Что такое стандартная ошибка в физике

Стандартная ошибка измерения: определение и пример

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Стандартная ошибка измерения , часто обозначаемая как SE m , оценивает отклонение от «истинного» показателя для индивидуума при повторных измерениях.

Он рассчитывается как:

SE m = s√ 1-R

куда:

  • s: стандартное отклонение измерений
  • R: коэффициент надежности теста.

Обратите внимание, что коэффициент надежности находится в диапазоне от 0 до 1 и рассчитывается путем двукратного проведения теста для многих людей и расчета корреляции между их результатами теста.

Чем выше коэффициент надежности, тем чаще тест дает стабильные результаты.

Пример: расчет стандартной ошибки измерения

Предположим, человек проходит определенный тест 10 раз в течение недели, целью которого является измерение общего интеллекта по шкале от 0 до 100. Он получает следующие баллы:

Очки: 88, 90, 91, 94, 86, 88, 84, 90, 90, 94.

Среднее значение выборки равно 89,5, а стандартное отклонение выборки равно 3,17.

Если известно, что тест имеет коэффициент надежности 0,88, то мы рассчитываем стандартную ошибку измерения как:

SE м = с√1 -R = 3,17√1-0,88 = 1,098

Как использовать SE m для создания доверительных интервалов

Используя стандартную ошибку измерения, мы можем создать доверительный интервал, который, вероятно, будет содержать «истинную» оценку человека по определенному тесту с определенной степенью достоверности.

Если человек получает по тесту оценку x , мы можем использовать следующие формулы для расчета различных доверительных интервалов для этой оценки:

  • 68% доверительный интервал = [ x – SE m , x + SE m ]
  • 95% доверительный интервал = [ x – 2*SE m , x + 2*SE m ]
  • 99% доверительный интервал = [ x – 3*SE m , x + 3*SE m ]

Например, предположим, что человек набрал 92 балла по определенному тесту, который, как известно, имеет SE m 2,5. Мы могли бы рассчитать 95% доверительный интервал как:

  • 95% доверительный интервал = [92 – 2*2,5, 92 + 2*2,5] = [87, 97]

Это означает, что мы на 95% уверены в том, что «истинный» результат этого теста человека находится между 87 и 97.

Надежность и стандартная ошибка измерения

Существует простая зависимость между коэффициентом надежности теста и стандартной ошибкой измерения:

  • Чем выше коэффициент надежности, тем меньше стандартная ошибка измерения.
  • Чем ниже коэффициент надежности, тем выше стандартная ошибка измерения.

Чтобы проиллюстрировать это, рассмотрим человека, который проходит тест 10 раз и имеет стандартное отклонение баллов, равное 2 .

Если тест имеет коэффициент надежности 0,9 , то стандартная ошибка измерения будет рассчитываться как:

  • SE m = s√1 -R = 2√1-0,9 = 0,632

Однако, если тест имеет коэффициент надежности 0,5 , то стандартная ошибка измерения будет рассчитываться как:

  • SE м = с√ 1-R = 2√ 1-,5 = 1,414

Это должно иметь смысл интуитивно: если результаты теста менее надежны, то ошибка измерения «истинного» результата будет выше.

Стандартная ошибка измерения: определение и пример

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Стандартная ошибка измерения , часто обозначаемая как SE m , оценивает отклонение от «истинного» показателя для индивидуума при повторных измерениях.

Он рассчитывается как:

SE m = s√ 1-R

куда:

  • s: стандартное отклонение измерений
  • R: коэффициент надежности теста.

Обратите внимание, что коэффициент надежности находится в диапазоне от 0 до 1 и рассчитывается путем двукратного проведения теста для многих людей и расчета корреляции между их результатами теста.

Чем выше коэффициент надежности, тем чаще тест дает стабильные результаты.

Пример: расчет стандартной ошибки измерения

Предположим, человек проходит определенный тест 10 раз в течение недели, целью которого является измерение общего интеллекта по шкале от 0 до 100. Он получает следующие баллы:

Очки: 88, 90, 91, 94, 86, 88, 84, 90, 90, 94.

Среднее значение выборки равно 89,5, а стандартное отклонение выборки равно 3,17.

Если известно, что тест имеет коэффициент надежности 0,88, то мы рассчитываем стандартную ошибку измерения как:

SE м = с√1 -R = 3,17√1-0,88 = 1,098

Как использовать SE m для создания доверительных интервалов

Используя стандартную ошибку измерения, мы можем создать доверительный интервал, который, вероятно, будет содержать «истинную» оценку человека по определенному тесту с определенной степенью достоверности.

Если человек получает по тесту оценку x , мы можем использовать следующие формулы для расчета различных доверительных интервалов для этой оценки:

  • 68% доверительный интервал = [ x – SE m , x + SE m ]
  • 95% доверительный интервал = [ x – 2*SE m , x + 2*SE m ]
  • 99% доверительный интервал = [ x – 3*SE m , x + 3*SE m ]

Например, предположим, что человек набрал 92 балла по определенному тесту, который, как известно, имеет SE m 2,5. Мы могли бы рассчитать 95% доверительный интервал как:

  • 95% доверительный интервал = [92 – 2*2,5, 92 + 2*2,5] = [87, 97]

Это означает, что мы на 95% уверены в том, что «истинный» результат этого теста человека находится между 87 и 97.

