Определяем среднюю ошибку повторной случайной выборки

  2. Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.

Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.

  1. Предельная ошибка выборки с вероятностью 0,954 равна

    delta_{x}= tmu_{x}= 2*0.035 = 0.07

  2. Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности

Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.

Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле

Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:

delta_{x}= tmu_{x}= 2*0.027 = 0.054

Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:

Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.

По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:

  1. рассчитаем выборочную долю.

Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда

m = 60, n = 90, w = m/n = 60 : 90 = 0,667;

  1. рассчитаем дисперсию доли в выборочной совокупности

sigma_{w}^{2}= w(1 - w) = 0,667(1 - 0,667) = 0,222;

  1. средняя ошибка выборки при использовании повторной схемы отбора составит

Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит

  1. зададим доверительную вероятность и определим предельную ошибку выборки.

При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):

delta_{x}= tmu_{x}= 3*0.04 = 0.12

  1. установим границы для генеральной доли с вероятностью 0,997:

Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.

  1. Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда

N1 + N2 + … + Ni + … + Nk = N.

Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки

n1 + n2 + … + ni + … + nk = n.

Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.

Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:

n = ni · Ni/N

где ni — количество извлекаемых единиц для выборки из i-й типической группы;

n — общий объем выборки;

Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;

N — общее количество единиц генеральной совокупности.

Отбор единиц внутри групп происходит в виде случайной или механической выборки.

Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.

Таблица
11.6.
Формулы для расчета средней ошибки выборки (mu) при использовании типического отбора, пропорционального объему типических групп

Здесь sigma^{2} — средняя из групповых дисперсий типических групп.

Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:

Таблица
11.7.

Номер курса Всего студентов, чел., Ni Обследовано в результате выборочного наблюдения, чел., ni Среднее число посещений библиотеки одним студентом за семестр, xi Внутригрупповая выборочная дисперсия, sigma_{i}^{2}
1 650 33 11 6
2 610 31 8 15
3 580 29 5 18
4 360 18 6 24
5 350 17 10 12
Итого 2 550 128 8

Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:

  • общий объем выборочной совокупности:

    n = 2550/130*5 =128 (чел.);

  • количество единиц, отобранных из каждой типической группы:

аналогично для других групп:

n2 = 31 (чел.);

n3 = 29 (чел.);

n4 = 18 (чел.);

n5 = 17 (чел.).

Проведем необходимые расчеты.

  1. Выборочная средняя, исходя из значений средних типических групп, составит:

  2. Средняя из внутригрупповых дисперсий

  3. Средняя ошибка выборки:

    С вероятностью 0,954 находим предельную ошибку выборки:

    delta_{x} = tmu_{x} = 2*0.334 = 0.667

  4. Доверительные границы для среднего значения признака в генеральной совокупности:

Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.

  1. Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.

Среднюю ошибку малой выборки определяют по формуле

Предельная ошибка малой выборки:

delta_{MB}= tmu_{MB}

Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.

Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.

Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.

  1. Среднее значение признака в выборке равно

  2. Значение среднего квадратического отклонения составляет

  3. Средняя ошибка выборки:

  4. Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
  5. Предельная ошибка выборки:

    delta_{MB}= tmu_{MB}=2,365*0,344 = 0,81356 ~ 0,81 (ч)

  6. Доверительный интервал для среднего значения признака в генеральной совокупности:

То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.

11.2.2. Определение численности выборочной совокупности

Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):

  1. вид предполагаемой выборки;
  2. способ отбора (повторный или бесповторный);
  3. выбор оцениваемого параметра (среднего значения признака или доли).

Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.

Таблица
11.8.
Формулы для определения численности выборочной совокупности

Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.

Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.

При использовании повторного случайного отбора следует проверить

При бесповторном случайном отборе потребуется проверить

Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.

Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.

Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.

Ошибкой
выборочного среднего

или ошибкой
выборки

называется абсолютная величина разности
генерального и выборочного средних.
Так как генеральное среднее неизвестно,
ошибку выборки вычислить нельзя, но ее
можно оценить с помощью предельной
ошибки:


,
(1.10.15)

где

 предельная
ошибка выборки;

 средняя ошибка,
вычисляемая по формуле, зависящей от
вида выборки;



доверительный
коэффициент, значение которого находится
по заданной вероятности р
в специальных таблицах.

Доверительный
интервал, в котором с вероятностью р
находится генеральное среднее, имеет
вид:


.
(1.10.16)

Средняя
ошибка

малой выборки
вычисляется
по формуле


,
(1.10.17)

где

дисперсия
малой выборки, вычисляемая по формуле


.

(1.10.18)

Предельная
ошибка малой выборки

вычисляется по формуле (1.10.15), где
коэффициент

находится по уровню значимости


и числу

в табл. П4.

Пример
1.10.4.
При проверке качества партии колбасы
получены следующие данные о процентном
содержании поваренной соли в 10 пробах:
4,3; 4,2; 3,8; 4,3; 3,7; 3,9; 4,5; 4,4; 4,0; 3,9. Найдем с
вероятностью 0,95 границы, в которых
находится средний процент содержания
поваренной соли в партии колбасы.

Составим
расчётную табл. 1.10.10. По суммам в итоговой
строке табл. 1.10.10 вычислим
выборочную среднюю, выборочную дисперсию
и среднюю ошибку выборки:


,


,


.

Таблица
1.10.10

Расчетные показатели

i

(%)

1

4,3

0,2

0,04

2

4,2

0,1

0,01

3

3,8

0,3

0,09

4

4,3

0,2

0,04

5

3,7

– 0,4

0,16

6

3,9

– 0,2

0,04

7

4,5

0,4

0,16

8

4,4

0,3

0,09

9

4,0

–0,1

0,01

10

3,9

– 0,2

0,04

41,0

0,68

В
табл. П4 по уровню значимости

и числу

находим доверительный коэффициент:


=2,262.
Вычислим предельную ошибку выборки:

.
Найдем доверительный интервал (1.10.16):

или

.

Таким
образом, с вероятностью 0,95 можно
утверждать, что в партии колбасы
содержание поваренной соли находится
в пределах от 3,9%
до 4,3%.

1.10.6. Вычисление предельной ошибки (пример 1.10.4)

Предельную
ошибку малой выборки можно найти,
применяя Excel
(рис. 1.10.6).
Для этого надо:

1)
в столбце
ячеек записать выборку
;

2)
в меню
СЕРВИС
выбрать
ОПИСАТЕЛЬНАЯ
СТАТИСТИКА
;

3)
указать
уровень надежности

(доверительную
вероятность
);

4)
снять остальные флажки, указать ячейку
выходного интервала и выбрать
ОК.

