Что такое систематическая ошибка исследования

1) Кислотно-основного титриметрического определения уксусной кислоты в уксусной эссенции;

2) Гравиметрического определения хроматов в электролите для хромирования.

Абсолютная погрешность аналитических
весов 0,1мг

Абсолютная погрешность (ошибка)

x=xixист.
Xi-измеренное
значениеXист-истинное
значение ( если истинное значение не
известно – берется среднее)

Абсолютная погрешность не может ясно
охарактеризовать точность измерения,
так как она не связана с измеренным
значением.

Относительная погрешность (ошибка)

·100%

Систематические погрешности (ошибки)– возникают при действии постоянных
причин, их можно выявить устранить или
учесть изменяются по постоянно
действующему закону .

  • Инструментальные погрешности–связанные с инструментами для измерения
    аналитического сигнала (весы, посуда)
    уменьшить можно периодической проверкой
    аналитических приборов. Обычно составляют
    небольшую долю .

  • Методические ошибки
    обусловлены методом анализа (например
    погрешности пробоотбора и пробоподготовки.)
    вносят основной вклад в общую погрешность.

  • Реактивные– связаны с чистотой
    используемых реактивов.

  • Оперативные ошибкизависят
    от правильности и точности выполнения
    аналитических операций (например,
    недостаточное или излишнее промывание
    или прокаливания осадков, недостаточное
    тщательное перемещение осадка из одной
    посуды в другую, неправильный способ
    выливания раствора из пипетки и т.д.)

  • Индивидуальные ошибки(личные) – это результат некоторых
    физических недостатков экспериментатора,
    которые мешают ему правильно проводить
    известные операции.

Способы выявления систематических
погрешностей

1)варьирование величин пробы

Увеличив размер в кратное число раз
можно обнаружить по изменению найденного
содержания постоянную систематическую
погрешность

2)способ «введено найдено»

Добавить точно известное количество
компонента в той же форме, в которой
находится аналитический объект. Введенная
добавка проводится через все стадии
анализа. Если на конечной стадии
определяется добавка с точностью, то
систематической ошибки нет.

3) сравнение результата анализа с
результатом, полученным другим независимым
методом

4)анализ стандартного образца

Проведение всех стадий анализа, на
стадии обработки сравнивается с
паспортом, если все совпадает , то
систематической ошибки нет.

Типы погрешностей

  • Погрешности известной природы, могут
    быть рассчитаны и учтены введение
    соответствующей поправки

  • Погрешности известной природы, значение
    которых может быть оценены в ходе
    химического анализа

Релятивизация — способ устранения
систематической погрешности, когда в
идентичных условиях проводят отдельные
аналитические операции таким образом,
что происходит нивелирование
систематической ошибки

  • Погрешность невыясненной природы,
    значение который неизвестно, их сложно
    выявить и устранить , используют прием
    рандомизации

Рандомизация – переведение систематической
ошибки в разряд случайной

Случайные ошибки– обрабатываются
по правилам матемтической статистики,
связаны с влиянием неконтролируемых
параметров, непредвиденны и неучтимы.

Промахи– грубые ошибки, сильно
искажающие результаты анализа (ошибки
при расчётах, неправильный отчёт по
шкале, проливание раствора или просыпание
осадка). Результат с промахом отбрасывается
при выводе среднего значения.

6. Случайные
ошибки. Метрологические характеристики,
отражающие случайные ошибки. Оценка и
критерии воспроизводимости и правильности.
Рассмотрите на примере титриметрического
комплексонометрического определения
меди (II).

Случайные ошибки–отражают
неопределенность результата , присущую
любому измерению, обрабатываются по
правилам матемтической статистики,
связаны с влиянием неконтролируемых
параметров, непредвиденны и неучтимы.

Причины таких погрешностей:

Изменение температуры во время измерения,
ослабление внимания при работе, случайные
потери, загрязнение, использование
разной посуды, весов и тд.

метрологические характеристики:

Правильность— характеризует степень
близости измеренного результата
некоторой величины к её истинному
значению

Воспроизводимость— характеризует
степень близости друг к другу единичный
определений (рассеяние единичных
результатов относительно среднего
значения

Точность— собирательная характеристика
метода или методики , включающая их
правильность и воспроизводимость .