Надежность и стандартная ошибка измерения

Существует простая зависимость между коэффициентом надежности теста и стандартной ошибкой измерения:

  • Чем выше коэффициент надежности, тем меньше стандартная ошибка измерения.
  • Чем ниже коэффициент надежности, тем выше стандартная ошибка измерения.

Чтобы проиллюстрировать это, рассмотрим человека, который проходит тест 10 раз и имеет стандартное отклонение баллов, равное 2 .

Если тест имеет коэффициент надежности 0,9 , то стандартная ошибка измерения будет рассчитываться как:

  • SE m = s√1 -R = 2√1-0,9 = 0,632

Однако, если тест имеет коэффициент надежности 0,5 , то стандартная ошибка измерения будет рассчитываться как:

  • SE м = с√ 1-R = 2√ 1-,5 = 1,414

Это должно иметь смысл интуитивно: если результаты теста менее надежны, то ошибка измерения «истинного» результата будет выше.

Методы
тестирования

.
Широко распространенные диагностические
методы. Их существует множество, и они
разделяются на группы по следующим
признакам: индивидуальные и групповые
(коллективные), вербальные и невербальные,
количественные и качественные, общие
и специальные и др.

Тесты

являются
специализированными методами
диагностического обследования, применяя
которые, можно получать количественную
или качественную характеристику
изучаемого явления. В отличие от других
методов, они предполагают четкую
процедуру сбора и обработки первичных
данных, а также своеобразие их последующей
интерпретации. Существуют варианты
теста: тест-опросник и тест-задание.

Тест-опросник

тщательно продуманные и проверенные
вопросы, по ответам на которые можно
судить о психологических качествах
испытуемого.

Тест-задание

оценка психологии и поведения человека
на базе того, что он делает. Испытуемый
выполняет специальные задания, по
которым можно судить о наличии или
отсутствии степени развития у него
изучаемого качества.

Положительная
сторона тестов состоит в том, что они
могут применяться к категориям населения,
различающимся по возрасту, культуре,
профессии, жизненному опыту и т.д.
Недостаток их в том, что испытуемый по
желанию может сознательно влиять на
результаты, зная механизм теста.

В
этих случаях применяется тест-проектирование.
Создается определенный тип проекции,
согласно которому неосознаваемые
собственные качества, особенно недостатки,
человек склонен приписывать другим.
Этот тест требует повышенного
интеллектуального уровня как от
испытуемого, так и высокой профессиональной
квалификации со стороны самого диагноста.

Технология социальной работы
Зайнышев И.Г.

Социальная
педагогика и социальная работа сайт

Здоровы
ли вы душевно?

Узнайте
— все ли в порядке у вас с вашим душевным
здоровьем?

Тест
на выявление уровня самооценки

Как
высоко вы цените себя? Пройдите этот
тест чтобы выяснить это!

Зависите
ли вы от общественного мнения?

Пройдите
тест и выясните это!

стандартная
ошибка измерения

Надежность
психодиагностических методик. Стандартная
ошибка измерения. Понятие о методе
измерения ретестовой надежности

Надежность
– одно из трех главных психометрических
свойств любой измерительной
психодиагностической методики (теста).

Надежность
– это помехоустойчивость теста,
независимость его результата от действия
всевозможных случайных
факторов:

а) разнообразие
внешних материальных условий тестирования,
меняющихся от одного испытуемого к
другому;

б) динамичные
внутренние факторы, по-разному действующие
на разных испытуемых в ходе тестирования;

в) информационно-социальные
обстоятельства. Разнообразие и
изменчивость этих факторов так велики,
что они обусловливают появление у
каждого испытуемого непрогнозируемого
по размерам и направлению отклонения
измеренного тестового балла от истинного
тестового балла (который можно было бы,
в принципе, получать в идеальных
условиях). Величина этого отклонения
определяется как «стандартная
ошибка измерения» (Se).

Ошибка
измерения (Se) и надежность измерения
(R), согласно общепринятой психометрической
теории, связаны следующей формулой:

R
= 1 – Se2 / Sx2, (1)

где
Sx – дисперсия тестовых показателей Х.

Лучинин
Алексей Сергеевич

Психодиагностика конспект лекций

стандартная
ошибка измерения
— относительная доля случайного изменения
(дисперсии) измеряемого показателям по
отношению к совокупного изменению этого
показателя (общей дисперсии). Чем выше
СОИ, тем ниже точность и НАДЕЖНОСТЬ
теста.

СТАНДАРТНАЯ
ОШИБКА ИЗМЕРЕНИЯ

(standard
error of measurement)

— статистическая величина, отражающая
степень точности отдельных (педагогических)
измерений; диапазон изменения показателей,
в который попадает теоретический
показатель (например, истинный балл),
при данном выборочном показателе, с
различной степенью вероятности
Информационно просветительский портал
Ханта Мансийского округа

Стандартная Ошибка Измерения

Оценка
степени, в которой можно ожидать, что
определенный набор измерений, полученных
в данной ситуации (например, в тесте или
в одной из нескольких параллельных форм
теста), будет отклоняться от истинных
значений. Обозначается как а (М).
Психологическая энцеклопедия

Основы теории тестов

1. Основные понятия теории тестов

Измерение
или испытание, проводимое с целью
определения состояния или способностей
спортсмена, называется тестом.

