Что такое случайная и систематическая ошибки в физике

lg77.23 2.8878 2.888 .

Примечание. При вычислении промежуточных результатов следует брать на одну цифру больше, чем указано в округлении при выполнении математических действий над числами. В окончательном результате эта «запасная» цифра отбрасывается. Приведенный ниже пример поясняет сказанное:

(23.2 + 0.442 + 7.247) ×1.8364

(23.2 + 0.44 + 7.25) ×1.84

2.412

2.41

30.89 ×1.84

56.38

23.58 23.6 .

4.41

2.41

Значение физической величины округляется до первой сомнительной цифры. Все цифры, стоящие после сомнительной, отбрасываются. Абсолютная ошибка округляется до одной значащей цифры, относительная ошибка — до двух значащих цифр.

Пример. Путем измерений и математических расчетов было получено, что для объема некоторого тела имеют место следующие числа (см. с. 13: Вычисление абсолютной и относительной ошибок измерений):

V = 43.235 м3; V = ± 0.423 м3.

Оказалось, что сомнительной цифрой при вычислении объема является 2. Тогда результат можно записать в следующем виде:

V= (43.2 ± 0.4) м3; EV = 43.20.4 ×100% = 0.92%.

Промахи, систематические и случайные погрешности измерений

Истинное значение физической величины абсолютно точно определить нельзя. Измерение тел, предметов или любой физической величины всегда производится с той или иной степенью точности1, т.е. с той или иной степенью приближения к ис-

1 Точностью называется величина, обратная относительной погрешности. Точность обработки результатов измерений должна согласовываться с точностью самих измерений.

тинному значению искомой величины. Если указываем, что высота дерева 2 м 56 см, а измерена она с точностью до 1 см, то это будет означать, что отклонение найденной высоты от истинной не превышает 1 см.

При измерении физических величин под действием самых разнообразных причин возникают погрешности измерения. Все погрешности принято подразделять на систематические, слу-

чайные и промахи (ошибки).

1. Промахи

Это наиболее распространенная причина ошибок. Она возникает по вине экспериментатора, сделавшего неверный отсчет, неверно записавшего результат измерения, допустившего ошибку при вычислении. К промахам, например, относятся неточно установленный нуль секундомера или нониуса микрометра, неправильная установка самого прибора (вертикальная вместо горизонтальной или наоборот), неразборчивая или небрежная запись в черновиках, а следовательно, и неправильное переписывание данных при составлении отчета дома и т.п.

Эта ошибка бывает значительно больше погрешностей других измерений. Если ошибка допущена в одном измерении из нескольких, сделанных верно, то, сравнивая числовые значения полученных результатов или их абсолютных погрешностей, ее легко обнаружить. Результат, полученный ошибочно, резко отличается от результатов других измерений, а абсолютная погрешность имеет значение, значительно превышающее абсолютные погрешности других измерений. Эта ошибка должна быть исключена из результатов измерений.

2. Систематические погрешности

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Такие погрешности появляются вследствие неисправности приборов, неточности метода исследования, каких-либо упущений экспериментатора, а также при использовании для вычислений неточных зависимостей (формул), констант и т.д.

Эти ошибки очень трудно контролировать, поскольку они связаны с конструкцией либо состоянием самого измерительного прибора или инструмента (например: неправильно отградуированный штангенциркуль, не установленная на нуль стрелка прибора), а также с влиянием на них незаметных, на первый взгляд, факторов (температуры, влажности, электрических и магнитных полей, вибрации, освещенности и т.п.). В этом случае всегда измеряемая величина (линейные размеры, ток, напряжение, сопротивление и т.п.) будет заниженной или завышенной по сравнению с истинной. Таким образом, из сказанного выше ясно, что для избежания таких ошибок необходимо тщательно готовить измерительные приборы, оборудование, установки, обеспечивать правильное хранение, а также исключить внешние факторы, влияющие на результат измерения.

3. Случайные погрешности

Случайной называется погрешность, которая вызывается действием не поддающихся контролю многочисленных, независимых друг от друга факторов, изменяется от одного измерения к другому непредсказуемым образом и в равной степени может быть как положительной, так и отрицательной.

