Что такое систематические ошибки в физике

Систематическая погрешность (или, на физическом жаргоне, систематика) характеризует неточность измерительного инструмента или метода обработки данных. Если точнее, то она показывает наше ограниченное знание этой неточности: ведь если инструмент «врет», но мы хорошо знаем, насколько именно, то мы сможем скорректировать его показания и устранить инструментальную неопределенность результата. Слово «систематическая» означает, что вы можете повторять какое-то измерение на этой установке миллионы раз, но если у нее «сбит прицел», то вы систематически будете получать значение, отличающееся от истинного.

Конечно, систематические погрешности хочется взять под контроль. Поскольку это чисто инструментальный эффект, ответственность за это целиком лежит на экспериментаторах, собиравших, настраивавших и работающих на этой установке. Они прилагают все усилия для того, чтобы, во-первых, корректно определить эти погрешности, а во-вторых, их минимизировать. Собственно, они этим начинают заниматься с самых первых дней работы установки, даже когда еще собственно научная программа исследований и не началась.

Возможные источники систематических погрешностей

Современный коллайдерный эксперимент очень сложен. В нём есть место огромному количеству источников систематических погрешностей на самых разных стадиях получения экспериментального результата. Вот некоторые из них.

Погрешности могут возникать на уровне «железа», при получении сырых данных:

  • дефектные или неработающие отдельные регистрирующие компоненты или считывающие элементы. В детекторе миллионы отдельных компонентов, и даже если 1% из них оказался дефектным, это может ухудшить «зоркость» детектора и четкость регистрации сигналов. Надо подчеркнуть, что, даже если при запуске детектор работает на все 100%, постоянное детектирование частиц (это же жесткая радиация!) с течением времени выводит из строя отдельные компоненты, так что следить за поведением детектора абсолютно необходимо;
  • наличие «слепых зон» детектора; например, если частица вылетает близко к оси пучков, то она улетит в трубу и детектор ее просто не заметит.

Погрешности могут возникать на этапе распознавания сырых данных и их превращение в физическое событие:

  • погрешность при измерении энергии частиц в калориметре;
  • погрешность при измерении траектории частиц в трековых детекторах, из-за которой неточно измеряется точка вылета и импульс частицы;
  • неправильная идентификация типа частицы (например, система неудачно распознала след от π-мезона и приняла его за K-мезон). Более тонкий вариант: неправильное объединение адронов в одну адронную струю и неправильная оценка ее энергии;
  • неправильный подсчет числа частиц (две частицы случайно вылетели так близко друг к другу, что детектор «увидел» только один след и посчитал их за одну).

Наконец, новые систематические погрешности добавляются на этапе позднего анализа события:

  • неточность в измерении светимости пучков, которая влияет на пересчет числа событий в сечение процесса;
  • наличие посторонних процессов рождения частиц, которые отличаются с физической точки зрения, но, к сожалению, выглядят для детектора одинаковыми. Такие процессы порождают неустранимый фон, который часто мешает разглядеть искомый эффект;
  • необходимость моделировать процессы (в особенности, адронизацию, превращение кварков в адроны), опираясь частично на теорию, частично на прошлые эксперименты. Несовершенство того и другого привносит неточности и в новый экспериментальный результат. По этой причине теоретическую погрешность тоже часто относят к систематике.

В отдельных случаях встречаются источники систематических погрешностей, которые умудряются попасть сразу во все категории, они совмещают в себе и свойства детекторного «железа», и методы обработки и интерпретации данных. Например, если вы хотите сравнить друг с другом количество рожденных частиц и античастиц какого-то сорта (например, мюонов и антимюонов), то вам не стоит забывать, что ваш детектор состоит из вещества, а не из антивещества! Этот «перекос» в сторону вещества может привести к тому, что детектор будет видеть мюонов меньше, чем антимюонов, подробности см. в заметке Немножко про CP-нарушение, или Как жаль, что у нас нет детекторов из антивещества!.

Всю эту прорву источников потенциальных проблем надо распознать и оценить их влияние на выполняемый анализ. Здесь никаких абсолютно универсальных алгоритмов нет; исследователь должен сам понять, на какие погрешности надо обращать внимание и как грамотно их оценить. Конечно, тут на помощь приходят разные калибровочные измерения, выполненные в первые год-два работы детектора, и программы моделирования, которые позволяют виртуально протестировать поведение детектора в тех или иных условиях. Но главным в этом искусстве всё же является физическое чутье экспериментатора, его квалификация и накопленный опыт.

Почему важна грамотная оценка систематики

Беспечная оценка систематических погрешностей может привести к двум крайностям, причем обе очень нежелательны.

Заниженная погрешность — то есть неоправданная уверенность экспериментатора в том, что погрешности в его детекторе маленькие, хотя они на самом деле намного больше, — исключительно опасна, поскольку она может привести к совершенно неправильным научным выводам. Например, экспериментатор может на их основании решить, что измерения отличаются от теоретических предсказаний на уровне статистической значимости 10 стандартных отклонений (сенсация!), хотя истинная причина расхождения может просто состоять в том, что он проглядел источник ошибок, в 10 раз увеличивающий неопределенность измерения, и никакого расхождения на самом деле нет.

В борьбе с этой опасностью есть соблазн впасть в другую крайность: «А вдруг там есть еще какие-то погрешности? Может, я что-то не учел? Давай-ка я на всякий случай увеличу погрешности измерения в 10 раз для пущей безопасности.» Такая крайность плоха тем, что она обессмысливает измерение. Неоправданно завышая погрешность, вы рискуете получить результат, который будет, конечно, правильным, но очень неопределенным, ничем не лучше тех результатов, которые уже были получены до вас на гораздо более скромных установках. Такой подход, фактически, перечеркивает всю работу по разработке технологий, по изготовлению компонентов, по сборке детектора, все затраты на его работу и на анализ результатов.

Грамотный и ответственный анализ систематики должен удерживать оптимальный баланс (максимальная достоверность при максимальной научной ценности), не допуская таких крайностей. Это очень тонкая и сложная работа, и первые страницы в большинстве современных экспериментальных статей по физике частиц посвящены тщательному обсуждению систематических (а также статистических) погрешностей.

Мы не будем обсуждать подробности того, как обсчитывать систематические погрешности. Подчеркнем только, что это серьезная наука с множеством тонкостей и подводных камней. В качестве примера умеренно простого обсуждения некоторых вопросов см. статью Systematic Errors: facts and fictions.