Не
всякие измерения могут быть использованы
как тесты, а только те, которые отвечают
специальным требованиям. К ним относятся:

1.
стандартизованность (процедура и условия
тестирования должны быть одинаковыми
во всех случаях применения теста);
2.
надежность;
3. информативность;
4.
наличие системы оценок.

Тесты,
удовлетворяющие требованиям надежности
и информативности, называют добротными
или аутентичными
(греч. аутентико — достоверным образом).

Процесс
испытаний называется тестированием;
полученное в итоге измерения числовое
значение — результатом
тестирования

(или результатом теста). Например, бег
100 м — это тест, процедура проведения
забегов и хронометража — тестирование,
время забега — результат теста.

Тесты,
в основе которых лежат двигательные
задания, называют двигательными
или моторными
. Результатами их могут быть либо
двигательные достижения (время прохождения
дистанции, число повторений, пройденное
расстояние и т.п.), либо физиологические
и биохимические показатели.

Иногда
используется не один, а несколько тестов,
имеющих единую конечную цель (например,
оценку состояния спортсмена в
соревновательном периоде тренировки).
Такая группа тестов называется комплексом
или батареей
тестов
.

Один
и тот же тест, примененный к одним и тем
же исследуемым, должен дать в одинаковых
условиях совпадающие результаты (если
только не изменились сами исследуемые).
Однако при самой строгой стандартизации
и точной аппаратуре результаты
тестирования всегда несколько варьируют.
Например, исследуемый, только что
показавший в тесте становой динамометрии
результат 215 кГ, при повторном выполнении
показывает лишь 190 кГ.

2. Надежность тестов и пути ее определения

Надежностью
теста называется степень совпадения
результатов при повторном тестировании
одних и тех же людей (или других объектов)
в одинаковых условиях.

Вариацию
результатов при повторном тестировании
называют внутри индивидуальной, или
внутри групповой, либо внутриклассовой.

Четыре
основные причины вызывают эту вариацию:

1.
Изменение состояния исследуемых
(утомление, врабатывание, научение,
изменение мотивации, концентрации
внимания и т.п.).
2. Неконтролируемые
изменения внешних условий и аппаратуры
(температура, ветер, влажность, напряжение
в электросети, присутствие посторонних
лиц и т.п.), т.е. все то, что объединяется
термином “случайная ошибка измерения”.
3.
Изменение состояния человека, проводящего
или оценивающего тест (и, конечно, замена
одного экспериментатора или судьи
другим).
4. Несовершенство теста (есть
такие тесты, которые заведомо малонадежные.
Например, если исследуемые выполняют
штрафные броски в баскетбольную корзину,
то даже баскетболист, имеющий высокий
процент попаданий, может случайно
ошибиться при первых бросках).

Основное
различие теории надежности тестов от
теории ошибок измерения состоит в том,
что в теории ошибок измеряемая величина
считается неизменной, а в теории
надежности тестов предполагается, что
она меняется от измерения к измерению.
Например, если необходимо измерить
результат выполненной попытки в прыжках
в длину с разбега, то он вполне определенный
и с течением времени значительно
измениться не может. Конечно, в силу
случайных причин (например, неодинакового
натяжения рулетки) нельзя с идеальной
точностью (скажем до 0,0001 мм) измерить
этот результат. Однако используя более
точный измерительный инструмент
(например, лазерный измеритель), можно
повысить их точность до необходимого
уровня. Вместе с тем, если стоит задача
определить подготовленность прыгуна
на отдельных этапах годичного цикла
тренировки, то самое точное измерение
показанных им результатов мало чем
поможет: ведь они от попытки к попытке
изменятся.

Чтобы
разобраться в идее методов, используемых
для суждения о надежности тестов,
рассмотрим упрощенный пример. Предположим,
что необходимо сравнить результаты
прыжков в длину с места у двух спортсменов
по двум выполненным попыткам. Допустим,
что результаты каждого из спортсменов
варьируют в пределах ± 10 см от средней
величины и равны соответственно 230 ± 10
см (т.е. 220 и 240 см) и 280± 10 см (т.е. 270 и 290
см). В таком случае вывод, конечно, будет
совершенно однозначным: второй спортсмен
превосходит первого (различия между
средними в 50см явно выше случайных
колебаний в ± 10 см). Если же при той же
самой внутригрупповой вариации ( ± 10
см) различие между средними значениями
исследуемых (межгрупповая вариация)
будут маленькими, то сделать вывод будет
гораздо труднее. Допустим, что средние
значения будут примерно равны 220 см (в
одной попытке — 210, в другой — 230 см) и
222 см (212 и 232 см). При этом первый исследуемый
в первой попытке прыгает на 230 см, а
второй — только на 212 см; и создается
впечатление, что первый существенно
сильнее второго. Из этого примера видно,
что основное значение имеет не сама по
себе внутриклассовая изменчивость, а
ее соотношение с межклассовыми различиями.
Одна и та же внутриклассовая изменчивость
дает разную надежность при равных
различиях между классами (в частном
случае между исследуемыми, рис. 14).