Упражнение
1.10.7.
Отобрано 10 рабочих цеха для определения
среднего времени выполнения определенной
операции рабочими цеха. Выборочное
среднее время оказалось равным 10,4 мин,
а выборочное среднеквадратическое
отклонение –
2 мин. Найдите границы, в которых с
вероятностью 0,99 находится генеральная
средняя.

Приведем
следующие формулы для вычисления средней
ошибки

большой выборки (
):

1)
средняя ошибка 
случайной повторной или бесповторной
выборки вычисляется соответственно
по формуле

или

;
(1.10.19)

2)
средняя ошибка 
типической повторной или бесповторной
выборки вычисляется соответственно
по формуле

или

,
(1.10.20)

где

– средняя
генеральных групповых дисперсий;

3)
средняя ошибка 
серийной повторной или бесповторной
выборки вычисляется соответственно по
формуле

или

,
(1.10.21)

где

– генеральная
межгрупповая (межсерийная) дисперсия;

r
и
R

число серий
соответственно в выборке и в генеральной
совокупности.

Генеральная
дисперсия

связана с выборочной дисперсией

соотношением


.
(1.10.22)

При
больших значениях n
генеральная
дисперсия приближенно равна выборочной
дисперсии.

Предельная
ошибка

большой выборки
вычисляется по формуле (1.10.15), где
коэффициент

определяется
из соотношения

.

Напомним,
что выборочное среднее значение
альтернативного признака равно выборочной
доле единиц в выборке, обладающих этим
признаком (
),
а выборочная дисперсия равна произведению


.

Пример
1.10.5.
При проверке
качества хлебобулочных изделий проведено
5%-е выборочное обследование партии
нарезных батонов. Из 100 отобранных в
выборку батонов 90 батонов оказались
стандартными. Средний вес одного батона
в выборке составил 500,5 г при
среднеквадратическом отклонении 15,4 г.
Найдем с вероятностью 0,95 доверительные
интервалы для доли стандартных батанов
и среднего веса одного батона во всей
партии.

По
условию выборочная доля:


.

Было
проведено 5%-е
выборочное обследование, следовательно,
во всей партии 
2000 батонов. Так как выборка
бесповторная механическая или случайная,
средняя ошибка выборочной доли равна:


.

Из
соотношения

,
используя табл. П2, найдем доверительный
коэффициент:

.

Вычислим
предельную ошибку:

.

Найдем
доверительный интервал (1.10.16):

или

.

Таким
образом, с вероятностью 0,95 можно
утверждать, что доля стандартных батонов
во всей партии батонов находится в
интервале от 0,84 до 0,96.

Вычислим
среднюю и предельную ошибки выборочного
среднего веса одного батона:


1,5
и

.

Найдем
доверительный интервал (1.10.16):

или

.

Таким
образом, с вероятностью 0,95 можно
утверждать, что средний вес одного
батона во всей партии батонов находится
в интервале от 497,6 г до 503,4 г.

Упражнение
1.10.8.
Дано распределение пачек чая по весу в
выборке из партии чая (табл. 1.10.11).

Таблица
1.10.11

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Повторный и бесповторный отбор.
Ошибка выборки

Краткая теория


На основании выборочных данных дается оценка статистических
показателей по всей (генеральной) совокупности. Подобное возможно, если выборка
основывается на принципах случайности отбора и репрезентативности
(представительности) выборочных данных. Каждая единица генеральной совокупности
должна иметь равную возможность (вероятность) попасть в выборку.

При формировании выборочной совокупности используются следующие
способы отбора: а) собственно-случайный отбор; б) механическая выборка; в)
типический (районированный) отбор; г) многоступенчатая (комбинированная)
выборка; д) моментно-выборочное наблюдение.

Выборка может осуществляться по схеме повторного и бесповторного
отбора.

В первом случае единицы совокупности, попавшие в выборку, снова
возвращаются в генеральную, а во втором случае – единицы совокупности, попавшие
в выборку, в генеральную совокупность уже не возвращаются.

Выборка может осуществляться отдельными единицами или сериями
(гнездами).

Собственно-случайная выборка

Отбор в этом случае производится либо по жребию, либо по таблицам
случайных чисел.

На основании приемов классической выборки решаются следующие
задачи:

а) определяются границы среднего значения показателя по генеральной
совокупности;

б) определяются границы доли признака по генеральной совокупности.

Предельная ошибка средней при собственно-случайном отборе
исчисляется по формулам:

а) при повторном отборе:

б) при бесповторном отборе:

где

 – численность выборочной совокупности;

 – численность генеральной совокупности;

 – дисперсия признака;

 – критерий кратности ошибки: при

;
при

;
при

.

Значения

 
определяются

по таблице функции Лапласа.

Границы (пределы) среднего значения признака по генеральной
совокупности определяются следующим неравенством:

где

 – среднее значение признака по выборочной
совокупности.

Предельная ошибка доли при собственно-случайном отборе определяется
по формулам:

а) при повторном отборе:

при бесповторном отборе:

где

 – доля единиц совокупности с заданным
значением признака в обзей численности выборки,

 – дисперсия доли признака.

Границы (пределы) доли признака по всей (генеральной) совокупности
определяются неравенством:

где

 – доля признака по генеральной совокупности.

Типическая (районированная) выборка

Особенность этого вида
выборки заключается в том, что предварительно генеральная совокупность по
признаку типизации разбивается на частные группы (типы, районы), а затем в
пределах этих групп производится выборка.

Предельная ошибка средней
при типическом бесповторном отборе определяется по формуле:

где

 – средняя из внутригрупповых дисперсий

 по каждой типичной группе.

При пропорциональном отборе из групп генеральной совокупности
средняя из внутригрупповых дисперсий определяется по формуле:

где

 – численности единиц совокупности групп по выборке.

Границы (пределы) средней по генеральной совокупности на основании
данных типической выборки определяются по тому же неравенству, что при
собственно-случайной выборке. Только предварительно необходимо вычислить общую
выборочную среднюю

 из частных выборочных средних

.
Для случая пропорционального отбора это определяется по формуле:

При непропорциональном отборе средняя из  внутригрупповых дисперсий вычисляется по
формуле:

где

 – численность единиц групп по генеральной
совокупности.

Общая выборочная средняя в этом случае определяется по формуле:

Предельная ошибка доли
признака при типическом бесповторном отборе определяется формулой:

Средняя дисперсия доли
признака из групповых дисперсий доли

 при
типической пропорциональной выборке вычисляется по формуле:

Средняя доля признака по
выборке из показателей групповых долей рассчитывается формуле:

Средняя дисперсия доли при
непропорциональном типическом отборе определяется следующим образом:

а средняя доля признака:

Формулы ошибок выборки при типическом повторном отборе будут те же,
то и для случая бесповторного отбора. Отличие заключается только в том, что в
них будет отсутствовать по корнем сомножитель

.