Случайные ошибки присутствуют при любых измерениях и связаны с неточностью отсчета. Например, различное зажатие деталей микрометрическим винтом микрометра или ножками штангенциркуля, различное положение глаза при отсчете по шкале и т.п. Однако в этом случае отличия носят случайный характер и отклонения от истинного значения могут происходить как в сторону увеличения, так и в сторону уменьшения его. Эта ошибка может быть уменьшена увеличением числа повторных измерений и нахождением среднего арифметического из полученного количества результатов. Например, если А1, А2, А3, …

An — результаты, полученные в процессе отдельных измерений, то величина

n

ACP =

A

+ A

2

+ A

3

+ + A

n

=

Ai

1

i=1

n

n

13

будет средним арифметическим из n указанных результатов. Эта величина будет наиболее близкой к истинному значению искомой величины.

В общем случае при измерении любой величины могут присутствовать все три вида ошибок, но последний будет присутствовать всегда.

Вычисление абсолютной и относительной погрешностей измерений при прямых измерениях

1. Абсолютная погрешность

Оценить отклонение каждого из результатов измерения от истинной величины можно лишь при наличии данных большого числа измерений с использованием теории вероятности. Однако на практике, в лабораторных условиях проводят 3-5 измерений. В этом случае абсолютная погрешность отдельного i-го измерения будет следующей:

|Аi| = |АСР — Аi|,

где АСР — средняя величина размера А. Средняя арифметическая величина всех Аi значений

∆ACP =

∆A1

+

∆A2

+

∆A3

+ +

∆An

n

называется абсолютной погрешностью опыта. Окончательный результат измерения может быть записан в виде

А = АСР ± ∆АСР,

где А — искомая величина, которая лежит внутри интервала

АСР ± ∆АСР.

Например, если сделаем несколько измерений длины заготовки в столярной мастерской и получим среднее значение lСР = 75.5 см, а среднее арифметическое абсолютной погрешности lСР = 0.3 см, то результат запишется в виде

l = (75.5 ± 0.3) см.

Это означает, что истинное значение длины заготовки лежит в интервале от 75.2 см до 75.8 см. При этом не имеет смысла вычислять среднее значение с большим числом знаков после запятой, так как от этого точность не увеличивается.

14

2. Относительная погрешность

Абсолютная погрешность измерения не характеризует точности проведенных измерений. Поэтому для того, чтобы сравнить точность различных измерений и величин разной размерности, находят среднюю относительную погрешность результата (ЕА). Относительная погрешность определяется отношением абсолютной погрешности к среднему арифметическому значению измеряемой величины, которая определяется в процентах:

ЕА= ∆ACP 100%.

ACP

Относительная погрешность показывает, какая часть абсолютной погрешности приходится на каждую единицу измеренной величины. Это дает возможность оценить точность проведенных измерений, качество работы.

Так, например, пусть при измерении бруска длиной l = 1.51 см была допущена абсолютная погрешность 0.03 мм, а при измерении расстояния от Земли до Луны L = 3.64.105 км абсолютная погрешность составила 100 км. Может показаться, что первое измерение выполнено намного точнее второго. Однако о точности измерения можно судить по относительной погрешности, а она показывает, что второе измерение было выполнено в семь раз точнее первого:

El

=

0.03

мм

100% = 0.2%

15.1

мм

и

ЕL =

100 км

100% = 0.03%.

364000 км

Вычисление абсолютных и относительных погрешностей при косвенных2 измерениях

В большинстве случаев при выполнении физических экспериментов исследуемая величина не может быть измерена не-

2 При косвенных измерениях значение физической величины получают расчетным путем на основании ее зависимости от величин, измеряемых прямо.

посредственно, а является функцией одной или нескольких переменных, измеренных непосредственно. При косвенных измерениях абсолютная и относительная погрешности результатов измерений находятся вычислением через абсолютные и относительные погрешности непосредственно измеренных величин.