Например,
если зарегистрировать у исследуемых
их результаты в каком-либо тесте, повторяя
этот тест в разные дни, причем каждый
день делать по несколько попыток,
периодически меняя экспериментаторов,
то будут иметь место вариации:

а)
от испытуемого к испытуемому;

б)
ото дня ко дню;

в)
от экспериментатора к экспериментатору;

г)
от попытки к попытке.

Дисперсионный
анализ дает возможность выделить и
оценить эти вариации.

Таким
образом, чтобы оценить практически
надежность теста надо, во-первых,
выполнить дисперсионный анализ,
во-вторых, рассчитать внутриклассовый
коэффициент корреляции (коэффициент
надежности).

При
двух попытках величина внутриклассового
коэффициента корреляции практически
совпадает со значениями обычного
коэффициента корреляции между результатами
первой и второй попыток. Поэтому в таких
ситуациях для оценки надежности можно
использовать обычный коэффициент
корреляции (он при этом оценивает
надежность одной, а не двух попыток).

Говоря
о надежности тестов, необходимо различать
их стабильность (воспроизводимость),
согласованность, эквивалентность.

Под
стабильностью
теста понимают воспроизводимость
результатов при его повторении через
определенное время в одинаковых условиях.
Повторное тестирование обычно называют
ретестом.

Согласованность
теста характеризуется независимостью
результатов тестирования от личных
качеств лица, проводящего или оценивающего
тест.

При
выборе теста из определенного числа
однотипных тестов (например, спринтерский
бег на 30, 60 и 100 м) методом параллельных
форм оценивается степень совпадения
результатов. Рассчитанный между
результатами коэффициент корреляции
называют коэффициентом
эквивалентности.

Если
все тесты, входящие в какой-либо комплекс
тестов, высоко эквивалентны, он называется
гомогенным.
Весь этот комплекс измеряет одно какое-то
свойство моторики человека (например,
комплекс, состоящий из прыжков с места
в длину, вверх и тройного; оценивается
уровень развития скоростно-силовых
качеств). Если в комплексе нет эквивалентных
тестов, то есть тесты, входящие в него,
измеряют разные свойства, то он называется
гетерогенным
(например,
комплекс, состоящий из становой
динамометрии, прыжка вверх по Абалакову,
бега на 100 м).

Надежность
тестов может быть повышена до определенной
степени путем:

а)
более строгой стандартизации тестирования;

б)
увеличения числа попыток;

в)
увеличения числа оценщиков (судей,
экспериментов) и повышения согласованности
их мнений;

г)
увеличения числа эквивалентных тестов;

д)
лучшей мотивации исследуемых.

Кубанский
государственный университет физ культуры
спорта и туризма

Популярные
тестовые методики, применяемые в практике
профессионального отбора и тестирования
персонала
:

Проективные
тесты

Тест
Роршаха
.
Испытуемому предъявляются для
интерпретации картинки с абстрактными
изображениями — пятнами различной
конфигурации и цвета (напоминающими
чернильные кляксы). На основании того,
что увидит испытуемый, диагностируются
его скрытые установки, побуждения,
свойства характера.

Тест
Люшера

позволяет исследовать личность работника
путем анализа его субъективных
предпочтений при выборе цветовых
стимулов. В оригинале стимульный материал
представляют 73 карточки различного
цвета, в российской психодиагностике
распространена упрощенная тестовая
методика, применяющая восемь основных
цветов. При этом каждому цвету приписывается
определенное значение. Важен порядок
выбора цветов: первые выбранные цвета
выражают явные цели деятельности
личности и способы их достижения,
последние — подавленные, вытесненные
стремления.

Тематический
апперцептивный тест (ТАТ)

направлен на исследование психических
свойств личности по спонтанному описанию
тестируемым тех или иных стандартных
ситуаций, изображенных на предъявляемых
ему рисунках. Это один из наиболее
известных тестов на мотивацию достижений.
Надежность в практике тестирования
персонала не является доказанной. По
мнению специалистов, ответы на вопросы
ТАТ могут быть подвержены влиянию
сторонних факторов. Тем не менее,
успешность прохождения данного теста
коррелирует как с общими успехами
человека в учебе, так и с его экономическим
преуспеванием.

Тест
Майнера

на завершение предложений позволяет
прогнозировать управленческий и
творческий потенциал менеджеров. Этот
тест состоит из 40 незаконченных
предложений, которые тестируемый должен
дописать самостоятельно. По нему можно
судить о различных аспектах мотивации
менеджерской деятельности. В других
тестах на завершение предлагается
досочинить рассказ или дорисовать
рисунки.

По
критерию измеряемого психологического
качества можно выделить следующие
группы тестов:

Тесты
на уровень интеллекта (тесты на IQ —
интеллектуальные тесты)

Тестов,
измеряющих уровень интеллекта, очень
много, большинство из них происходят
от двух классических методик: теста
Бине-Симона

и теста
Векслера
.
Оба теста прошли испытание на протяжении
70-летней практики их применения и
являются наиболее изученными и надежными.
К примеру, баллы по результатам
словесно-речевых IQ-тестов (тест Векслера)
всегда хорошо коррелируют с успехами
в учебе.