Систематическая погрешность (или, на физическом жаргоне, систематика) характеризует неточность измерительного инструмента или метода обработки данных. Если точнее, то она показывает наше ограниченное знание этой неточности: ведь если инструмент «врет», но мы хорошо знаем, насколько именно, то мы сможем скорректировать его показания и устранить инструментальную неопределенность результата. Слово «систематическая» означает, что вы можете повторять какое-то измерение на этой установке миллионы раз, но если у нее «сбит прицел», то вы систематически будете получать значение, отличающееся от истинного.

Конечно, систематические погрешности хочется взять под контроль. Поскольку это чисто инструментальный эффект, ответственность за это целиком лежит на экспериментаторах, собиравших, настраивавших и работающих на этой установке. Они прилагают все усилия для того, чтобы, во-первых, корректно определить эти погрешности, а во-вторых, их минимизировать. Собственно, они этим начинают заниматься с самых первых дней работы установки, даже когда еще собственно научная программа исследований и не началась.

Возможные источники систематических погрешностей

Современный коллайдерный эксперимент очень сложен. В нём есть место огромному количеству источников систематических погрешностей на самых разных стадиях получения экспериментального результата. Вот некоторые из них.

Погрешности могут возникать на уровне «железа», при получении сырых данных:

  • дефектные или неработающие отдельные регистрирующие компоненты или считывающие элементы. В детекторе миллионы отдельных компонентов, и даже если 1% из них оказался дефектным, это может ухудшить «зоркость» детектора и четкость регистрации сигналов. Надо подчеркнуть, что, даже если при запуске детектор работает на все 100%, постоянное детектирование частиц (это же жесткая радиация!) с течением времени выводит из строя отдельные компоненты, так что следить за поведением детектора абсолютно необходимо;
  • наличие «слепых зон» детектора; например, если частица вылетает близко к оси пучков, то она улетит в трубу и детектор ее просто не заметит.

Погрешности могут возникать на этапе распознавания сырых данных и их превращение в физическое событие:

  • погрешность при измерении энергии частиц в калориметре;
  • погрешность при измерении траектории частиц в трековых детекторах, из-за которой неточно измеряется точка вылета и импульс частицы;
  • неправильная идентификация типа частицы (например, система неудачно распознала след от π-мезона и приняла его за K-мезон). Более тонкий вариант: неправильное объединение адронов в одну адронную струю и неправильная оценка ее энергии;
  • неправильный подсчет числа частиц (две частицы случайно вылетели так близко друг к другу, что детектор «увидел» только один след и посчитал их за одну).

Наконец, новые систематические погрешности добавляются на этапе позднего анализа события:

  • неточность в измерении светимости пучков, которая влияет на пересчет числа событий в сечение процесса;
  • наличие посторонних процессов рождения частиц, которые отличаются с физической точки зрения, но, к сожалению, выглядят для детектора одинаковыми. Такие процессы порождают неустранимый фон, который часто мешает разглядеть искомый эффект;
  • необходимость моделировать процессы (в особенности, адронизацию, превращение кварков в адроны), опираясь частично на теорию, частично на прошлые эксперименты. Несовершенство того и другого привносит неточности и в новый экспериментальный результат. По этой причине теоретическую погрешность тоже часто относят к систематике.

В отдельных случаях встречаются источники систематических погрешностей, которые умудряются попасть сразу во все категории, они совмещают в себе и свойства детекторного «железа», и методы обработки и интерпретации данных. Например, если вы хотите сравнить друг с другом количество рожденных частиц и античастиц какого-то сорта (например, мюонов и антимюонов), то вам не стоит забывать, что ваш детектор состоит из вещества, а не из антивещества! Этот «перекос» в сторону вещества может привести к тому, что детектор будет видеть мюонов меньше, чем антимюонов, подробности см. в заметке Немножко про CP-нарушение, или Как жаль, что у нас нет детекторов из антивещества!.

Всю эту прорву источников потенциальных проблем надо распознать и оценить их влияние на выполняемый анализ. Здесь никаких абсолютно универсальных алгоритмов нет; исследователь должен сам понять, на какие погрешности надо обращать внимание и как грамотно их оценить. Конечно, тут на помощь приходят разные калибровочные измерения, выполненные в первые год-два работы детектора, и программы моделирования, которые позволяют виртуально протестировать поведение детектора в тех или иных условиях. Но главным в этом искусстве всё же является физическое чутье экспериментатора, его квалификация и накопленный опыт.

Почему важна грамотная оценка систематики

Беспечная оценка систематических погрешностей может привести к двум крайностям, причем обе очень нежелательны.

Заниженная погрешность — то есть неоправданная уверенность экспериментатора в том, что погрешности в его детекторе маленькие, хотя они на самом деле намного больше, — исключительно опасна, поскольку она может привести к совершенно неправильным научным выводам. Например, экспериментатор может на их основании решить, что измерения отличаются от теоретических предсказаний на уровне статистической значимости 10 стандартных отклонений (сенсация!), хотя истинная причина расхождения может просто состоять в том, что он проглядел источник ошибок, в 10 раз увеличивающий неопределенность измерения, и никакого расхождения на самом деле нет.

В борьбе с этой опасностью есть соблазн впасть в другую крайность: «А вдруг там есть еще какие-то погрешности? Может, я что-то не учел? Давай-ка я на всякий случай увеличу погрешности измерения в 10 раз для пущей безопасности.» Такая крайность плоха тем, что она обессмысливает измерение. Неоправданно завышая погрешность, вы рискуете получить результат, который будет, конечно, правильным, но очень неопределенным, ничем не лучше тех результатов, которые уже были получены до вас на гораздо более скромных установках. Такой подход, фактически, перечеркивает всю работу по разработке технологий, по изготовлению компонентов, по сборке детектора, все затраты на его работу и на анализ результатов.

Грамотный и ответственный анализ систематики должен удерживать оптимальный баланс (максимальная достоверность при максимальной научной ценности), не допуская таких крайностей. Это очень тонкая и сложная работа, и первые страницы в большинстве современных экспериментальных статей по физике частиц посвящены тщательному обсуждению систематических (а также статистических) погрешностей.

Мы не будем обсуждать подробности того, как обсчитывать систематические погрешности. Подчеркнем только, что это серьезная наука с множеством тонкостей и подводных камней. В качестве примера умеренно простого обсуждения некоторых вопросов см. статью Systematic Errors: facts and fictions.

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

lg77.23 2.8878 2.888 .

Примечание. При вычислении промежуточных результатов следует брать на одну цифру больше, чем указано в округлении при выполнении математических действий над числами. В окончательном результате эта «запасная» цифра отбрасывается. Приведенный ниже пример поясняет сказанное:

(23.2 + 0.442 + 7.247) ×1.8364

(23.2 + 0.44 + 7.25) ×1.84

2.412

2.41

30.89 ×1.84

56.38

23.58 23.6 .