Чувствительность— величина,
определяемая минимальным количеством
вещества, которое можно обнаружить
данным методом

Чувствительность – собирательное
понятие , включающее три характеристики:

1)Коэффициент чувствительности

коэффициент чувствительности sхарактеризует отклик аналитического
сигналаyна содержание
компонентаc,s-
это значение первой производной
градуировочной функции при определенном
содержании компонента, для прямолинейных
градуировочных графиковs– это тангенс угла наклона прямойy=Sc+b

s=

чем больше s, тем меньшие
количества компонента можно обнаружить
, используя один и тот же аналитический
сигнал, чем большеs, тем
точнее можно определить одно и то же
количество вещества

2)предел обнаружения Сminнаименьшее содержание при котором по
данной методике можно обнаружить
присутствие компонента с заданной
доверительной вероятностью, относится
к области качественного анализа и
определяет минимальное содержание
компонента

3)нижняя граница определяемого содержания
Сн

В количественном анализе обычно приводят
интервал определяемых содержаний-
область значений определяемых содержаний,
предусмотренная данной методикой и
ограниченная нижней и верхней границами.

Верхняя граница Свнаибольшее
значение количества или концентрации
компонента, определяемое по данной
методике.

нижняя граница Сн-наименьшее
содержание компонента , определяемое
по данной методике . З нижнюю границу
обычно принимают то минимальное
количество или концентрацию, которые
можно определить с относительным
стандартным отклонением Ϭr≤0,33

Оценка и критерии воспроизводимости

1)Среднее арифметическое

=

2)Отклонение

di=xi

3)Медиана— тот единичный результат
, относительно которого число результатов
с большими и меньшими значениями
одинаковое, если количество значений
нечетное, то медиана совпадает с
центральным результатом ранжированной
выборки , если количество значений
четное, то медиана есть среднее
арифметическое между двумя центральными
значениями ранжированной выборки

4)среднее отклонение-среднее
арифметическое единичных отклонений,
без учет знака

=

5)Дисперсия

Ϭ2илиs2

Ϭ2=
еслиn>10

Ϭ2=
еслиn≤10

6)стандартное отклонениеϬx=

7)Относительное стандартное отклонение
Ϭr=

Титриметрическое комплексонометрическое
определения меди (II).

Выполнение определениея

1)Титрование исследуемого раствора
стандартным раствором ЭДТА

2)расчет граммового содержания меди

Ход анализа:Титрование исследуемого
раствора стандартным раствором ЭДТА.
Анализируемый раствор помещают в мерную
колбу на 100 мл, довдят водой до метки,
тщательно перемешивают. В коническую
колбу дл титрования берут аликвоту,
добавляют индикатор мурексид на кончике
шпателя и титруют раствором ЭДТА сначала
до грязно-розового цвета, натем добавляют
несколько капель 10%-ного раствора аммиака
до появления изумрудной или желтой
окраски раствора и дотитровывают
раствором ЭДТА до перехода окраски в
фиолетовую.

Формула для расчета граммового содержания
меди:

mCu,г=C(ЭДТА)·ЭДТА·K
ЭДТА
·Mэкв(Cu)·P·10-3

Формула для расчета процентного
содержания меди:

ωCu=·100%

Возможные причины возникновения
случайных ошибок
в комплексонометрическом
титровании меди возникают в процессе
измерения объемов: неточное доведение
до метки мерной колбы, использование
разных пипеток, потеря титранта (капнуло
мимо), использование непромытой посуды.
Так же могут возникать ошибки из-за
неточного определения перехода окраски
, но эти ошибки будут относиться к
категории систематических индивидуальных
ошибок.

7. Гравиметрическое
определение бария в минерале альстонит:
этапы определения, возможные формулы
осадителей, осаждаемой и гравиметрической
формы, механизм образования осадка,
возможные варианты загрязнения осадка,
приемы повышения чистоты осадка,
погрешности определения. Условия
аналитического выделения осадков бария.