Применяя
тот или иной тест интеллекта, важно
знать, что автор или авторы теста
вкладывают в понятие «интеллект». В
настоящее время психологами выделяется
несколько видов интеллекта: словесно-речевой,
математический, визуально-пространственный,
художественный, двигательный, музыкальный
и прикладной. При этом многие психологи
говорят о так называемом «общем (едином)
интеллекте», позволяющим человеку
довольно эффективно проявлять себя в
разных областях жизнедеятельности.

Тесты
на IQ (коэффициент интеллекта) помогают
выявить наличие отдельных интеллектуальных
способностей человека, в том числе:

  • словесно-речевых;

  • способностей
    оперировать с числами — математический
    интеллект;

  • визуально-пространственных;

  • исполнительских
    (особых) — прикладной интеллект.

Недостатком
интеллектуальных тестов является то,
что они нацелены на получение некоторого
суммарного балла, отражающего
интеллектуальные способности «вообще».
Но за этим суммарным баллом остаются
неразличимыми отдельные сильные и
слабые способности человека. Выполняя
интеллектуальные тесты, человек
использует главным образом конвергентное
мышлени
е.
Это мышление «специализируется» на
решении задач, у которых есть только
один правильный ответ. Однако на многие
вопросы нельзя дать однозначный, верный
или неверный ответ. Например, когда
нужно найти новую генеральную линию
развития фирмы, которая позволила бы
ей обогнать своих конкурентов, или
выработать новый действенный слоган —
в этих случаях у задачи множество
вариантов решения. Некоторые из них
будут лучше, другие хуже (зачастую это
может показать лишь время), но ни один
из них не является единственно верным.
Такие вопросы требуют дивергентного
мышления
.
Тесты на IQ реально зондируют лишь
конвергентное мышление. 

К
тому же высокий коэффициент интеллекта
сам по себе не является гарантией
успешной работы сотрудника. Многое
определяется тем, что требуется для
выполнения конкретной работы, а в этом
случае на первом месте далеко не всегда
выходят интеллектуальные качества. К
примеру, финансовому директору
недостаточно иметь хороший математический
интеллект, ему очень важно уметь верно
оценивать степень риска и принимать
правильные финансовые решения.

Тесты
на личностные качества

Отличительная
особенность данных тестов в том, что в
них оценивается не правильность ответов
тестируемого, а его личностные качества.
Хотя не все стороны характера можно
оценить с помощью тестов, поскольку
каждый человек уникален, но некоторые
личностные черты поддаются количественной
оценке.

В
практике кадровой работы часто
используются MMPI
(Миннесотский многопрофильный личностный
опросник), СМИЛ
(стандартизированный метод исследования
личности), тест
Айзенка
,
16-факторный
опросник Кеттелла

(тест 16PF), тесты
Лири, Стреляу, Леонгарда
,
«рисуночные тесты», тесты цветовых
предпочтений, а также такие экзотические,
как графологические
(анализ почерка)

и физиогномические (анализ черт лица).
Эти тесты могут применяться при
профотборе, если в службе персонала
есть квалифицированные психологи,
способные интерпретировать получаемые
с их помощью данные. При этом следует
учитывать, что ни один из этих тестов
не рассчитывался на специальное
применение в кадровых службах. Личностные
тесты обладают недостатком: как правило
они достаточно громоздки и сложны. В то
же время большинство служб персонала
при определении личностных качеств
кандидата стремятся использовать более
простые тесты.

Многофакторный
метод исследования личности (СМИЛ)

— это модифицированный (адаптированный
к российским условиям) вариант теста
MMPI, разработанного в 40-х годах американскими
психологами Дж. Маккинли и С. Хатэуэем
для профессионального отбора военных
летчиков. Методика построена по типу
опросника, при этом оценка результата
базируется не на прямом анализе ответов
испытуемого, а на данных статистически
подтвержденной значимости каждого
ответа в сравнении со средненормативными
показателями. Одно из важных достоинств
метода состоит в том, что автоматизированный
способ обработки данных практически
исключает зависимость получаемых
результатов от личностных особенностей
и опыта специалиста, проводящего
тестирование. В основу методики положена
статистически достоверная математическая
база.

Тест
эффективен в решении сложных вопросов
профотбора и профориентации, комплектовании
рабочих коллективов, расстановки кадров,
при изучении социального климата в
организациях и на предприятиях. Он
находит активное применение в
профконсультировании и профориентационной
работе психологов.

Тест
Кеттелла (16PF
)
выводит баллы для разных качеств личности
(17 факторов первого порядка). Данные по
некоторым из этих шкал коррелируют друг
с другом, поэтому в итоге образуются 5
факторов (показателей) второго (высшего)
порядка. Полный вариант теста Кеттелла
позволяет исследовать и уровень
интеллекта, и личностные качества. Тест
Кеттелла, а также тест Айзенка наиболее
результативны в диагностике степени
нервозности личности, что профессионально
значимо для некоторых профессий.

Тест
Майерс-Бриггс
,
в основе которого лежит психологическая
теория личности К.Г. Юнга, содержит более
ста утверждений и позволяет описать
личность человека по четырем составляющим:

  1. Экстравертированность
    — Интравертированность;

  2. Осознание
    — Интуиция (что из них для вас более
    значимо, приоритетно);

  3. Размышления
    — Чувства;

  4. Суждения
    — Ощущения.

Однако
этот тест больше подходит для оценки
возможности карьерного роста сотрудников
внутри организации, чем для решения
вопроса о приеме на работу.