4.41

2.41

Значение физической величины округляется до первой сомнительной цифры. Все цифры, стоящие после сомнительной, отбрасываются. Абсолютная ошибка округляется до одной значащей цифры, относительная ошибка — до двух значащих цифр.

Пример. Путем измерений и математических расчетов было получено, что для объема некоторого тела имеют место следующие числа (см. с. 13: Вычисление абсолютной и относительной ошибок измерений):

V = 43.235 м3; V = ± 0.423 м3.

Оказалось, что сомнительной цифрой при вычислении объема является 2. Тогда результат можно записать в следующем виде:

V= (43.2 ± 0.4) м3; EV = 43.20.4 ×100% = 0.92%.

Промахи, систематические и случайные погрешности измерений

Истинное значение физической величины абсолютно точно определить нельзя. Измерение тел, предметов или любой физической величины всегда производится с той или иной степенью точности1, т.е. с той или иной степенью приближения к ис-

1 Точностью называется величина, обратная относительной погрешности. Точность обработки результатов измерений должна согласовываться с точностью самих измерений.

тинному значению искомой величины. Если указываем, что высота дерева 2 м 56 см, а измерена она с точностью до 1 см, то это будет означать, что отклонение найденной высоты от истинной не превышает 1 см.

При измерении физических величин под действием самых разнообразных причин возникают погрешности измерения. Все погрешности принято подразделять на систематические, слу-

чайные и промахи (ошибки).

1. Промахи

Это наиболее распространенная причина ошибок. Она возникает по вине экспериментатора, сделавшего неверный отсчет, неверно записавшего результат измерения, допустившего ошибку при вычислении. К промахам, например, относятся неточно установленный нуль секундомера или нониуса микрометра, неправильная установка самого прибора (вертикальная вместо горизонтальной или наоборот), неразборчивая или небрежная запись в черновиках, а следовательно, и неправильное переписывание данных при составлении отчета дома и т.п.

Эта ошибка бывает значительно больше погрешностей других измерений. Если ошибка допущена в одном измерении из нескольких, сделанных верно, то, сравнивая числовые значения полученных результатов или их абсолютных погрешностей, ее легко обнаружить. Результат, полученный ошибочно, резко отличается от результатов других измерений, а абсолютная погрешность имеет значение, значительно превышающее абсолютные погрешности других измерений. Эта ошибка должна быть исключена из результатов измерений.

2. Систематические погрешности

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Такие погрешности появляются вследствие неисправности приборов, неточности метода исследования, каких-либо упущений экспериментатора, а также при использовании для вычислений неточных зависимостей (формул), констант и т.д.

Эти ошибки очень трудно контролировать, поскольку они связаны с конструкцией либо состоянием самого измерительного прибора или инструмента (например: неправильно отградуированный штангенциркуль, не установленная на нуль стрелка прибора), а также с влиянием на них незаметных, на первый взгляд, факторов (температуры, влажности, электрических и магнитных полей, вибрации, освещенности и т.п.). В этом случае всегда измеряемая величина (линейные размеры, ток, напряжение, сопротивление и т.п.) будет заниженной или завышенной по сравнению с истинной. Таким образом, из сказанного выше ясно, что для избежания таких ошибок необходимо тщательно готовить измерительные приборы, оборудование, установки, обеспечивать правильное хранение, а также исключить внешние факторы, влияющие на результат измерения.

3. Случайные погрешности

Случайной называется погрешность, которая вызывается действием не поддающихся контролю многочисленных, независимых друг от друга факторов, изменяется от одного измерения к другому непредсказуемым образом и в равной степени может быть как положительной, так и отрицательной.

Случайные ошибки присутствуют при любых измерениях и связаны с неточностью отсчета. Например, различное зажатие деталей микрометрическим винтом микрометра или ножками штангенциркуля, различное положение глаза при отсчете по шкале и т.п. Однако в этом случае отличия носят случайный характер и отклонения от истинного значения могут происходить как в сторону увеличения, так и в сторону уменьшения его. Эта ошибка может быть уменьшена увеличением числа повторных измерений и нахождением среднего арифметического из полученного количества результатов. Например, если А1, А2, А3, …

An — результаты, полученные в процессе отдельных измерений, то величина

n

ACP =

A

+ A

2

+ A

3

+ + A

n

=

Ai

1

i=1

n

n

13

будет средним арифметическим из n указанных результатов. Эта величина будет наиболее близкой к истинному значению искомой величины.

В общем случае при измерении любой величины могут присутствовать все три вида ошибок, но последний будет присутствовать всегда.

Вычисление абсолютной и относительной погрешностей измерений при прямых измерениях

1. Абсолютная погрешность

Оценить отклонение каждого из результатов измерения от истинной величины можно лишь при наличии данных большого числа измерений с использованием теории вероятности. Однако на практике, в лабораторных условиях проводят 3-5 измерений. В этом случае абсолютная погрешность отдельного i-го измерения будет следующей:

|Аi| = |АСР — Аi|,

где АСР — средняя величина размера А. Средняя арифметическая величина всех Аi значений

∆ACP =

∆A1

+

∆A2

+

∆A3

+ +

∆An

n

называется абсолютной погрешностью опыта. Окончательный результат измерения может быть записан в виде

А = АСР ± ∆АСР,

где А — искомая величина, которая лежит внутри интервала

АСР ± ∆АСР.

Например, если сделаем несколько измерений длины заготовки в столярной мастерской и получим среднее значение lСР = 75.5 см, а среднее арифметическое абсолютной погрешности lСР = 0.3 см, то результат запишется в виде

l = (75.5 ± 0.3) см.

Это означает, что истинное значение длины заготовки лежит в интервале от 75.2 см до 75.8 см. При этом не имеет смысла вычислять среднее значение с большим числом знаков после запятой, так как от этого точность не увеличивается.

14

2. Относительная погрешность

Абсолютная погрешность измерения не характеризует точности проведенных измерений. Поэтому для того, чтобы сравнить точность различных измерений и величин разной размерности, находят среднюю относительную погрешность результата (ЕА). Относительная погрешность определяется отношением абсолютной погрешности к среднему арифметическому значению измеряемой величины, которая определяется в процентах:

ЕА= ∆ACP 100%.

ACP

Относительная погрешность показывает, какая часть абсолютной погрешности приходится на каждую единицу измеренной величины. Это дает возможность оценить точность проведенных измерений, качество работы.