Серийная выборка

Серийная ошибка выборки
может применяться в двух вариантах:

а) объем серий различный

б) все серии имеют
одинаковое число единиц (равновеликие серии).

Наиболее распространенной
в практике статистических исследований является серийная выборка с
равновеликими сериями. Генеральная совокупность делится на одинаковые по объему
группы-серии

 и
производится отбор не единиц совокупности, а серий

. Группы (серии) для обследования отбирают в
случайном порядке или путем механической выборки как повторным, так и
бесповторными способами. Внутри каждой отобранной серии осуществляется сплошное
наблюдение. Предельные ошибки выборки

 при
серийном отборе исчисляются по формулам:

а) при повторном отборе

б) при бесповторном отборе

где

 – число
серий в генеральной совокупности;

 – число
отобранных серий;

 – межсерийная дисперсия, исчисляемая для случая равновеликих
серий по формуле:

где

 –
среднее значение признака в каждой из отобранных серий;

 – межсерийная
средняя, исчисляемая для случая равновеликих серий по формуле:

Определение численности выборочной совокупности

При проектировании
выборочного наблюдения важно наряду с организационными вопросами решить одну из
основных постановочных задач: какова должна быть необходимая численность
выборки с тем, чтобы с заданной степенью точности (вероятности) заранее
установленная ошибка выборки не была бы превзойдена.

Примеры решения задач


Задача 1

На основании результатов проведенного на заводе 5%
выборочного наблюдения (отбор случайный, бесповторный) получен следующий ряд
распределения рабочих по заработной плате:

Группы рабочих по размеру заработной платы, тыс.р. до 200 200-240 240-280 280-320 320 и выше Итого
Число рабочих 33 35 47 45 40 200

На основании приведенных данных определите:

1) с вероятностью 0,954 (t=2) возможные пределы, в которых
ожидается средняя заработная плата рабочего в целом по заводу (по генеральной
совокупности);

2) с вероятностью 0,997 (t=3) предельную ошибку и границы доли
рабочих с заработной платой от 320 тыс.руб. и выше.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь — свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

Вычислим среднюю з/п: Для этого просуммируем произведения середин
интервалов и соответствующих частот, и полученную сумму разделим на сумму
частот.

2) Выборочная дисперсия:

Найдем доверительный интервал для средней. Предельная ошибка выборочной
средней считается по формуле:

где

 —

аргумент функции Лапласа.  

Искомые возможные пределы, в которых ожидается средняя заработная плата
рабочего в целом по заводу:

Найдем доверительный интервал для выборочной доли. Предельная ошибка
выборочной доли считается по формуле:

Доля рабочих с з/п от 320 тыс.р.:

Искомые границы доли рабочих с заработной платой от 320 тыс.руб. и выше:


Задача 2

В
городе 23560 семей. В порядке механической выборки предполагается определить
количество семей в городе с числом детей трое и более. Какова должна быть
численность выборки, чтобы с вероятностью 0,954 ошибка выборки не превышала
0,02 человека. На основе предыдущих обследований известно, что дисперсия равна
0,3.

Решение

Численность
выборки можно найти по формуле:

В нашем случае:

Вывод к задаче

Таким образом численность
выборки должна составить 2661 чел.


Задача 3

С
целью определения средней месячной заработной платы персонала фирмы было
проведено 25%-ное выборочное обследование с отбором
единиц пропорционально численности типических групп. Для отбора сотрудников
внутри каждого филиала использовался механический отбор. Результаты
обследования представлены в следующей таблице:

Номер филиала Средняя месячная
заработная плата, руб.
Среднее квадратическое отклонение, руб. Число
сотрудников, чел.
1 870 40 30
2 1040 160 80
3 1260 190 140
4 1530 215 190

С
вероятностью 0,954 определите пределы средней месячной заработной платы всех
сотрудников гостиниц.

Решение

Предельная
ошибка выборочной средней:

Средняя
из внутригрупповых дисперсий:

Получаем:

Средняя
месячная заработная плата по всей совокупности филиалов:

Искомые
пределы средней месячной заработной платы:

Вывод к задаче

Таким
образом с вероятностью 0,954 средняя месячная заработная плата всех сотрудников
гостиниц находится в пределах от 1294,3 руб. до 1325,7 руб.

Предельная ошибка выборки равна t-кратному числу средних ошибок выборки: 

    [mathop Delta nolimits_x = t cdot mu = t cdot sqrt {frac{{sigma _x^2}}{n}left( {1 - frac{n}{N}} right)} ;; to mathop sigma nolimits_x = sqrt {frac{{sum {{{mathop xnolimits_i }^2} cdot {f_i}} }}{{sum {{f_i}} }} - {{bar x}^2}} ]

μ – средняя ошибка выборки, рассчитанная с учетом поправки, на которую производится корректировка в случае бесповторного отбора;

t – коэффициент доверия, который находят при заданном уровне вероятности. Так для Р=0,997 по таблице значений интегральной функции Лапласа t=3

μ – средняя ошибка выборки, рассчитанная с учетом поправки, на которую производится корректировка в случае бесповторного отбора;

t – коэффициент доверия, который находят при заданном уровне вероятности. Так для Р=0,997 по таблице значений интегральной функции Лапласа t=3

Величина предельной ошибки выборки может быть установлена с определенной вероятностью. Вероятность появления такой ошибки, равной или больше утроенной средней ошибки выборки, крайне мала и равна 0,003 (1–0,997). Такие маловероятные события считаются практически невозможными, а потому вероятность того, что эта разность превысит трехкратную величину средней ошибки, определяет уровень ошибки и составляет не более 0,3%.

Определение предельной ошибки выборки для доли

Условие:

Из готовой продукции, в порядке собственно-случайного бесповторного отбора, было отобрано 200 ц, из которых 8 ц оказалось испорчено. Можно ли полагать с вероятностью 0,954, что потери продукции не превысят 5%, если выборка составляет 1:20 часть ее размера?