На
входном контроле (при приеме на работу)
используют тесты самооценки, например,
тест
Лири
,
личностный
дифференциал

(ЛД) или опросник
деловой направленности

(ОДН) личности, а также СМИЛ,
результаты которого коррелируют с
результатами, полученными другими
методами.

Тесты
на творческое мышление

Существуют
следующие виды:

  1. Тесты
    на генерирование идей;

  2. Тесты
    на межпредметные связи (умение создавать
    «творческие композиции» особенно важно
    в рекламном и маркетинговом деле);

  3. Визуальные
    тесты (на умение создавать визуальные
    каламбуры или рассказы по картинкам);

  4. Тесты
    на «боковое мышление» (которое, в отличие
    от обычного, позволяет взглянуть на
    задачу под нестандартным углом зрения).

Нередко
в тестах на творческое мышление
применяются сюрреалистические либо
иронические рисунки.

Управление
персоналом Словарь-справочник

Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Содержание

  • 1 Определение погрешности
  • 2 Классификация погрешностей
    • 2.1 По форме представления
    • 2.2 По причине возникновения
    • 2.3 По характеру проявления
    • 2.4 По способу измерения
  • 3 См. также
  • 4 Литература

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
Delta x=frac{x_{max}-x_{min}}{2}
  • Средняя квадратическая погрешность:
S =left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n-1}} right.
  • Средняя квадратическая погрешность среднего арифметического:
S _x= frac{S} {sqrt{n}} = left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n(n-1)}} right.

Классификация погрешностей

По форме представления

  • Абсолютная погрешностьΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом равенство:

ΔX = | XtrueXmeas | ,

где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность — отношение абсолютной погрешности к тому значению, которое принимается за истинное:

delta_x =frac{ Delta x}{X}.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

  • Приведенная погрешность — относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

delta_x =frac{ Delta x}{X_n},

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность — безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность — погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F(x1,x2xn), где xi — непосредственно измеряемые независимые величины, имеющие погрешность Δxi, тогда:

Delta F = sqrt{sum_{i=1}^n left(Delta x_i frac{partial F}{partial x_i}right)^2}

См. также

  • Измерение физических величин
  • Класс точности
  • Метрология
  • Система автоматизированного сбора данных со счетчиков по радиоканалу
  • Методы электроаналитической химии

Литература

  • Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. — М.: Наука. Главная редакция физико-математичекой литературы, 1983. — 704 с.

Wikimedia Foundation.
2010.

Содержание:

При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с  точностью до сантиметра, размеры дома, стадиона – с точностью до метра.

Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.

При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.

Пример:

Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).

Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением 
шкалы линейки совпадает второй край стола  (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.

Точность измерений и погрешности в физике - определение и формулы с примерами

Абсолютная погрешность измерения ∆ (ДЕЛЬТА)

Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Точность измерений и погрешности в физике - определение и формулы с примерами

Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.  

Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.

Относительная погрешность измерения ε (ЭПСИЛОН)

Иногда важно знать, какую часть составляет наша погрешность от значения 
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: Точность измерений и погрешности в физике - определение и формулы с примерами.  То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой  (эпсилон): 

Точность измерений и погрешности в физике - определение и формулы с примерами     (5.1)

Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения –  плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.

Стандартная запись результата измерений и выводы

Таким образом, абсолютная погрешность в примере 5.1. составляет ∆L = 0,5 мм, а результат измерений следует записать в стандартном виде: L = (706,0 Точность измерений и погрешности в физике - определение и формулы с примерами 0,5) мм — Опыт выполнен с относительной погрешностью 0,0007 или 0,07%.

На точность измерения влияет много факторов, в частности:

  1. При совмещении края стола с делением шкалы рулетки мы неминуемо допускаем погрешность, поскольку делаем это «на глаз» — смотреть можно под разными углами.
  2. Не вполне ровно установили рулетку.
  3. Наша рулетка является копией эталона и может несколько отличаться от оригинала.

Все это необходимо учитывать при проведении измерений.

Итоги:

  • Измерения в физике всегда неточны, и надо знать пределы погрешности измерений, чтобы понимать, насколько можно доверять результатам.
  • Абсолютную погрешность измерения можно определить как половину цены деления шкалы измерительного прибора. 
  • Относительная погрешность есть частное от деления абсолютной погрешности на значение измеряемой величины:  Точность измерений и погрешности в физике - определение и формулы с примерами и указывает на качество измерения. Ее можно выразить в процентах.

Измерительные приборы

Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.

Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.

Точность измерений и погрешности в физике - определение и формулы с примерами

Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.

Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.

Как определяют единицы длины и времени

В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.

Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).

Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.

Можно ли расстояние измерять годами

Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!

Что надо знать об измерительных приборах

Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?

Минимальное (нижний предел) и максимальное (верхний предел) значения шкалы прибора — это пределы измерения. Чаще всего предел измерения один, но может быть и два. Например, линейка имеет один предел — верхний. У линейки на рисунке 32 он равен 25 см. У термометра на рисунке 33 два предела: верхний предел измерения температуры равен +50 °С; нижний -40 °С.

Точность измерений и погрешности в физике - определение и формулы с примерами

На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления — это значение наименьшего деления шкалы прибора.