Минерал альстонит  минерал, безводный
двойной карбонат бария и кальция
BaCa(CO3)2

Этапы определения:

1)взятие навески и её растворение

2)расчет количества осадителя

3)приготовление раствора осадителя

4)осаждение

5)фильтрование и промывание

6)высушивание и прокаливание осадка

7)взвешивание осадка, расчёт содержания
бария

Для количественного определения бария
его осаждают в виде сульфата BaSO4
(осаждаемая форма)

BaCO3+H2SO4=
BaSO4+H2CO3

В качестве осадителя, посташика
сульфат-ионов используют серную кислоту
H2SO4(осадитель)

После прокаливания осадка его формула
не меняется и остается так же в виде
сульфата бария BaSO4
(гравиметрическая форма)

Механизм образования осадка:

В процессе образования осадка различают
три стадии :

1)образование зародышей кристаллов

2)рост кристаллов

3)объединение (агрегация) хаотично
ориентированных кристаллов

Насыщение=>пересыщение=>ПКИ>ПР=>
образование мельчайших зародышей
кристаллов

Осаждение происходит при определенной
степени пересыщения раствора

P==s-растворимость,-относительное
пересыщение,Q-концентрация
кристаллизующегося вещества в растворе

Центром кристалла может служить твердая
частица этого вещества или любая другая
твердая частица, которую мы вносим в
раствор, твердые частицы могут изначально
присутствовать в растворе как примесь.

Если осаждение происходи из разбавленных
растворов, то появление осадка занимает
время-индукцинный период.

В процессе добавления каждой новой
порции осадителя происходит мгновенное
пересыщение раствора, зародыши растут
быстро за счет окружающих их ионов, как
только зародыш дотиг определенного
размера выпадает осадок

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий

V1— скорость образования
зародышейV2-скорость
роста кристаллов

V1>>V2-мелкодисперсный
осадокV1<<V2-крупнокристаллический
осадок

Лимитирующую стадию определяет скорость
осаждения и концентрации ионов

При медленном осаждении лимитирующей
стадией является кристаллизация ,
частица окружена однородным слоем
осаждаемый ионов в результате получается
кристалл правильной форм

При высокой концентрации ионов
лимитирующей стадией становится диффузия
, образуются кристаллы не правильной
формы с большой площадью поверхности

Следует отметить, что на скорость
процесса кристаллизации влияет
,
влияниеразлично на скорость образования
зародышей и на скорость роста кристаллов

В случае образования зародышей
V1=k·(экспоненциальный
закон

В случае роста кристаллов V2=k·

При высокой степени
образуются
мелкодисперсные осадки, при уменьшении,
образуются крупнокристаллические
осадки

Агрегация происходит в гетерогенной
системе, в значительной степени
определяется числом центров кристаллизации.

Чем больше центров кристаллизации , тем
в меньшей степени они укрупняются на
второй стадии , тем хуже структура и тем
выше дисперсность осадков.

К аналитическим свойствам осадка
относятся: растворимость, чистота,
фильтруемость.

Лучшими свойствами обладают
крупнокристаллические осадки.

Загрязнение осадков

В гарвиметрическом определении часто
возникают ошибки , вызванные переходом
осадка в раствор или веществ из раствора
в осадок-соосождение

Соосаждение происходит в процессе
образования осадка

Отрицательная роль : загрязнение осадка

Положительная роль :используется для
концентрирования микропримесей

Существует три типа соосаждения:

1)Адсорбция- соосаждение примесей на
поверхности уже сформированного осадка,
происходит в результате нескомпенсированности
зарядов внутри и на поверхности.

Характеризуется ярко выраженной
избирательность, преимущественно
адсорбируются те ионы, которые входят
в структуру осадка, противоионы-примеси

Адсорбция противоионов подчиняется
правилам Панета-Фаянса-Гана

А)при одинаковых концентрациях
адсорбируются многозарядные ионы

Б)при одинаковых зарядах адсорбируются
те, концентрация которых выше

В)при одинаковых концентрациях и
зарядах-те, которые образуют с ионами
решетки менее растворимое соединение

Г)в кислой среде соосаждение ионов
уменьшается в следствии конкурентной
адсорбции H3O+

Количество адсорбируемой примеси
зависит от величины поверхности осадка,
концентрации адсорбируемой примеси и
температуры ( с ↑ поверхности и ↑
концентрации- адсорбция ↑; с ↑ температуры
адсорбция ↓)

2)Окклюзия- загрязнение осадка в результате
захвата примеси внутрь растущего
кристалла, происходит в процессе
формирования осадка.

Различают 2-х видов: абсорбционная и
механическая

Механическа- случайный захват частиц
маточного раствора внутрь твердой фазы
вследствие нарушения механической
структуры

Характерна при выделении аморфных
осадков.