Дано:

  • n =200ц – объем выборки (выборочная совокупность)
  • m =8ц  —  кол-во испорченной продукции
  • n:N = 1:20 – пропорция отбора, где N- объем совокупности (генеральная совокупность)
  • Р = 0,954 – вероятность

Определить: ∆ω< 5% (согласуется ли то, что потери продукции не превысят 5%)

Решение:

1. Определим выборочную долю-такую долю составляет испорченная продукция в выборочной совокупности:

2. Определим объем генеральной совокупности:

N=n*20=200*20=4000(ц) – количество всей продукции.                                           

3. Определим предельную ошибку выборки для доли продукции, обладающей соответствующим признаком, т.е. для доли испорченной продукции: Δ = t*μ,  где µ– средняя ошибка доли, обладающей альтернативным признаком, с учетом поправки, на которую производится корректировка в случае бесповторного отбора; t – коэффициент доверия, который находят при заданном уровне вероятности Р=0,954 по таблице значений интегральной функции Лапласа: t=2

4. Определим границы доверительного интервала для доли альтернативного признака в генеральной совокупности, т.е. какую долю испорченная продукция составит в общем объеме: поскольку доля испорченной продукции в выборочном объеме составляет ω = 0,04, то с учетом предельной ошибки ∆ω= 0,027 генеральная доля альтернативного признака (p) примет значения:

 ω-∆ω < p < ω+∆ω

  0.04-0.027< p < 0.04+0.027

0.013 < p < 0.067

Вывод: с вероятностью Р=0,954 можно утверждать, что доля испорченной продукции при выборке большего объема не выйдет за пределы найденного интервала (не менее 1,3% и не более 6,7%). Но остается вероятность того, что доля испорченной продукции может превысить 5% в пределах до 6,7%, что, в свою очередь, не согласуется с утверждением  ∆ω< 5%.

*******

Условие:

Менеджер магазина по опыту знает, что 25% входящих в магазин покупателей, совершают покупки. Предположим, что в магазин вошло 200 покупателей.

Определить:

  1. долю покупателей, совершивших покупки
  2. дисперсию выборочной доли
  3. среднее квадратическое отклонение выборочной доли
  4. вероятность того, что выборочная доля будет в пределах между 0,25 и 0,30

Решение:

В качестве генеральной доли (p) принимаем выборочную долю (ω) и определяем верхнюю границу доверительного интервала.
Зная критическую точку (по условию: выборочная доля будет в пределах 0,25-0,30), строим одностороннюю критическую область (правостороннюю).
По таблице значений интегральной функции Лапласа находим Z
Этот же вариант можно рассматривать и как повторный отбор при условии, если один и тот же покупатель, не купив в 1-й раз, возвращается и совершает покупку.

omega =frac{m}{n}=frac{50}{200}=0.25

sigma =sqrt{pq}=sqrt{p(1-p)}=sqrt{0.25*0.75}=0.433

sigma =sqrt{pq}=sqrt{p(1-p)}=sqrt{0.25*0.75}=0.433

sigma {}^{2}=pq=0.25*0.75=0.1875
pleq omega +Delta {}_{omega }=omega +tmu=omega +t*sqrt{frac{omega (1-omega )}{n}}=0.25+t*sqrt{frac{0.25(1-0.25)}{200}}=0.25 +t*0.0306leq 0.30
pleq omega +Delta {}_{omega }=omega +tmu=omega +t*sqrt{frac{omega (1-omega )}{n}}=0.25+t*sqrt{frac{0.25(1-0.25)}{200}}=0.25 +t*0.0306leq 0.30

theta {}_{2}=omega +Zsqrt{frac{omega (1-omega )}{n}}=0.25+Z*sqrt{frac{0.25(1-0.25)}{200}}=0.25+Z*0.0306=0.30

Z=1.634Rightarrow P=89.68

Z=1.634Rightarrow P=89.68

В случае, если выборку рассматривать как бесповторную, необходимо среднюю ошибку скорректировать на поправочный коэффициент. Тогда, подставив скоррекированные значения предельной ошибки для выборочной доли, при определении критической области, изменятся Z и P

mu =sqrt{frac{omega (1-omega )}{n}*(1-frac{n}{N})}=sqrt{frac{0.25*0.75}{200}*(1-frac{50}{200})}=0.0265

Z=1.885Rightarrow P=93.98

Z=1.885Rightarrow P=93.98

Определение предельной ошибки выборки для средней

По данным 17 сотрудников фирмы, где работает 260 человек, среднемесячная заработная плата составила 360 у.е., при s=76 у.е. Какая минимальная сумма должна быть положена на счет фирмы, чтобы с вероятностью 0,98 гарантировать выдачу заработной платы всем сотрудникам?

Дано:

  • n=17 — объем выборки (выборочная совокупность)
  • N=260 — объем совокупности (генеральная совокупность)
  • Хср.=360 — выборочная средняя
  • S=76 — выборочное среднеквадратическое отклонение
  • Р = 0,98 –  доверительная вероятность

Определить: минимально допустимое значение генеральной средней (нижнюю границу доверительного интервала).

Решение:

Для определения доверительного интервала для средней, необходимо найти предельную ошибку для средней: при Р=0,98 по таблице значений интегральной функции Лапласа — t=2.33

Delta {bar{x}}_{}= t*sqrt{frac{{S}^{2}}{n}*left(1-frac{n}{N} right)}=2.33*sqrt{frac{{76}^{2}}{17}*left(1-frac{17}{260} right)}=41.52

Из условия определения границ доверительного интервала для средней:

Хср.-Δх≤Х≤ Хср.+Δх определяем нижнюю границу (левосторонняя критическая область): 360-41,52=318,48

Отсюда: 318,48*260=82804,7 у.е. — такова минимальная сумма, которая должна быть положена на счет фирмы.

1.1. Ошибки
выборочного наблюдения

Средняя
ошибка выборки
показывает, как генеральная средняя отклоняется в среднем от выборочной средней в ту или другую сторону. Формула
расчета средней ошибки выборки определяется видом исследуемого признака единиц
совокупности (количественный или альтернативный) и
способом отбора (бесповторный или повторный).

·        
Если отбор повторный, а признак количественный
средняя ошибка выборки определяется по формуле

Из условия определения границ доверительного интервала для средней:

Хср.-Δх≤Х≤ Хср.+Δх определяем нижнюю границу (левосторонняя критическая область): 360-41,52=318,48

Отсюда: 318,48*260=82804,7 у.е. — такова минимальная сумма, которая должна быть положена на счет фирмы.

1.1. Ошибки
выборочного наблюдения

Средняя
ошибка выборки
показывает, как генеральная средняя отклоняется в среднем от выборочной средней в ту или другую сторону. Формула
расчета средней ошибки выборки определяется видом исследуемого признака единиц
совокупности (количественный или альтернативный) и
способом отбора (бесповторный или повторный).

·        
Если отбор повторный, а признак количественный
средняя ошибка выборки определяется по формуле

 , где — дисперсия признака в выборочной совокупности

n- число единиц
в выборке

·        
Если отбор бесповторный, а признак
количественный

— дисперсия признака в выборочной совокупности

n- число единиц
в выборке

·        
Если отбор бесповторный, а признак
количественный

, где N
число единиц в генеральной совокупности

·        
Если отбор повторный, а признак альтернативный

, где w-выборочная
доля

·        
Если отбор бесповторный, а признак
альтернативный

, где w-выборочная
доля

·        
Если отбор бесповторный, а признак
альтернативный

Предельная ошибка выборки показывающая с определенной степенью вероятности
отклонения средней от выборочной средней.