Использование формул дифференцирования

Для определения абсолютных и относительных погрешностей искомой величины при косвенных измерениях можно воспользоваться формулами дифференцирования, потому что абсолютная ошибка функции равна абсолютной ошибке аргумента, умноженной на производную этой функции, то есть полному дифференциалу функции.

Рассмотрим это более подробно. Допустим, что физическая величина А является функцией многих переменных:

A = f (x, y, z …).

Правило I. Вначале находят абсолютную погрешность величины А, а затем относительную погрешность. Для этого необходимо:

1) Найти полный дифференциал функции dA = Ax dx+ Ay dy+ Az dz+ .

2) Заменить бесконечно малые dx, dу, dz, … соответствующими абсолютными ошибками аргументов x, y, z, … (при этом знаки «минус» в абсолютных ошибках аргументов заменяют знаками «плюс», так чтобы величина ошибки была максимальной):

dA = Ax x + Ay y + Az z + .

Применяя это правило к частным случаям, получим:

абсолютная погрешность суммы равна сумме абсолютных погрешностей слагаемых. Если X = a + b, то X = a + b;

абсолютная погрешность разности равна сумме абсо-

лютных

погрешностей уменьшаемого и вычитаемого. Если

X = a — b, то X = a + b;

абсолютная погрешность произведения двух сомно-

жителей равна сумме произведений среднего значения первого множителя (aCP) на абсолютную погрешность второго и среднего значения второго множителя (bCP) на абсолютную погрешность

первого. Если X = а b, то X = aCP b + bCP а. Если X = a n , то

X = n аCPn-1 а;

— абсолютная погрешность дроби равна сумме произведения знаменателя на абсолютную погрешность числителя и числителя на абсолютную погрешность знаменателя, деленной на

квадрат знаменателя. Если X =

a

, то X=

b

CP

a + a

CP

b

.

b

bCP2

3) По определению найдем относительную погрешность

EA = ∆A 100% .

ACP

Использование дифференциала натурального логарифма

Во многих случаях, когда формула удобна для логарифмирования, оказывается более удобной другая последовательность действий: сначала находят относительную погрешность величины А, а затем абсолютную погрешность, поскольку относительная ошибка функции равна дифференциалу натурального логарифма этой функции. Действительно, относительная погрешность величины А есть ЕА = A/Аср , но d(lnA) = A/А и, следовательно, (lnA) = A/А.

Правило II.

1)Логарифмируют функцию A = f (x, y, z, …).

2)Дифференцируют полученный логарифм по всем аргу-

ментам.

3)Заменяют бесконечно малые dx, dy, dz, … абсолютными

ошибками соответствующих аргументов x, y, z, … (знаки «минус» в абсолютных ошибках аргументов заменяют знаками

«плюс»).

После вычислений получают относительную погрешность

ЕА.

4) Абсолютную погрешность находят из формулы

17

A = ΑCP ΕΑ..

Указания. 1. Если функция A = f (x, y, z, …) имеет вид, неудобный для логарифмирования, то для определения погрешностей пользуются правилом I.

2. Если функция A = f (x, y, z, …) имеет вид, удобный для логарифмирования, то для определения погрешностей пользуются правилом II.

Рассмотрим следующие примеры:

1. В результате изучения равноускоренного движения не-

которого тела получено выражение S = v0 t + a t2/2, в котором v0 = (12 ± 1) м/с; a = (2.5 ± 0.4) м/с2; t = (30 ± 2) с;

S = 12 30 +

2.5 900

= 1485 м.

2

Для оценки абсолютной и относительной погрешностей при определении пути удобно пользоваться правилом I, так как функция неудобна для логарифмирования. Тогда

∆S = t ∆V0 + V0 ∆t + 12 t CP2 a + aCP t CP ∆t .

Так как

V0 = 1 м/с; t = 2 с; a = 0.4 м/с2; V0 = I2 м/с; tСР = 30 с; aСР = 2,5 м/с2 , то, подставив эти величины в формулу для S,

получим

S = 1 м/с 30 с + 2 с 12 м/с + 1/2 0.4 м/с2 900 с2 + 2.5 м/с2 30 c 2 c = 30 м +24 м +180 м +150 м = 384 м 400 м.