Как определить цену деления шкалы? Для этого необходимо:

  1. выбрать на шкале линейки два соседних значения, например 3 см и 4 см;
  2. подсчитать число делений (не штрихов!) между этими значениями; например, на линейке 1 (см. рис. 34) число делений между значениями 3 см и 4 см равно 10;
  3. вычесть из большего значения меньшее (4 см — 3 см = 1 см) и результат разделить на число делений.

Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.

Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления шкалы мензурки 2: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Точность измерений и погрешности в физике - определение и формулы с примерами

А какими линейкой и мензуркой можно измерить точнее?

Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.

Понятно, что точнее измерен объем воды мензуркой 2, цена деления которой меньше Точность измерений и погрешности в физике - определение и формулы с примерами Значит, чем меньше цена деления шкалы, тем точнее можно измерить данным прибором. Говорят: мензуркой 1 мы измерили объем с точностью до 5 мл (сравните с ценой деления шкалы Точность измерений и погрешности в физике - определение и формулы с примерами), мензуркой 2 — с точностью до 1 мл (сравните с ценой деления Точность измерений и погрешности в физике - определение и формулы с примерами). Точность измерения температуры термометрами 1 и 2 (рис. 36) определите самостоятельно.

Точность измерений и погрешности в физике - определение и формулы с примерами

Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.

Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.

Главные выводы:

  1. Верхний и нижний пределы измерения — это максимальное и минимальное значения шкалы прибора.
  2. Цена деления шкалы равна значению наименьшего деления шкалы.
  3. Чем меньше цена деления шкалы, тем точнее будут проведены измерения данным прибором.

Для любознательных:

В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.

  • Заказать решение задач по физике

Пример решения задачи

Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.

Точность измерений и погрешности в физике - определение и формулы с примерами

Решение:

1) Цена деления нижней шкалы:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления средней шкалы: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления верхней шкалы:

2) Определенный но нижней шкале с точностью до 10° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по средней шкале с точностью до 5° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по верхней шкале с точностью до 1° Точность измерений и погрешности в физике - определение и формулы с примерами

  • Определение площади и объема
  • Связь физики с другими науками
  • Макромир, мегамир и микромир в физике
  • Пространство и время
  • Как зарождалась физика 
  • Единая физическая картина мира
  • Физика и научно-технический прогресс
  • Физические величины и их единицы измерения

Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Содержание

  • 1 Определение погрешности
  • 2 Классификация погрешностей
    • 2.1 По форме представления
    • 2.2 По причине возникновения
    • 2.3 По характеру проявления
    • 2.4 По способу измерения
  • 3 См. также
  • 4 Литература

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
 Delta x=frac{x_{max}-x_{min}}{2}
  • Средняя квадратическая погрешность:
  S =left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n-1}} right.
  • Средняя квадратическая погрешность среднего арифметического:
  S _x= frac{S} {sqrt{n}} = left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n(n-1)}} right.

Классификация погрешностей

По форме представления

  • Абсолютная погрешностьΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом равенство:

ΔX = | XtrueXmeas | ,

где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность — отношение абсолютной погрешности к тому значению, которое принимается за истинное:

 delta_x =frac{ Delta x}{X} .

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

  • Приведенная погрешность — относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

 delta_x =frac{ Delta x}{X_n} ,

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность — безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность — погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F(x1,x2xn), где xi — непосредственно измеряемые независимые величины, имеющие погрешность Δxi, тогда:

 Delta F = sqrt{sum_{i=1}^n left(Delta x_i frac{partial F}{partial x_i}right)^2}

См. также

  • Измерение физических величин
  • Класс точности
  • Метрология
  • Система автоматизированного сбора данных со счетчиков по радиоканалу
  • Методы электроаналитической химии

Литература

  • Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. — М.: Наука. Главная редакция физико-математичекой литературы, 1983. — 704 с.

Wikimedia Foundation.
2010.

Неопределенность измерений в метрологии

  • Неопределенность измерения — история возникновения.
  • Термины используемые при расчете неопределенности.
  • Оценка результата измерений в терминах «погрешность измерений».
  • Оценка результата измерений в терминах «неопределенность измерений».
  • Расчёт неопределённости с применением приборов.
  • Выводы.

Определения погрешности и неопределенности измерений.

Погрешность измерения – это отклонение измеренного значения величины от ее «истинного» значения. По своей природе или характеру проявления погрешность может быть «случайной» и «систематической». Метод выражения погрешности измерений – а ± Δа, где а – измеренная величина, Δа – суммарная абсолютная погрешность, определяемая методикой выполнения измерений.
Неопределенность измерения – это «сомнения в истинности полученного результата». Т.е. параметр, связанный с результатом измерения, характеризующий разброс значений, которые могли бы быть обосновано приписаны к измеряемой величине. Метод выражения неопределенности — а ± Uа , где а – измеренная величина, Uа – расширенная неопределенность, определяемая измерителем.

История возникновения термина «неопределенность измерений».