Предельная ошибка выборки

 , где параметр t зависит
от вероятности

Некоторые значения параметра t приведены
в таблице:

Вероятность, p

0.95

0.954

0.9876

0.9907

0.9973

0.9999

Параметр t

1.96

2.0

2.5

2.6

3.0

4.0

·        
Если отбор повторный, а признак количественный
средняя ошибка выборки определяется по формуле

 , где параметр t зависит
от вероятности

Некоторые значения параметра t приведены
в таблице:

Вероятность, p

0.95

0.954

0.9876

0.9907

0.9973

0.9999

Параметр t

1.96

2.0

2.5

2.6

3.0

4.0

·        
Если отбор повторный, а признак количественный
средняя ошибка выборки определяется по формуле

 , где — дисперсия признака в выборочной совокупности

n- число единиц
в выборке

·        
Если отбор бесповторный, а признак
количественный

— дисперсия признака в выборочной совокупности

n- число единиц
в выборке

·        
Если отбор бесповторный, а признак
количественный

, где N
число единиц в генеральной совокупности

·        
Если отбор повторный, а признак альтернативный

, где w-выборочная
доля

·        
Если отбор бесповторный, а признак
альтернативный

, где w-выборочная
доля

·        
Если отбор бесповторный, а признак
альтернативный

Доверительный интервал для генеральной средней

 

 Доверительный интервал для
генеральной доли

 

 Доверительный интервал для
генеральной доли

Пример расчета  доверительного
интервала:

При выборочном обследовании 5% продукции по методу случайного
бесповторного отбора получены данные о содержании сахара в образцах:

Сахарность, %

Число
проб ,ед.

16-17

17-18

18-19

19-20

20-21

 10

158

154

 50

 28

                                           
ИТОГО:                            400

На основании этих данных вычислите:

1. Средний процент сахаристости.

2. Дисперсию и среднее квадратическое
отклонение.

3. С вероятностью 0.954 возможные пределы среднего значения
саха­ристости продукции для всей партии.

4. С вероятностью 0.997 возможный процент продукции высшего
сорта по всей партии, если известно, что из 400 проб, попавших в вы­борку , 80
ед. отнесены к продукции высшего сорта.

Решение.

1.
Средний процент сахаристости найдем по формуле средней взвешенной

, где xi
середина i-го интервала

, где xi
середина i-го интервала

=18,32 %

2.
Дисперсия

=336,49

D(X)=336.49–
18.322=0.8676

Среднее квадратическое отклонение

=336,49

D(X)=336.49–
18.322=0.8676

Среднее квадратическое отклонение

=0,93%

5. Предельная ошибка  для
среднего процента сахаристости

для вероятности 0,954 параметр t=2.0

 

для вероятности 0,954 параметр t=2.0

 

Доверительный интервал для среднего значения процента
сахаристости

С вероятностью 0,954 можно утверждать, что в генеральной
совокупности средний процент сахаристости лежит в пределах от 18,23% до 18,41%.

5. Доля продукции высшего сорта в выборочной совокупности

С вероятностью 0,954 можно утверждать, что в генеральной
совокупности средний процент сахаристости лежит в пределах от 18,23% до 18,41%.

5. Доля продукции высшего сорта в выборочной совокупности

Предельная ошибка  для
доли продукции высшего сорта

для вероятности 0,997 параметр t=3.0

для вероятности 0,997 параметр t=3.0

Доверительный интервал для доли продукции высшего сорта

С вероятностью 0,997 можно утверждать, что в генеральной
совокупности доля продукции высшего сорта лежит в пределах от 14,0% до 26,0%.

Повторный и бесповторный отбор.
Ошибка выборки

Краткая теория


На основании выборочных данных дается оценка статистических
показателей по всей (генеральной) совокупности. Подобное возможно, если выборка
основывается на принципах случайности отбора и репрезентативности
(представительности) выборочных данных. Каждая единица генеральной совокупности
должна иметь равную возможность (вероятность) попасть в выборку.

При формировании выборочной совокупности используются следующие
способы отбора: а) собственно-случайный отбор; б) механическая выборка; в)
типический (районированный) отбор; г) многоступенчатая (комбинированная)
выборка; д) моментно-выборочное наблюдение.

Выборка может осуществляться по схеме повторного и бесповторного
отбора.

В первом случае единицы совокупности, попавшие в выборку, снова
возвращаются в генеральную, а во втором случае – единицы совокупности, попавшие
в выборку, в генеральную совокупность уже не возвращаются.

Выборка может осуществляться отдельными единицами или сериями
(гнездами).

Собственно-случайная выборка

Отбор в этом случае производится либо по жребию, либо по таблицам
случайных чисел.

На основании приемов классической выборки решаются следующие
задачи:

а) определяются границы среднего значения показателя по генеральной
совокупности;

б) определяются границы доли признака по генеральной совокупности.

Предельная ошибка средней при собственно-случайном отборе
исчисляется по формулам:

а) при повторном отборе:

С вероятностью 0,997 можно утверждать, что в генеральной
совокупности доля продукции высшего сорта лежит в пределах от 14,0% до 26,0%.

Повторный и бесповторный отбор.
Ошибка выборки

Краткая теория


На основании выборочных данных дается оценка статистических
показателей по всей (генеральной) совокупности. Подобное возможно, если выборка
основывается на принципах случайности отбора и репрезентативности
(представительности) выборочных данных. Каждая единица генеральной совокупности
должна иметь равную возможность (вероятность) попасть в выборку.

При формировании выборочной совокупности используются следующие
способы отбора: а) собственно-случайный отбор; б) механическая выборка; в)
типический (районированный) отбор; г) многоступенчатая (комбинированная)
выборка; д) моментно-выборочное наблюдение.

Выборка может осуществляться по схеме повторного и бесповторного
отбора.

В первом случае единицы совокупности, попавшие в выборку, снова
возвращаются в генеральную, а во втором случае – единицы совокупности, попавшие
в выборку, в генеральную совокупность уже не возвращаются.

Выборка может осуществляться отдельными единицами или сериями
(гнездами).

Собственно-случайная выборка

Отбор в этом случае производится либо по жребию, либо по таблицам
случайных чисел.

На основании приемов классической выборки решаются следующие
задачи:

а) определяются границы среднего значения показателя по генеральной
совокупности;

б) определяются границы доли признака по генеральной совокупности.

Предельная ошибка средней при собственно-случайном отборе
исчисляется по формулам:

а) при повторном отборе:

б) при бесповторном отборе:

где

 – численность выборочной совокупности;

 – численность генеральной совокупности;

 – дисперсия признака;

 – критерий кратности ошибки: при

;
при

;
при

.

Значения

 
определяются

по таблице функции Лапласа.