Полученный результат показывает, что при определении пути (1485) цифра 4 является сомнительной. Значит, S = 1500 м. Тогда

ES = 1500400 100% = 0.266 100% = 27%.

Окончательный результат будет иметь вид:

S = (1500 ± 400) м; ЕS = 27%.

2. При определении центростремительной силы, действующей на тело, вращающееся по окружности, пользуются формулой

18

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Все ошибки, которые имеют место при прямых измерениях, можно разделить на три основные категории: систематические, случайные и грубые погрешности (или промахи).
1. Систематические ошибки — это ошибки, которые постоянно вносятся в измерения, которые часто известны заранее и от которых можно основном избавиться, если тщательно продумать эксперимент.

Систематические погрешности включают в себя методические и инструментальные (приборные) погрешности измерений. Методические погрешности называются недостатками применяемого метода измерений, несовершенством теории физического явления и неточностью расчетной формулы, используемой для нахождения величины; что измеряется.
Суть таких ошибок легко понять из следующих примеров.
а) В чашечно ртутном барометре при том же атмосферном давлении ртуть в трубке устанавливается на разной высоте при различных температурах окружающей среды. При измерении давления с помощью такого барометра допускается систематическая ошибка, причина которой — разница в коэффициентах линейного расширения ртути и латуни, из которой изготовлена шкала. Эта ошибка легко может быть подсчитана и исключена.
б) Электроизмерительные приборы, термометры, весы и многие другие приборов вносят систематические ошибки в измерения, если в них смещена нулевая точка.
в) Систематические ошибки могут быть связаны со свойствами самого объекта измерения. Эти ошибки нельзя учесть заранее, но при рациональном проведении измерений такие ошибки могут быть переведены в разряд случайных.
Пример. В работе по определению коэффициента поверхностного натяжения жидкости приходится измерять диаметр капилляра, в разных местах может быть различным. Ошибку можно уменьшить, измеряя диаметр различных участков капилляра и взяв среднее из полученных измерений. Таким образом, эта систематическая ошибка перейдет в разряд случайных.
2. Случайные ошибки заранее устранить нельзя. Эти ошибки связаны с субъективными особенностями наблюдателя, с несовершенством измерительных приборов, с изменениями окружающих условий во время опыта. Случайные ошибки одинаково вероятны, как в сторону увеличения, так и в сторону уменьшения значения величины, что измеряется. Уменьшить их влияние можно многократным повторением измерений, а в некоторых случаях изменением условий опыта.
Пример. При определении коэффициента внутреннего трения жидкости по методу Стокса необходимо знать скорость падения шарика известного диаметра в данной жидкости. Эта скорость ? определяется по времени t, за который шарик при равномерном движении проходит в жидкости известную расстояние s:.
Предположим, что s в нашей установке порядка 20 — 30 см, а t измерениями равен 40-50 секунд. Если для определения размеров s и t, взять сантиметровый масштаб линейки и часы с минутной стрелкой, то явно наши измерения будут очень грубые. На первый взгляд кажется, что точность измерения величины ? будет непрерывно повышаться с увеличением точности используемых измерительных приборов — масштабной линейки и секундомера. Однако это будет иметь место только до некоторого момента, начиная с которого последующее увеличение точности приборов перестанет уменьшать ошибку измерения скорости, обусловленное в данном случае ошибкой, что делается наблюдателем (всегда существует некий разрыв во времени между моментом прохождения шариком соответствующей деления шкалы и моментом нажатия кнопки секундомера). При таких условиях эксперимента дальнейшего уменьшения ошибки в измерении ? можно достичь только путем увеличения числа измерений и обработки их результатов (тщательного анализа проделанных измерений).
Стоит заметить, что точность определения ? по значениям s и t может быть увеличена за счет изменения условий опыта.
Например, очевидно, что при увеличении в несколько раз расстоянии s, во столько же вместе увеличится и время t и несмотря на то, что ошибка, что делается при их измерении, остается прежней по абсолютной величине, влияние этой ошибки при определении скорости уменьшается.
Известно, что любой измерительный прибор или инструмент имеет свою предельную точность, обусловленную его конструкцией и качеством изготовления. При правильном выборе условий эксперимента и грамотного использования прибора случайный разброс результатов измерений, проведенных с помощью этого прибора, должен быть значительно меньше предельной ошибки, обусловленной конструкцией и указанной в паспорте прибора. Чтобы убедиться в этом в каждом конкретном случае, необходимо сделать несколько измерений, найти среднюю ошибку (по правилам, указанным ниже) и сравнить ее с паспортной. Если случайный разброс действительно окажется значительно меньше паспортной ошибки, в дальнейшем можно измерения проделывать один раз и считать ошибку соответствии с паспортными данными прибора.
Часто для сравнения точности измерений с точностью прибора бывает необходимо проделать большое число измерений. Если при этом в измерениях наблюдается воспроизведения в пределах точности прибора, то при исчислении погрешности следует учитывать только точность прибора.
Если случайные ошибки даже при большом числе измерений значительно превышают паспортную погрешность прибора (например, при изменчивости состояния окружающей среды, невозможности точно произвести отсчет и т.п.), и устранить причины этих отклонений невозможно, можно заменить прибор менее точным, отвечающего конкретным условиям эксперимента.
При выборе метода оценки погрешности измерений необходимо прежде всего осознать, идет ли речь о случайной погрешности измерений (случайном разбросе), либо об ошибке, внесенную приборами. Если решающую роль играют случайные ошибки, применяются статистические методы обработки результатов измерений. Если ошибка опыта определяется точностью приборов, подсчитывается предельная ошибка метода.
Стоит заметить, что размер средней случайной ошибки указывает лишь на качество измерений, но не характеризует точность метода, потому что результат может содержать систематическую ошибку.
Расчет случайных погрешностей делается методами теории вероятностей и математической статистики.
3. Грубая ошибка или промах — это погрешность, существенно превышает ожидаемую при данных условиях. Она может быть сделана в результате неправильной записи показаний прибора, ошибки экспериментатора с электроинструментом (например, при измерении длины линейкой один из концов предмета оказался не совмещенным с нулевой делением), может быть связана с неисправностью измерительной аппаратуры или с резким изменением условий измерений. Иногда промахи можно обнаружить, повторяя измерение в несколько отличных условиях, или анализируя результаты (как будет показано далее). Обнаружены промахи нужно исключить и в случае необходимости провести новые измерения.

Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.

Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.

Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.

1.1 Результат измерения

Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?

Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле
такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!

Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.

Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.

Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δ⁢x=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.

Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.

Замечание. 
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].

Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как

где δ⁢x — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δ⁢x;xизм+δ⁢x)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:

Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δ⁢xx⋅100%).

Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1⁢мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05⁢мм (или
d=(40±5)⋅10-5⁢м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.

О необходимости оценки погрешностей.

Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?

Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.

С другой стороны, если погрешность δ⁢x известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δ⁢x
(и различны в противоположном случае).

Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.

В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).

1.2 Многократные измерения

Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений

Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?

Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.

В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.

По набору результатов 𝐱 можно вычислить их среднее арифметическое:

⟨x⟩=x1+x2+…+xnn≡1n⁢∑i=1nxi. (1.1)

Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.

Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как

Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:

s=Δ⁢x12+Δ⁢x22+…+Δ⁢xn2n=1n⁢∑i=1nΔ⁢xi2 (1.2)

или кратко

Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.

Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δ⁢xi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δ⁢xi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:

Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.

Предельную величину среднеквадратичного отклонения при n→∞
обозначим как

Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.


Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):



sn-12=1n-1⁢∑i=1nΔ⁢xi2,

(1.4)


где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.

Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.

Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:

  • при многократном повторении эксперимента бо́льшая часть измерений
    (∼68%) попадает в интервал x¯-σ<x<x¯+σ
    (см. п. 2.2).