Так, например, пусть при измерении бруска длиной l = 1.51 см была допущена абсолютная погрешность 0.03 мм, а при измерении расстояния от Земли до Луны L = 3.64.105 км абсолютная погрешность составила 100 км. Может показаться, что первое измерение выполнено намного точнее второго. Однако о точности измерения можно судить по относительной погрешности, а она показывает, что второе измерение было выполнено в семь раз точнее первого:

El

=

0.03

мм

100% = 0.2%

15.1

мм

и

ЕL =

100 км

100% = 0.03%.

364000 км

Вычисление абсолютных и относительных погрешностей при косвенных2 измерениях

В большинстве случаев при выполнении физических экспериментов исследуемая величина не может быть измерена не-

2 При косвенных измерениях значение физической величины получают расчетным путем на основании ее зависимости от величин, измеряемых прямо.

посредственно, а является функцией одной или нескольких переменных, измеренных непосредственно. При косвенных измерениях абсолютная и относительная погрешности результатов измерений находятся вычислением через абсолютные и относительные погрешности непосредственно измеренных величин.

Использование формул дифференцирования

Для определения абсолютных и относительных погрешностей искомой величины при косвенных измерениях можно воспользоваться формулами дифференцирования, потому что абсолютная ошибка функции равна абсолютной ошибке аргумента, умноженной на производную этой функции, то есть полному дифференциалу функции.

Рассмотрим это более подробно. Допустим, что физическая величина А является функцией многих переменных:

A = f (x, y, z …).

Правило I. Вначале находят абсолютную погрешность величины А, а затем относительную погрешность. Для этого необходимо:

1) Найти полный дифференциал функции dA = Ax dx+ Ay dy+ Az dz+ .

2) Заменить бесконечно малые dx, dу, dz, … соответствующими абсолютными ошибками аргументов x, y, z, … (при этом знаки «минус» в абсолютных ошибках аргументов заменяют знаками «плюс», так чтобы величина ошибки была максимальной):

dA = Ax x + Ay y + Az z + .

Применяя это правило к частным случаям, получим:

абсолютная погрешность суммы равна сумме абсолютных погрешностей слагаемых. Если X = a + b, то X = a + b;

абсолютная погрешность разности равна сумме абсо-

лютных

погрешностей уменьшаемого и вычитаемого. Если

X = a — b, то X = a + b;

абсолютная погрешность произведения двух сомно-

жителей равна сумме произведений среднего значения первого множителя (aCP) на абсолютную погрешность второго и среднего значения второго множителя (bCP) на абсолютную погрешность

первого. Если X = а b, то X = aCP b + bCP а. Если X = a n , то

X = n аCPn-1 а;

— абсолютная погрешность дроби равна сумме произведения знаменателя на абсолютную погрешность числителя и числителя на абсолютную погрешность знаменателя, деленной на

квадрат знаменателя. Если X =

a

, то X=

b

CP

a + a

CP

b

.

b

bCP2

3) По определению найдем относительную погрешность

EA = ∆A 100% .

ACP

Использование дифференциала натурального логарифма

Во многих случаях, когда формула удобна для логарифмирования, оказывается более удобной другая последовательность действий: сначала находят относительную погрешность величины А, а затем абсолютную погрешность, поскольку относительная ошибка функции равна дифференциалу натурального логарифма этой функции. Действительно, относительная погрешность величины А есть ЕА = A/Аср , но d(lnA) = A/А и, следовательно, (lnA) = A/А.

Правило II.

1)Логарифмируют функцию A = f (x, y, z, …).

2)Дифференцируют полученный логарифм по всем аргу-

ментам.

3)Заменяют бесконечно малые dx, dy, dz, … абсолютными

ошибками соответствующих аргументов x, y, z, … (знаки «минус» в абсолютных ошибках аргументов заменяют знаками

«плюс»).

После вычислений получают относительную погрешность

ЕА.

4) Абсолютную погрешность находят из формулы

17

A = ΑCP ΕΑ..

Указания. 1. Если функция A = f (x, y, z, …) имеет вид, неудобный для логарифмирования, то для определения погрешностей пользуются правилом I.

2. Если функция A = f (x, y, z, …) имеет вид, удобный для логарифмирования, то для определения погрешностей пользуются правилом II.

Рассмотрим следующие примеры:

1. В результате изучения равноускоренного движения не-

которого тела получено выражение S = v0 t + a t2/2, в котором v0 = (12 ± 1) м/с; a = (2.5 ± 0.4) м/с2; t = (30 ± 2) с;

S = 12 30 +

2.5 900

= 1485 м.

2

Для оценки абсолютной и относительной погрешностей при определении пути удобно пользоваться правилом I, так как функция неудобна для логарифмирования. Тогда

∆S = t ∆V0 + V0 ∆t + 12 t CP2 a + aCP t CP ∆t .

Так как

V0 = 1 м/с; t = 2 с; a = 0.4 м/с2; V0 = I2 м/с; tСР = 30 с; aСР = 2,5 м/с2 , то, подставив эти величины в формулу для S,

получим

S = 1 м/с 30 с + 2 с 12 м/с + 1/2 0.4 м/с2 900 с2 + 2.5 м/с2 30 c 2 c = 30 м +24 м +180 м +150 м = 384 м 400 м.

Полученный результат показывает, что при определении пути (1485) цифра 4 является сомнительной. Значит, S = 1500 м. Тогда

ES = 1500400 100% = 0.266 100% = 27%.

Окончательный результат будет иметь вид:

S = (1500 ± 400) м; ЕS = 27%.

2. При определении центростремительной силы, действующей на тело, вращающееся по окружности, пользуются формулой

18

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалом, прогрессивная технология — все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.

В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

1. Погрешности метода, или теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества -вообще.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекаюших процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и т.д.

2. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений.. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины — теории точности измерительных устройств.

3.   Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и т.д.

4. Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.

Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и

удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.

Способы обнаружения систематических погрешностей. Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например, Х1, Х2 и т.д.). Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,

Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого /-го наблюдения будем обозначать через 8., то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину 0, называемую систематической погрешностью неисправленного среднего арифметического. Действительно,

Если систематические погрешности постоянны, т.е. 0/ = 0, /=1,2, …, п, то неисправленные отклонения могут быть непосредственно использованы для оценки рассеивания ряда наблюдений. В противном случае необходимо предварительно исправить отдельные результаты измерений, введя в них так называемые поправки, равные систематическим погрешностям по величине и обратные им по знаку:

q = -Oi.

Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самого измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.

Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.

Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений. После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью.

Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения

где Р — измеряемое давление.

Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся погрешности:

•   определения поправок;

•   зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

•   связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы, и поправки на них не вводятся.

lg77.23 2.8878 2.888 .

Примечание. При вычислении промежуточных результатов следует брать на одну цифру больше, чем указано в округлении при выполнении математических действий над числами. В окончательном результате эта «запасная» цифра отбрасывается. Приведенный ниже пример поясняет сказанное:

(23.2 + 0.442 + 7.247) ×1.8364

(23.2 + 0.44 + 7.25) ×1.84

2.412

2.41

30.89 ×1.84

56.38

23.58 23.6 .

4.41

2.41

Значение физической величины округляется до первой сомнительной цифры. Все цифры, стоящие после сомнительной, отбрасываются. Абсолютная ошибка округляется до одной значащей цифры, относительная ошибка — до двух значащих цифр.

Пример. Путем измерений и математических расчетов было получено, что для объема некоторого тела имеют место следующие числа (см. с. 13: Вычисление абсолютной и относительной ошибок измерений):

V = 43.235 м3; V = ± 0.423 м3.

Оказалось, что сомнительной цифрой при вычислении объема является 2. Тогда результат можно записать в следующем виде:

V= (43.2 ± 0.4) м3; EV = 43.20.4 ×100% = 0.92%.

Промахи, систематические и случайные погрешности измерений

Истинное значение физической величины абсолютно точно определить нельзя. Измерение тел, предметов или любой физической величины всегда производится с той или иной степенью точности1, т.е. с той или иной степенью приближения к ис-

1 Точностью называется величина, обратная относительной погрешности. Точность обработки результатов измерений должна согласовываться с точностью самих измерений.

тинному значению искомой величины. Если указываем, что высота дерева 2 м 56 см, а измерена она с точностью до 1 см, то это будет означать, что отклонение найденной высоты от истинной не превышает 1 см.

При измерении физических величин под действием самых разнообразных причин возникают погрешности измерения. Все погрешности принято подразделять на систематические, слу-

чайные и промахи (ошибки).

1. Промахи

Это наиболее распространенная причина ошибок. Она возникает по вине экспериментатора, сделавшего неверный отсчет, неверно записавшего результат измерения, допустившего ошибку при вычислении. К промахам, например, относятся неточно установленный нуль секундомера или нониуса микрометра, неправильная установка самого прибора (вертикальная вместо горизонтальной или наоборот), неразборчивая или небрежная запись в черновиках, а следовательно, и неправильное переписывание данных при составлении отчета дома и т.п.

Эта ошибка бывает значительно больше погрешностей других измерений. Если ошибка допущена в одном измерении из нескольких, сделанных верно, то, сравнивая числовые значения полученных результатов или их абсолютных погрешностей, ее легко обнаружить. Результат, полученный ошибочно, резко отличается от результатов других измерений, а абсолютная погрешность имеет значение, значительно превышающее абсолютные погрешности других измерений. Эта ошибка должна быть исключена из результатов измерений.

2. Систематические погрешности

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Такие погрешности появляются вследствие неисправности приборов, неточности метода исследования, каких-либо упущений экспериментатора, а также при использовании для вычислений неточных зависимостей (формул), констант и т.д.

Эти ошибки очень трудно контролировать, поскольку они связаны с конструкцией либо состоянием самого измерительного прибора или инструмента (например: неправильно отградуированный штангенциркуль, не установленная на нуль стрелка прибора), а также с влиянием на них незаметных, на первый взгляд, факторов (температуры, влажности, электрических и магнитных полей, вибрации, освещенности и т.п.). В этом случае всегда измеряемая величина (линейные размеры, ток, напряжение, сопротивление и т.п.) будет заниженной или завышенной по сравнению с истинной. Таким образом, из сказанного выше ясно, что для избежания таких ошибок необходимо тщательно готовить измерительные приборы, оборудование, установки, обеспечивать правильное хранение, а также исключить внешние факторы, влияющие на результат измерения.

3. Случайные погрешности

Случайной называется погрешность, которая вызывается действием не поддающихся контролю многочисленных, независимых друг от друга факторов, изменяется от одного измерения к другому непредсказуемым образом и в равной степени может быть как положительной, так и отрицательной.

Случайные ошибки присутствуют при любых измерениях и связаны с неточностью отсчета. Например, различное зажатие деталей микрометрическим винтом микрометра или ножками штангенциркуля, различное положение глаза при отсчете по шкале и т.п. Однако в этом случае отличия носят случайный характер и отклонения от истинного значения могут происходить как в сторону увеличения, так и в сторону уменьшения его. Эта ошибка может быть уменьшена увеличением числа повторных измерений и нахождением среднего арифметического из полученного количества результатов. Например, если А1, А2, А3, …

An — результаты, полученные в процессе отдельных измерений, то величина

n

ACP =

A

+ A

2

+ A

3

+ + A

n

=

Ai

1

i=1

n

n

13

будет средним арифметическим из n указанных результатов. Эта величина будет наиболее близкой к истинному значению искомой величины.

В общем случае при измерении любой величины могут присутствовать все три вида ошибок, но последний будет присутствовать всегда.

Вычисление абсолютной и относительной погрешностей измерений при прямых измерениях

1. Абсолютная погрешность

Оценить отклонение каждого из результатов измерения от истинной величины можно лишь при наличии данных большого числа измерений с использованием теории вероятности. Однако на практике, в лабораторных условиях проводят 3-5 измерений. В этом случае абсолютная погрешность отдельного i-го измерения будет следующей:

|Аi| = |АСР — Аi|,

где АСР — средняя величина размера А. Средняя арифметическая величина всех Аi значений

∆ACP =

∆A1

+

∆A2

+

∆A3

+ +

∆An

n

называется абсолютной погрешностью опыта. Окончательный результат измерения может быть записан в виде

А = АСР ± ∆АСР,

где А — искомая величина, которая лежит внутри интервала

АСР ± ∆АСР.

Например, если сделаем несколько измерений длины заготовки в столярной мастерской и получим среднее значение lСР = 75.5 см, а среднее арифметическое абсолютной погрешности lСР = 0.3 см, то результат запишется в виде

l = (75.5 ± 0.3) см.

Это означает, что истинное значение длины заготовки лежит в интервале от 75.2 см до 75.8 см. При этом не имеет смысла вычислять среднее значение с большим числом знаков после запятой, так как от этого точность не увеличивается.