Границы (пределы) среднего значения признака по генеральной
совокупности определяются следующим неравенством:

где

 – среднее значение признака по выборочной
совокупности.

Предельная ошибка доли при собственно-случайном отборе определяется
по формулам:

а) при повторном отборе:

при бесповторном отборе:

где

 – доля единиц совокупности с заданным
значением признака в обзей численности выборки,

 – дисперсия доли признака.

Границы (пределы) доли признака по всей (генеральной) совокупности
определяются неравенством:

где

 – доля признака по генеральной совокупности.

Типическая (районированная) выборка

Особенность этого вида
выборки заключается в том, что предварительно генеральная совокупность по
признаку типизации разбивается на частные группы (типы, районы), а затем в
пределах этих групп производится выборка.

Предельная ошибка средней
при типическом бесповторном отборе определяется по формуле:

где

 – средняя из внутригрупповых дисперсий

 по каждой типичной группе.

При пропорциональном отборе из групп генеральной совокупности
средняя из внутригрупповых дисперсий определяется по формуле:

где

 – численности единиц совокупности групп по выборке.

Границы (пределы) средней по генеральной совокупности на основании
данных типической выборки определяются по тому же неравенству, что при
собственно-случайной выборке. Только предварительно необходимо вычислить общую
выборочную среднюю

 из частных выборочных средних

.
Для случая пропорционального отбора это определяется по формуле:

При непропорциональном отборе средняя из  внутригрупповых дисперсий вычисляется по
формуле:

где

 – численность единиц групп по генеральной
совокупности.

Общая выборочная средняя в этом случае определяется по формуле:

Предельная ошибка доли
признака при типическом бесповторном отборе определяется формулой:

Средняя дисперсия доли
признака из групповых дисперсий доли

 при
типической пропорциональной выборке вычисляется по формуле:

Средняя доля признака по
выборке из показателей групповых долей рассчитывается формуле:

Средняя дисперсия доли при
непропорциональном типическом отборе определяется следующим образом:

а средняя доля признака:

Формулы ошибок выборки при типическом повторном отборе будут те же,
то и для случая бесповторного отбора. Отличие заключается только в том, что в
них будет отсутствовать по корнем сомножитель

.

Серийная выборка

Серийная ошибка выборки
может применяться в двух вариантах:

а) объем серий различный

б) все серии имеют
одинаковое число единиц (равновеликие серии).

Наиболее распространенной
в практике статистических исследований является серийная выборка с
равновеликими сериями. Генеральная совокупность делится на одинаковые по объему
группы-серии

 и
производится отбор не единиц совокупности, а серий

. Группы (серии) для обследования отбирают в
случайном порядке или путем механической выборки как повторным, так и
бесповторными способами. Внутри каждой отобранной серии осуществляется сплошное
наблюдение. Предельные ошибки выборки

 при
серийном отборе исчисляются по формулам:

а) при повторном отборе

б) при бесповторном отборе

где

 – число
серий в генеральной совокупности;

 – число
отобранных серий;

 – межсерийная дисперсия, исчисляемая для случая равновеликих
серий по формуле:

где

 –
среднее значение признака в каждой из отобранных серий;

 – межсерийная
средняя, исчисляемая для случая равновеликих серий по формуле:

Определение численности выборочной совокупности

При проектировании
выборочного наблюдения важно наряду с организационными вопросами решить одну из
основных постановочных задач: какова должна быть необходимая численность
выборки с тем, чтобы с заданной степенью точности (вероятности) заранее
установленная ошибка выборки не была бы превзойдена.

Примеры решения задач


Задача 1

На основании результатов проведенного на заводе 5%
выборочного наблюдения (отбор случайный, бесповторный) получен следующий ряд
распределения рабочих по заработной плате:

Группы рабочих по размеру заработной платы, тыс.р. до 200 200-240 240-280 280-320 320 и выше Итого
Число рабочих 33 35 47 45 40 200

На основании приведенных данных определите:

1) с вероятностью 0,954 (t=2) возможные пределы, в которых
ожидается средняя заработная плата рабочего в целом по заводу (по генеральной
совокупности);

2) с вероятностью 0,997 (t=3) предельную ошибку и границы доли
рабочих с заработной платой от 320 тыс.руб. и выше.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Вычислим среднюю з/п: Для этого просуммируем произведения середин
интервалов и соответствующих частот, и полученную сумму разделим на сумму
частот.

2) Выборочная дисперсия:

Найдем доверительный интервал для средней. Предельная ошибка выборочной
средней считается по формуле:

где

 —

аргумент функции Лапласа.  

Искомые возможные пределы, в которых ожидается средняя заработная плата
рабочего в целом по заводу:

Найдем доверительный интервал для выборочной доли. Предельная ошибка
выборочной доли считается по формуле:

Доля рабочих с з/п от 320 тыс.р.:

 

Искомые границы доли рабочих с заработной платой от 320 тыс.руб. и выше:


Задача 2

В
городе 23560 семей. В порядке механической выборки предполагается определить
количество семей в городе с числом детей трое и более. Какова должна быть
численность выборки, чтобы с вероятностью 0,954 ошибка выборки не превышала
0,02 человека. На основе предыдущих обследований известно, что дисперсия равна
0,3.

Решение

Численность
выборки можно найти по формуле:

В нашем случае:

Вывод к задаче

Таким образом численность
выборки должна составить 2661 чел.


Задача 3

С
целью определения средней месячной заработной платы персонала фирмы было
проведено 25%-ное выборочное обследование с отбором
единиц пропорционально численности типических групп. Для отбора сотрудников
внутри каждого филиала использовался механический отбор. Результаты
обследования представлены в следующей таблице:

Номер филиала Средняя месячная
заработная плата, руб.
Среднее квадратическое отклонение, руб. Число
сотрудников, чел.
1 870 40 30
2 1040 160 80
3 1260 190 140
4 1530 215 190

С
вероятностью 0,954 определите пределы средней месячной заработной платы всех
сотрудников гостиниц.

Решение

Предельная
ошибка выборочной средней:

Средняя
из внутригрупповых дисперсий:

Получаем:

Средняя
месячная заработная плата по всей совокупности филиалов:

Искомые
пределы средней месячной заработной платы:

Вывод к задаче

Таким
образом с вероятностью 0,954 средняя месячная заработная плата всех сотрудников
гостиниц находится в пределах от 1294,3 руб. до 1325,7 руб.

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной Готовое решение: Заказ №9969

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной Тип работы: Задача

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторнойСтатус:  Выполнен (Зачтена преподавателем ВУЗа)

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной Предмет: Экономика

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной Дата выполнения: 04.11.2020

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной Цена: 229 руб.

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

Чтобы получить решение, напишите мне в WhatsApp, оплатите, и я Вам вышлю файлы.