Сразу заметим, что, по сути, оба термина – «погрешность» и «неопределенность» — это выражение в разных терминах, одного и того же понятия – «точность измерений».
В России исторически сложилось так, что при оценке достоверности произведенного измерения использовали погрешность.
За рубежом исходно существовало понятие «error of measurement» — «ошибка измерения». Одной из целей при разработке стандарта качества ISO 9000 было обеспечение безошибочного выполнения всех производственных функций. В рамках ISO 9000 было разработано «Руководство по вычислению неопределенности в измерении» — «Guide to the expression of uncertainty in measurement», в котором описано понятие неопределенности измерений и способы ее вычисления.
Сейчас все чаще требуется оценивать точность проведения измерений (например, такое требование предъявляется при аккредитации лабораторий) в терминах «неопределенности». В связи с вступлением России в ВТО, принято решение перевести правила проведения и оценки качества работ (в том числе и метрологических) в соответствие с международными стандартами ИСО. Все измерительные лаборатории стран-членов ВТО должны оценивать точность результатов измерений в терминах неопределенности. В России о необходимости расчета неопределенности измерений в соответствии с ГОСТ Р ИСО 10576-1-2006 говорится в письме Роспотребнадзора 01/6620-12-32 от 13.06.2012.
«Неопределенность измерений стоило выдумать хотя бы для того, чтобы теперь разъяснять, чем погрешность отличается от неопределенности». Понятие «uncertainty» возникло из дословного перевода документа «Guide to the expression of uncertainty in measurement», ISO-1993. Документ вызвал множество споров и разделил общественность на три лагеря – сторонники «Guide…», противники «Guide…» и специалисты-практики, ожидающие «чем все это закончится».
В итоге, «все закончилось тем», что был выпущен документ РМГ 91-2009 «Совместное использование понятий «погрешность измерения» и «неопределенность измерения» детально разъясняющий соответствие терминов «погрешность» и «неопределенность».

Термины используемые при расчете неопределенности.

Соотношение терминов теории неопределенности с терминами классической теории точности (в скобках):

  • Неопределенность результата измерения (погрешность результата измерения),
  • Неопределенность типа А (случайная погрешность),
  • Неопределенность типа Б (систематическая погрешность),
  • Стандартная неопределенность (стандартное отклонение погрешности) результата измерения,
  • Расширенная неопределенность (доверительные границы) результата измерения,
  • Вероятность охвата, вероятность покрытия (доверительная вероятность),
  • Коэффициент охвата, коэффициент покрытия (коэффициент распределения погрешности) 

Подробно о типах определённости и их расчётах рассказано в статье «Понятие и типы неопределенностей. ГОСТ 34100.3-2017»

Оценка результата измерений в терминах «погрешность измерений».

Как уже упоминалось выше, термин «погрешность» привязан к истинному значению измеряемой величины. Однако, это исходное «истинное значение» неизвестно. И при проведении измерений указывают интервал, в котором это «истинное значение» находится с определенным уровнем вероятности – Х = А ± Δ , Р = 0,95 (где Р – доверительная вероятность).
То есть, интервал от (А – Δ) до (А + Δ) с вероятностью Р содержит в себе:
1) «истинное» значение измеряемой величины.
2) погрешность измерений величины

Рис.1.  Диапазон возможных значений при погрешности

Оценка результата измерений в терминах «неопределенность измерений».

Термин «неопределенность» привязан к измеренному значению величины А, а не к ее абстрактному «истинному» значению. Также, как для «погрешности», результат измерения записывается в виде интервала Х = А ± Δ , Р = 0,95 (Р – вероятность охвата).
То есть, интервал от (A – U) до (A + U) содержит бОльшую долю ( Р ) значений, которые могли бы быть приписаны к измеряемой величине.

Рис.2.  Диапазон возможных значений при неопределенности

При оценке точности измерений в терминах «неопределенности» считается, что измеренная величина принадлежит к указанному интервалу значений (например, диапазон оптимальных или допустимых уровней), если она с учетом указанной неопределенности («величина – неопределенность» и «величина + неопределенность») не выходит за пределы этого диапазона.

Рис.3. Интервал значений при расчете неопределенности

Расчёт неопределённости с применением приборов.

В следующей статье «Расчет неопределенности результатов измерений | пример для люксметра «еЛайт»» мы рассмотрим практический пример как вручную вычислить неопределенность измерений освещенности, используя люксметр-пульсметр-яркомер еЛайт02. В некоторых современных приборах такой расчёт неопределённости уже осуществляется автоматически, как, например, в самом доступном люксметре с поверкой еЛайт-мини.

Рис.4. Профессиональный измеритель освещённости еЛайт01 с функцией автоматического расчёта неопределённости измерений.

Рис.5. Термоанемометр-гигрометр-барометр ЭкоТерма Максима 01 с функцией автоматического расчёта неопределённости измерений.

Выводы.

Отличие понятия «погрешности» от «неопределенности»:

  • «погрешность» привязана к некоторому «истинному» значению, которое точно неизвестно;
  • «неопределенность» привязана к измеренному значению;
  • «погрешность» относится к конкретному измерению, сделанному конкретным средством измерения;
  • «неопределенность» — это степень сомнения в истинности полученного результата измерения;
  • «погрешностью» характеризуются параметры точности средств измерений.

Понравилась статья? Поделить с друзьями:
  • Что такое стилистические ошибки в речи
  • Что такое стандартная ошибка в статистике простыми словами
  • Что такое стандартная ошибка в excel
  • Что такое стилистические ошибки в переводе
  • Что такое стилистические ошибки в игре