14

2. Относительная погрешность

Абсолютная погрешность измерения не характеризует точности проведенных измерений. Поэтому для того, чтобы сравнить точность различных измерений и величин разной размерности, находят среднюю относительную погрешность результата (ЕА). Относительная погрешность определяется отношением абсолютной погрешности к среднему арифметическому значению измеряемой величины, которая определяется в процентах:

ЕА= ∆ACP 100%.

ACP

Относительная погрешность показывает, какая часть абсолютной погрешности приходится на каждую единицу измеренной величины. Это дает возможность оценить точность проведенных измерений, качество работы.

Так, например, пусть при измерении бруска длиной l = 1.51 см была допущена абсолютная погрешность 0.03 мм, а при измерении расстояния от Земли до Луны L = 3.64.105 км абсолютная погрешность составила 100 км. Может показаться, что первое измерение выполнено намного точнее второго. Однако о точности измерения можно судить по относительной погрешности, а она показывает, что второе измерение было выполнено в семь раз точнее первого:

El

=

0.03

мм

100% = 0.2%

15.1

мм

и

ЕL =

100 км

100% = 0.03%.

364000 км

Вычисление абсолютных и относительных погрешностей при косвенных2 измерениях

В большинстве случаев при выполнении физических экспериментов исследуемая величина не может быть измерена не-

2 При косвенных измерениях значение физической величины получают расчетным путем на основании ее зависимости от величин, измеряемых прямо.

посредственно, а является функцией одной или нескольких переменных, измеренных непосредственно. При косвенных измерениях абсолютная и относительная погрешности результатов измерений находятся вычислением через абсолютные и относительные погрешности непосредственно измеренных величин.

Использование формул дифференцирования

Для определения абсолютных и относительных погрешностей искомой величины при косвенных измерениях можно воспользоваться формулами дифференцирования, потому что абсолютная ошибка функции равна абсолютной ошибке аргумента, умноженной на производную этой функции, то есть полному дифференциалу функции.

Рассмотрим это более подробно. Допустим, что физическая величина А является функцией многих переменных:

A = f (x, y, z …).

Правило I. Вначале находят абсолютную погрешность величины А, а затем относительную погрешность. Для этого необходимо:

1) Найти полный дифференциал функции dA = Ax dx+ Ay dy+ Az dz+ .

2) Заменить бесконечно малые dx, dу, dz, … соответствующими абсолютными ошибками аргументов x, y, z, … (при этом знаки «минус» в абсолютных ошибках аргументов заменяют знаками «плюс», так чтобы величина ошибки была максимальной):

dA = Ax x + Ay y + Az z + .

Применяя это правило к частным случаям, получим:

абсолютная погрешность суммы равна сумме абсолютных погрешностей слагаемых. Если X = a + b, то X = a + b;

абсолютная погрешность разности равна сумме абсо-

лютных

погрешностей уменьшаемого и вычитаемого. Если

X = a — b, то X = a + b;

абсолютная погрешность произведения двух сомно-

жителей равна сумме произведений среднего значения первого множителя (aCP) на абсолютную погрешность второго и среднего значения второго множителя (bCP) на абсолютную погрешность

первого. Если X = а b, то X = aCP b + bCP а. Если X = a n , то

X = n аCPn-1 а;

— абсолютная погрешность дроби равна сумме произведения знаменателя на абсолютную погрешность числителя и числителя на абсолютную погрешность знаменателя, деленной на

квадрат знаменателя. Если X =

a

, то X=

b

CP

a + a

CP

b

.

b

bCP2

3) По определению найдем относительную погрешность

EA = ∆A 100% .

ACP

Использование дифференциала натурального логарифма

Во многих случаях, когда формула удобна для логарифмирования, оказывается более удобной другая последовательность действий: сначала находят относительную погрешность величины А, а затем абсолютную погрешность, поскольку относительная ошибка функции равна дифференциалу натурального логарифма этой функции. Действительно, относительная погрешность величины А есть ЕА = A/Аср , но d(lnA) = A/А и, следовательно, (lnA) = A/А.

Правило II.

1)Логарифмируют функцию A = f (x, y, z, …).

2)Дифференцируют полученный логарифм по всем аргу-

ментам.

3)Заменяют бесконечно малые dx, dy, dz, … абсолютными

ошибками соответствующих аргументов x, y, z, … (знаки «минус» в абсолютных ошибках аргументов заменяют знаками

«плюс»).

После вычислений получают относительную погрешность

ЕА.

4) Абсолютную погрешность находят из формулы

17

A = ΑCP ΕΑ..

Указания. 1. Если функция A = f (x, y, z, …) имеет вид, неудобный для логарифмирования, то для определения погрешностей пользуются правилом I.

2. Если функция A = f (x, y, z, …) имеет вид, удобный для логарифмирования, то для определения погрешностей пользуются правилом II.

Рассмотрим следующие примеры:

1. В результате изучения равноускоренного движения не-

которого тела получено выражение S = v0 t + a t2/2, в котором v0 = (12 ± 1) м/с; a = (2.5 ± 0.4) м/с2; t = (30 ± 2) с;

S = 12 30 +

2.5 900

= 1485 м.

2

Для оценки абсолютной и относительной погрешностей при определении пути удобно пользоваться правилом I, так как функция неудобна для логарифмирования. Тогда

∆S = t ∆V0 + V0 ∆t + 12 t CP2 a + aCP t CP ∆t .

Так как

V0 = 1 м/с; t = 2 с; a = 0.4 м/с2; V0 = I2 м/с; tСР = 30 с; aСР = 2,5 м/с2 , то, подставив эти величины в формулу для S,

получим

S = 1 м/с 30 с + 2 с 12 м/с + 1/2 0.4 м/с2 900 с2 + 2.5 м/с2 30 c 2 c = 30 м +24 м +180 м +150 м = 384 м 400 м.

Полученный результат показывает, что при определении пути (1485) цифра 4 является сомнительной. Значит, S = 1500 м. Тогда

ES = 1500400 100% = 0.266 100% = 27%.

Окончательный результат будет иметь вид:

S = (1500 ± 400) м; ЕS = 27%.

2. При определении центростремительной силы, действующей на тело, вращающееся по окружности, пользуются формулой

18

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Видео: Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Содержание

  • Как рассчитать систематическую ошибку?
  • Постоянство и соразмерность
  • Систематическая ошибка в химии
  • Систематическая ошибка в физический
  • Примеры eсистематическая ошибка
  • Ссылки

В систематическая ошибка Это одна из составляющих ошибок эксперимента или наблюдений (ошибок измерения), которая влияет на точность результатов. Это также известно как детерминированная ошибка, поскольку в большинстве случаев ее можно обнаружить и устранить, не повторяя эксперименты.