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

Кстати, если эта работа не по вашей теме или не по вашим данным, не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу, я смогу выполнить её в срок 1-3 дня!

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

Описание и исходные данные задания, 50% решения + фотография:

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

Задача №10

В сельскохозяйственном предприятии – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной. Требуется определить объем выборки для исчисления средней молочной продуктивности коров с вероятностью 0,954, чтобы ошибка для средней не превышала 0,5ц. на корову.

Варианты поголовья коров в таблице.

Последняя цифра шифра

7

А

480

Примечание: все другие условия остаются неизменными.

Решение:

Определим объем выборки для исчисления средней молочной продуктивности коров:

где     t – коэффициент доверия (при Р=0,954 t=2);

σ — среднее квадратическое отклонение;

x – ошибка средней;

N – численность генеральной совокупности.

В сельскохозяйственном предприятии (А – количество) коров. Среднее квадратическое отклонение удоев в генеральной совокупности равно 4 ц/га. Выборка была случайной, бесповторной

  • Кривая предложения товара сдвинулась вправо. Какие обстоятельства могли вызвать это?  1. удешевление товаров-заменителей (субститутов)
  • По функциям:  QD  = 50 – P2 QS =  P2  рассчитать равновесную цену и равновесный объем производства. Проиллюстрировать графически
  • По данным в таблице определите индекс физического объема.   Виды продукции  Себестоимость 1 ц в базисном году, руб.
  • Используя данные за 2015г., определите среднюю урожайность зерновых культур в двух хозяйствах.   Культура  1-е хозяйство  2-е хозяйство  Валовой сбор, тонн

Содержание

  • Расчет ошибки средней арифметической
    • Способ 1: расчет с помощью комбинации функций
    • Способ 2: применение инструмента «Описательная статистика»
  • Вопросы и ответы

Ошибка средней арифметической в Microsoft Excel

Стандартная ошибка или, как часто называют, ошибка средней арифметической, является одним из важных статистических показателей. С помощью данного показателя можно определить неоднородность выборки. Он также довольно важен при прогнозировании. Давайте узнаем, какими способами можно рассчитать величину стандартной ошибки с помощью инструментов Microsoft Excel.

Расчет ошибки средней арифметической

Одним из показателей, которые характеризуют цельность и однородность выборки, является стандартная ошибка. Эта величина представляет собой корень квадратный из дисперсии. Сама дисперсия является средним квадратном от средней арифметической. Средняя арифметическая вычисляется делением суммарной величины объектов выборки на их общее количество.

В Экселе существуют два способа вычисления стандартной ошибки: используя набор функций и при помощи инструментов Пакета анализа. Давайте подробно рассмотрим каждый из этих вариантов.

Способ 1: расчет с помощью комбинации функций

Прежде всего, давайте составим алгоритм действий на конкретном примере по расчету ошибки средней арифметической, используя для этих целей комбинацию функций. Для выполнения задачи нам понадобятся операторы СТАНДОТКЛОН.В, КОРЕНЬ и СЧЁТ.

Для примера нами будет использована выборка из двенадцати чисел, представленных в таблице.

Выборка в Microsoft Excel

  1. Выделяем ячейку, в которой будет выводиться итоговое значение стандартной ошибки, и клацаем по иконке «Вставить функцию».
  2. Переход в Мастер функций в Microsoft Excel

  3. Открывается Мастер функций. Производим перемещение в блок «Статистические». В представленном перечне наименований выбираем название «СТАНДОТКЛОН.В».
  4. Переход в окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  5. Запускается окно аргументов вышеуказанного оператора. СТАНДОТКЛОН.В предназначен для оценивания стандартного отклонения при выборке. Данный оператор имеет следующий синтаксис:

    =СТАНДОТКЛОН.В(число1;число2;…)

    «Число1» и последующие аргументы являются числовыми значениями или ссылками на ячейки и диапазоны листа, в которых они расположены. Всего может насчитываться до 255 аргументов этого типа. Обязательным является только первый аргумент.

    Итак, устанавливаем курсор в поле «Число1». Далее, обязательно произведя зажим левой кнопки мыши, выделяем курсором весь диапазон выборки на листе. Координаты данного массива тут же отображаются в поле окна. После этого клацаем по кнопке «OK».

  6. Окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  7. В ячейку на листе выводится результат расчета оператора СТАНДОТКЛОН.В. Но это ещё не ошибка средней арифметической. Для того, чтобы получить искомое значение, нужно стандартное отклонение разделить на квадратный корень от количества элементов выборки. Для того, чтобы продолжить вычисления, выделяем ячейку, содержащую функцию СТАНДОТКЛОН.В. После этого устанавливаем курсор в строку формул и дописываем после уже существующего выражения знак деления (/). Вслед за этим клацаем по пиктограмме перевернутого вниз углом треугольника, которая располагается слева от строки формул. Открывается список недавно использованных функций. Если вы в нем найдете наименование оператора «КОРЕНЬ», то переходите по данному наименованию. В обратном случае жмите по пункту «Другие функции…».
  8. Переход к дальнейшему продолжению написания формулы стандартной ошибки в Microsoft Excel

  9. Снова происходит запуск Мастера функций. На этот раз нам следует посетить категорию «Математические». В представленном перечне выделяем название «КОРЕНЬ» и жмем на кнопку «OK».
  10. Переход в окно аргументов функции КОРЕНЬ в Microsoft Excel

  11. Открывается окно аргументов функции КОРЕНЬ. Единственной задачей данного оператора является вычисление квадратного корня из заданного числа. Его синтаксис предельно простой:

    =КОРЕНЬ(число)

    Как видим, функция имеет всего один аргумент «Число». Он может быть представлен числовым значением, ссылкой на ячейку, в которой оно содержится или другой функцией, вычисляющей это число. Последний вариант как раз и будет представлен в нашем примере.

    Устанавливаем курсор в поле «Число» и кликаем по знакомому нам треугольнику, который вызывает список последних использованных функций. Ищем в нем наименование «СЧЁТ». Если находим, то кликаем по нему. В обратном случае, опять же, переходим по наименованию «Другие функции…».

  12. Окно аргументов функции КОРЕНЬ в Microsoft Excel

  13. В раскрывшемся окне Мастера функций производим перемещение в группу «Статистические». Там выделяем наименование «СЧЁТ» и выполняем клик по кнопке «OK».
  14. Переход в окно аргументов функции СЧЁТ в Microsoft Excel

  15. Запускается окно аргументов функции СЧЁТ. Указанный оператор предназначен для вычисления количества ячеек, которые заполнены числовыми значениями. В нашем случае он будет подсчитывать количество элементов выборки и сообщать результат «материнскому» оператору КОРЕНЬ. Синтаксис функции следующий:

    =СЧЁТ(значение1;значение2;…)

    В качестве аргументов «Значение», которых может насчитываться до 255 штук, выступают ссылки на диапазоны ячеек. Ставим курсор в поле «Значение1», зажимаем левую кнопку мыши и выделяем весь диапазон выборки. После того, как его координаты отобразились в поле, жмем на кнопку «OK».