  • выборочное среднее значение ⟨x⟩ оказывается с большей
    вероятностью ближе к истинному значению x¯, чем каждое из измерений
    {xi} в отдельности. При этом ошибка вычисления среднего
    убывает пропорционально корню из числа опытов n
    (см. п. 2.4).


Упражнение. Показать, что



s2=⟨x2⟩-⟨x⟩2.

(1.5)


то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n⁢∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n⁢∑i=1nxi)2.

1.3 Классификация погрешностей

Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.

В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.

При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.

Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.

Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.

При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.

Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить

  • инструментальные (или приборные) погрешности,
    связанные с несовершенством конструкции (неточности, допущенные при
    изготовлении или вследствие старения), ошибками калибровки или ненормативными
    условиями эксплуатации измерительных приборов;

  • методические погрешности, связанные с несовершенством
    теоретической модели явления (использование приближенных формул и
    моделей явления) или с несовершенством методики измерения (например,
    влиянием взаимодействия прибора и объекта измерения на результат измерения);

  • естественные погрешности, связанные со случайным
    характером
    измеряемой физической величины — они являются не столько
    «ошибками» измерения, сколько характеризуют
    природу изучаемого объекта или явления.

Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.

1.3.1 Случайные погрешности

Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.

Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.

Случайные погрешности бывают связаны, например,

  • с особенностями используемых приборов: техническими
    недостатками
    (люфт в механических приспособлениях, сухое трение в креплении стрелки
    прибора), с естественными (тепловой и дробовой шумы в электрических
    цепях, тепловые флуктуации и колебания измерительных устройств из-за
    хаотического движения молекул, космическое излучение) или техногенными
    факторами (тряска, электромагнитные помехи и наводки);

  • с особенностями и несовершенством методики измерения (ошибка
    при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером);

  • с несовершенством объекта измерений (неровная поверхность,
    неоднородность состава);

  • со случайным характером исследуемого явления (радиоактивный
    распад, броуновское движение).

Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле
совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.

1.3.2 Систематические погрешности

Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).

Систематические погрешности условно можно разделить на следующие категории.

  1. 1.

    Известные погрешности, которые могут быть достаточно точно вычислены
    или измерены. При необходимости они могут быть учтены непосредственно:
    внесением поправок в расчётные формулы или в результаты измерений.
    Если они малы, их можно отбросить, чтобы упростить вычисления.

  2. 2.

    Погрешности известной природы, конкретная величина которых неизвестна,
    но максимальное значение вносимой ошибки может быть оценено теоретически
    или экспериментально. Такие погрешности неизбежно присутствуют в любом
    опыте, и задача экспериментатора — свести их к минимуму,
    совершенствуя методики измерения и выбирая более совершенные приборы.

    Чтобы оценить величину систематических погрешностей опыта, необходимо
    учесть паспортную точность приборов (производитель, как правило, гарантирует,
    что погрешность прибора не превосходит некоторой величины), проанализировать
    особенности методики измерения, и по возможности, провести контрольные
    опыты.

  3. 3.

    Погрешности известной природы, оценка величины которых по каким-либо
    причинам затруднена (например, сопротивление контактов при подключении
    электронных приборов). Такие погрешности должны быть обязательно исключены
    посредством модификации методики измерения или замены приборов.

  4. 4.

    Наконец, нельзя забывать о возможности существования ошибок, о
    которых мы не подозреваем, но которые могут существенно искажать результаты
    измерений. Такие погрешности самые опасные, а исключить их можно только
    многократной независимой проверкой измерений, разными методами
    и в разных условиях.

В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.

Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.


Пример. 
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:




Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.



Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.


В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.


Пример. 
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:


1.

Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.

2.

Систематическая погрешность, связанная с неправильной установкой нуля.

3.

Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).


Понравилась статья? Поделить с друзьями:
  • Что такое словообразовательная ошибка в русском языке
  • Что такое слово с орфографической ошибкой
  • Что такое скриптовая ошибка в симс 4
  • Что такое скриншот страницы с ошибкой
  • Что такое скриншот ошибки с отображением системного времени