Важной характеристикой систематической ошибки является постоянство ее относительной величины; то есть он не зависит от размера выборки или толщины данных. Например, предполагая, что его относительное значение составляет 0,2%, если измерения повторяются в тех же условиях, ошибка всегда будет оставаться 0,2%, пока не будет исправлена.

Как правило, систематическая ошибка возникает из-за неправильного обращения с приборами или из-за технической неисправности аналитика или ученого. Его легко обнаружить, если сравнить экспериментальные значения со стандартным или сертифицированным значением.

Примеры экспериментальной ошибки этого типа возникают, когда аналитические весы, термометры и спектрофотометры не откалиброваны; или в случаях, когда не выполняется хорошее чтение правил, верньеров, градуированных цилиндров или бюреток.

Как рассчитать систематическую ошибку?

Систематическая ошибка влияет на точность, в результате чего экспериментальные значения могут быть выше или ниже фактических результатов. Под реальным результатом или значением понимается результат, который был исчерпывающе проверен многими аналитиками и лабораториями и зарекомендовал себя в качестве эталона сравнения.

Таким образом, сравнивая экспериментальное значение с реальным, получается разница. Чем больше эта разница, тем больше абсолютное значение систематической ошибки.

Например, предположим, что в аквариуме насчитывается 105 рыб, но известно заранее или из других источников, что истинное число составляет 108. Таким образом, систематическая ошибка составляет 3 (108-105). Мы сталкиваемся с систематической ошибкой, если, повторяя подсчет рыб, мы снова и снова получаем 105 рыб.

Однако более важным, чем вычисление абсолютного значения этой ошибки, является определение ее относительного значения:

Относительная погрешность = (108-105) ÷ 108

= 0,0277

Если выражать в процентах, то получается 2,77%. То есть ошибка подсчета имеет вес 2,77% от истинного количества рыбы. Если в аквариуме теперь есть 1000 рыб, и он будет считать их с той же систематической ошибкой, то будет на 28 рыб меньше, чем ожидалось, а не на 3, как это происходит с меньшим аквариумом.

Постоянство и соразмерность

Систематическая ошибка обычно постоянная, аддитивная и пропорциональная. В приведенном выше примере ошибка 2,77% останется постоянной до тех пор, пока измерения будут повторяться в одних и тех же условиях, независимо от размера аквариума (уже соприкасающегося с аквариумом).

Также обратите внимание на пропорциональность систематической ошибки: чем больше размер выборки или толщина данных (или объем аквариума и количество рыб в нем), тем больше систематическая ошибка. Если в аквариуме теперь 3500 рыб, ошибка будет 97 рыб (3500 x 0,0277); абсолютная погрешность увеличивается, но ее относительное значение неизменно, постоянно.

Если число удвоить, на этот раз с 7000 рыб, то ошибка будет 194 рыбы. Таким образом, систематическая ошибка постоянна и пропорциональна.

Это не означает, что необходимо повторить подсчет рыбы: достаточно знать, что определенное количество соответствует 97,23% от общего количества рыбы (100–2,77%). Отсюда истинное количество рыбы можно рассчитать, умножив на коэффициент 100 / 97,23.

Например, если было подсчитано 5200 рыб, то фактическое количество было бы 5 348 рыб (5200 x 100 / 97,23).

Систематическая ошибка в химии

В химии систематические ошибки обычно возникают из-за неправильного взвешивания из-за некалиброванных весов или из-за неправильного считывания объемов стеклянных материалов. Хотя они могут показаться не такими, как это, они влияют на точность результатов, потому что чем их больше, тем больше их негативных эффектов.

Например, если весы плохо откалиброваны, и при определенном анализе необходимо провести несколько взвешиваний, то окончательный результат будет все дальше и дальше от ожидаемого; это будет более неточно. То же самое происходит, если анализ постоянно измеряет объемы бюреткой, показания которой неверны.

Помимо весов и стеклянных материалов, химики также могут ошибаться в обращении с термометрами и pH-метрами, в скорости перемешивания, во времени, необходимом для протекания реакции, в калибровке весов. спектрофотометры, если предполагается высокая чистота образца или реагента и т. д.

Другие систематические ошибки в химии могут быть связаны с изменением порядка добавления реагентов, нагревом реакционной смеси до температуры выше, чем рекомендованная методом, или неправильной перекристаллизацией продукта синтеза.

Систематическая ошибка в физический

В физических лабораториях систематические ошибки носят еще более технический характер: любое оборудование или инструмент без надлежащей калибровки, неправильное поданное напряжение, неправильное расположение зеркал или деталей в эксперименте, добавление слишком большого момента к объекту, который должен упасть. из-за эффекта гравитации, среди других экспериментов.

Обратите внимание на то, что есть систематические ошибки, которые происходят из инструментального несовершенства, а другие, скорее, операционного типа, являются результатом ошибки со стороны аналитика, ученого или отдельного человека, который выполняет какое-либо действие.

Примеры eсистематическая ошибка

Ниже будут упомянуты другие примеры систематических ошибок, которые не обязательно должны происходить в лаборатории или в научной сфере:

— Поместите булочки в нижнюю часть духовки, поджаривая их больше, чем хотелось бы.

-Плохая осанка при сидении

-Закройте горшок для мокко только из-за недостатка прочности

-Не очищайте пароварки кофемашин сразу после текстурирования или нагрева молока.

-Используйте чашки разных размеров, когда вы следуете или хотите повторить определенный рецепт

-Хотите дозировать солнечную радиацию в тенистые дни

— Выполняйте подтягивания на перекладине, подняв плечи к ушам.

-Играйте несколько песен на гитаре без предварительной настройки струн

-Жарить оладьи с недостаточным количеством масла в казане

-Проведите последующее объемное титрование без повторной стандартизации раствора титранта

Ссылки

  1. Дэй Р. и Андервуд А. (1986). Количественная аналитическая химия. (Пятое изд.). ПИРСОН Прентис Холл.
  2. Хельменстин, Энн Мари, доктор философии (11 февраля 2020 г.). Случайная ошибка vs. Систематическая ошибка. Получено с: thinkco.com
  3. Bodner Research Web. (н.д.). Ошибки. Получено с: chemed.chem.purdue.edu
  4. Elsevier B.V. (2020). Систематическая ошибка. ScienceDirect. Получено с: sciencedirect.com
  5. Сепульведа, Э. (2016). Систематические ошибки. Получено из Physics Online: fisicaenlinea.com
  6. Мария Ирма Гарсиа Ордас. (н.д.). Проблемы с ошибкой измерения. Автономный университет штата Идальго. Получено с: uaeh.edu.mx
  7. Википедия. (2020). Ошибка наблюдения. Получено с: en.wikipedia.org
  8. Джон Спейси. (2018, 18 июля). 7 видов систематической ошибки. Получено с: simplicable.com

Все ошибки, которые имеют место при прямых измерениях, можно разделить на три основные категории: систематические, случайные и грубые погрешности (или промахи).
1. Систематические ошибки — это ошибки, которые постоянно вносятся в измерения, которые часто известны заранее и от которых можно основном избавиться, если тщательно продумать эксперимент.