  16. Окно аргументов функции СЧЁТ в Microsoft Excel

  17. После выполнения последнего действия будет не только рассчитано количество ячеек заполненных числами, но и вычислена ошибка средней арифметической, так как это был последний штрих в работе над данной формулой. Величина стандартной ошибки выведена в ту ячейку, где размещена сложная формула, общий вид которой в нашем случае следующий:

    =СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13))

    Результат вычисления ошибки средней арифметической составил 0,505793. Запомним это число и сравним с тем, которое получим при решении поставленной задачи следующим способом.

Результат вычисления стандартной ошибки в сложной формуле в Microsoft Excel

Но дело в том, что для малых выборок (до 30 единиц) для большей точности лучше применять немного измененную формулу. В ней величина стандартного отклонения делится не на квадратный корень от количества элементов выборки, а на квадратный корень от количества элементов выборки минус один. Таким образом, с учетом нюансов малой выборки наша формула приобретет следующий вид:

=СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13)-1)

Результат вычисления стандартной ошибки для малой выборки в Microsoft Excel

Урок: Статистические функции в Экселе

Способ 2: применение инструмента «Описательная статистика»

Вторым вариантом, с помощью которого можно вычислить стандартную ошибку в Экселе, является применение инструмента «Описательная статистика», входящего в набор инструментов «Анализ данных» («Пакет анализа»). «Описательная статистика» проводит комплексный анализ выборки по различным критериям. Одним из них как раз и является нахождение ошибки средней арифметической.

Но чтобы воспользоваться данной возможностью, нужно сразу активировать «Пакет анализа», так как по умолчанию в Экселе он отключен.

  1. После того, как открыт документ с выборкой, переходим во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Далее, воспользовавшись левым вертикальным меню, перемещаемся через его пункт в раздел «Параметры».
  4. Перемещение в раздел Параметры в Microsoft Excel

  5. Запускается окно параметров Эксель. В левой части данного окна размещено меню, через которое перемещаемся в подраздел «Надстройки».
  6. Переход в подраздел надстройки окна параметров в Microsoft Excel

  7. В самой нижней части появившегося окна расположено поле «Управление». Выставляем в нем параметр «Надстройки Excel» и жмем на кнопку «Перейти…» справа от него.
  8. Переход в окно надстроек в Microsoft Excel

  9. Запускается окно надстроек с перечнем доступных скриптов. Отмечаем галочкой наименование «Пакет анализа» и щелкаем по кнопке «OK» в правой части окошка.
  10. Включение пакета анализа в окне надстроек в Microsoft Excel

  11. После выполнения последнего действия на ленте появится новая группа инструментов, которая имеет наименование «Анализ». Чтобы перейти к ней, щелкаем по названию вкладки «Данные».
  12. Переход во вкладку Данные в Microsoft Excel

  13. После перехода жмем на кнопку «Анализ данных» в блоке инструментов «Анализ», который расположен в самом конце ленты.
  14. Переход в Анализ данных в Microsoft Excel

  15. Запускается окошко выбора инструмента анализа. Выделяем наименование «Описательная статистика» и жмем на кнопку «OK» справа.
  16. Переход в описательную статистику в Microsoft Excel

  17. Запускается окно настроек инструмента комплексного статистического анализа «Описательная статистика».

    В поле «Входной интервал» необходимо указать диапазон ячеек таблицы, в которых находится анализируемая выборка. Вручную это делать неудобно, хотя и можно, поэтому ставим курсор в указанное поле и при зажатой левой кнопке мыши выделяем соответствующий массив данных на листе. Его координаты тут же отобразятся в поле окна.

    В блоке «Группирование» оставляем настройки по умолчанию. То есть, переключатель должен стоять около пункта «По столбцам». Если это не так, то его следует переставить.

    Галочку «Метки в первой строке» можно не устанавливать. Для решения нашего вопроса это не важно.

    Далее переходим к блоку настроек «Параметры вывода». Здесь следует указать, куда именно будет выводиться результат расчета инструмента «Описательная статистика»:

    • На новый лист;
    • В новую книгу (другой файл);
    • В указанный диапазон текущего листа.

    Давайте выберем последний из этих вариантов. Для этого переставляем переключатель в позицию «Выходной интервал» и устанавливаем курсор в поле напротив данного параметра. После этого клацаем на листе по ячейке, которая станет верхним левым элементом массива вывода данных. Её координаты должны отобразиться в поле, в котором мы до этого устанавливали курсор.

    Далее следует блок настроек определяющий, какие именно данные нужно вводить:

    • Итоговая статистика;
    • К-ый наибольший;
    • К-ый наименьший;
    • Уровень надежности.

    Для определения стандартной ошибки обязательно нужно установить галочку около параметра «Итоговая статистика». Напротив остальных пунктов выставляем галочки на свое усмотрение. На решение нашей основной задачи это никак не повлияет.

    После того, как все настройки в окне «Описательная статистика» установлены, щелкаем по кнопке «OK» в его правой части.

  18. Окно описаительная статистика в Microsoft Excel

  19. После этого инструмент «Описательная статистика» выводит результаты обработки выборки на текущий лист. Как видим, это довольно много разноплановых статистических показателей, но среди них есть и нужный нам – «Стандартная ошибка». Он равен числу 0,505793. Это в точности тот же результат, который мы достигли путем применения сложной формулы при описании предыдущего способа.

Результат расчета стандартной ошибки путем применения инструмента Описательная статистика в Microsoft Excel

Урок: Описательная статистика в Экселе

Как видим, в Экселе можно произвести расчет стандартной ошибки двумя способами: применив набор функций и воспользовавшись инструментом пакета анализа «Описательная статистика». Итоговый результат будет абсолютно одинаковый. Поэтому выбор метода зависит от удобства пользователя и поставленной конкретной задачи. Например, если ошибка средней арифметической является только одним из многих статистических показателей выборки, которые нужно рассчитать, то удобнее воспользоваться инструментом «Описательная статистика». Но если вам нужно вычислить исключительно этот показатель, то во избежание нагромождения лишних данных лучше прибегнуть к сложной формуле. В этом случае результат расчета уместится в одной ячейке листа.

Понравилась статья? Поделить с друзьями:
  • Чтобы не делать ошибок поступай правильно
  • Чтобы не делать ошибок нужно не делать ничего
  • Чтобы не делать ошибок нужен опыт
  • Чтобы не было ошибок 0xc0000005 на windows 7
  • Чтобы не было ошибки в delphi 7