Систематические погрешности включают в себя методические и инструментальные (приборные) погрешности измерений. Методические погрешности называются недостатками применяемого метода измерений, несовершенством теории физического явления и неточностью расчетной формулы, используемой для нахождения величины; что измеряется.
Суть таких ошибок легко понять из следующих примеров.
а) В чашечно ртутном барометре при том же атмосферном давлении ртуть в трубке устанавливается на разной высоте при различных температурах окружающей среды. При измерении давления с помощью такого барометра допускается систематическая ошибка, причина которой — разница в коэффициентах линейного расширения ртути и латуни, из которой изготовлена шкала. Эта ошибка легко может быть подсчитана и исключена.
б) Электроизмерительные приборы, термометры, весы и многие другие приборов вносят систематические ошибки в измерения, если в них смещена нулевая точка.
в) Систематические ошибки могут быть связаны со свойствами самого объекта измерения. Эти ошибки нельзя учесть заранее, но при рациональном проведении измерений такие ошибки могут быть переведены в разряд случайных.
Пример. В работе по определению коэффициента поверхностного натяжения жидкости приходится измерять диаметр капилляра, в разных местах может быть различным. Ошибку можно уменьшить, измеряя диаметр различных участков капилляра и взяв среднее из полученных измерений. Таким образом, эта систематическая ошибка перейдет в разряд случайных.
2. Случайные ошибки заранее устранить нельзя. Эти ошибки связаны с субъективными особенностями наблюдателя, с несовершенством измерительных приборов, с изменениями окружающих условий во время опыта. Случайные ошибки одинаково вероятны, как в сторону увеличения, так и в сторону уменьшения значения величины, что измеряется. Уменьшить их влияние можно многократным повторением измерений, а в некоторых случаях изменением условий опыта.
Пример. При определении коэффициента внутреннего трения жидкости по методу Стокса необходимо знать скорость падения шарика известного диаметра в данной жидкости. Эта скорость ? определяется по времени t, за который шарик при равномерном движении проходит в жидкости известную расстояние s:.
Предположим, что s в нашей установке порядка 20 — 30 см, а t измерениями равен 40-50 секунд. Если для определения размеров s и t, взять сантиметровый масштаб линейки и часы с минутной стрелкой, то явно наши измерения будут очень грубые. На первый взгляд кажется, что точность измерения величины ? будет непрерывно повышаться с увеличением точности используемых измерительных приборов — масштабной линейки и секундомера. Однако это будет иметь место только до некоторого момента, начиная с которого последующее увеличение точности приборов перестанет уменьшать ошибку измерения скорости, обусловленное в данном случае ошибкой, что делается наблюдателем (всегда существует некий разрыв во времени между моментом прохождения шариком соответствующей деления шкалы и моментом нажатия кнопки секундомера). При таких условиях эксперимента дальнейшего уменьшения ошибки в измерении ? можно достичь только путем увеличения числа измерений и обработки их результатов (тщательного анализа проделанных измерений).
Стоит заметить, что точность определения ? по значениям s и t может быть увеличена за счет изменения условий опыта.
Например, очевидно, что при увеличении в несколько раз расстоянии s, во столько же вместе увеличится и время t и несмотря на то, что ошибка, что делается при их измерении, остается прежней по абсолютной величине, влияние этой ошибки при определении скорости уменьшается.
Известно, что любой измерительный прибор или инструмент имеет свою предельную точность, обусловленную его конструкцией и качеством изготовления. При правильном выборе условий эксперимента и грамотного использования прибора случайный разброс результатов измерений, проведенных с помощью этого прибора, должен быть значительно меньше предельной ошибки, обусловленной конструкцией и указанной в паспорте прибора. Чтобы убедиться в этом в каждом конкретном случае, необходимо сделать несколько измерений, найти среднюю ошибку (по правилам, указанным ниже) и сравнить ее с паспортной. Если случайный разброс действительно окажется значительно меньше паспортной ошибки, в дальнейшем можно измерения проделывать один раз и считать ошибку соответствии с паспортными данными прибора.
Часто для сравнения точности измерений с точностью прибора бывает необходимо проделать большое число измерений. Если при этом в измерениях наблюдается воспроизведения в пределах точности прибора, то при исчислении погрешности следует учитывать только точность прибора.
Если случайные ошибки даже при большом числе измерений значительно превышают паспортную погрешность прибора (например, при изменчивости состояния окружающей среды, невозможности точно произвести отсчет и т.п.), и устранить причины этих отклонений невозможно, можно заменить прибор менее точным, отвечающего конкретным условиям эксперимента.
При выборе метода оценки погрешности измерений необходимо прежде всего осознать, идет ли речь о случайной погрешности измерений (случайном разбросе), либо об ошибке, внесенную приборами. Если решающую роль играют случайные ошибки, применяются статистические методы обработки результатов измерений. Если ошибка опыта определяется точностью приборов, подсчитывается предельная ошибка метода.
Стоит заметить, что размер средней случайной ошибки указывает лишь на качество измерений, но не характеризует точность метода, потому что результат может содержать систематическую ошибку.
Расчет случайных погрешностей делается методами теории вероятностей и математической статистики.
3. Грубая ошибка или промах — это погрешность, существенно превышает ожидаемую при данных условиях. Она может быть сделана в результате неправильной записи показаний прибора, ошибки экспериментатора с электроинструментом (например, при измерении длины линейкой один из концов предмета оказался не совмещенным с нулевой делением), может быть связана с неисправностью измерительной аппаратуры или с резким изменением условий измерений. Иногда промахи можно обнаружить, повторяя измерение в несколько отличных условиях, или анализируя результаты (как будет показано далее). Обнаружены промахи нужно исключить и в случае необходимости провести новые измерения.

Понравилась статья? Поделить с друзьями:
  • Что такое систематическая ошибка репрезентативности
  • Что такое синтаксические ошибки в паскале
  • Что такое систематическая ошибка нормального распределения
  • Что такое синтаксические ошибки в информатике
  • Что такое систематическая ошибка исследования