Окклюзированные примеси равномерно
распределены внутри, но не принимают
участие в построении решетки кристалла.

Адсорбционная-возникает при быстром
росте кристалла, когда ионы на поверхности
обратают кристаллизованным веществом.
Протекает вследствии адсорбции примесей
по микротрещинам кристаллической
структуры.

Окклюзия подчиняется тем же правилам,
что и адсорбция

Общие правила понижения окклюзии–замедление процесса выделения твердой
фазы-осаждение при малом пересыщении
, работают с разбавленными растворами
, осадитель добавляют по каплям, при
постоянном перемешивании.

3)изоморфное соосаждение характерно
для изоморфно кристаллизующегося
веществ, которые могут образовывать
смешанные кристаллы, примесь участвует
в построении кристаллической решетки,
наблюдается лишь в тех случаях, когда
вещества сходны по химическим свойствам
или ионы имеют одинаковые кч и радиус.

Совместное осаждение-выделение в твердую
фазу нескольких веществ, для которых в
услових осаждения достигнуты величины
их Kst

Последовательное осаждение- веделение
примеси на поверхности уже сформированного
осадка

Приемы и методы повышения чистоты
осадка

Зависят от типа соосаждения

1)адсорбционные примеси хорошо удаляются
промыванием осадка, более эффективно
многократное промывание малыми порциями

Выбор промывочной жидкости:

Не увеличивает растворимость осадка и
не ухудшает его фильтруемость, водой
промывают осадки с k~10-11/-12,
не подвергаемых пептизации, кристаллические
осадки с конст, растворимости 10-9/-11промывают разбавленным раствором
осадителя, аморфные осадки промывают
разбавленными растворами электролитов
коагуляторов, чтобы избежать пептизации

Промывние кристаллических осадков
проводят холодной промывочной жидкостью,
чтоб не увеличивать растворимость,
аморфные наоборот горячими

2)окклюзированные примеси , для избавления
от них:

Для кристаллических осадков-старение

Для аморфных-переосаждение

Погрешность гравиметрического
метода анализа

Общая погрешность анализа

Ϭ2=
+

-погрешность
пробоотбораm-число пробn-число параллельных
определений

-погрешность
измерений

Результат находится по формуле

P,%=·100%

Методическая ошибка, обусловлена
неколичественным выпадением осадка,
её устранить нельзя

Qоб=s-растворимость осадка
г/100мл воды,-объём
фильтрата,
масса гравиметрической формы

Случайные ошибки

Относительное стандартное отклонение

=

-дисперсия
массы гравиметрической формы

-масса
гравиметрической формы

Ϭa1-погрешность
взвешивания тары

Ϭa2-погрешность
взвешивания тары с навеской

==0,0003
г Ϭa1= Ϭa2=0,0002г

Суммарная ошибка

=

n-число проб

m-число измерений

-погрешность
прибора

-погрешность
измерения

8. Гравиметрическое
определение алюминия в каолине: этапы
определения, возможные формулы осадителей,
осаждаемой и гравиметрической формы,
механизм образования осадка, возможные
варианты загрязнения осадка, приемы
повышения чистоты осадка, погрешности
определения. Преимущества органических
осадителей. Условия аналитического
выделения осадков алюминия.

Механизм образования осадка:

В процессе образования осадка различают
три стадии :

1)образование зародышей кристаллов

2)рост кристаллов

3)объединение (агрегация) хаотично
ориентированных кристаллов

Насыщение=>пересыщение=>ПКИ>ПР=>
образование мельчайших зародышей
кристаллов

Осаждение происходит при определенной
степени пересыщения раствора

P==s-растворимость,-относительное
пересыщение,Q-концентрация
кристаллизующегося вещества в растворе

Центром кристалла может служить твердая
частица этого вещества или любая другая
твердая частица, которую мы вносим в
раствор, твердые частицы могут изначально
присутствовать в растворе как примесь.

Если осаждение происходи из разбавленных
растворов, то появление осадка занимает
время-индукцинный период.

В процессе добавления каждой новой
порции осадителя происходит мгновенное
пересыщение раствора, зародыши растут
быстро за счет окружающих их ионов, как
только зародыш дотиг определенного
размера выпадает осадок

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий

V1— скорость образования
зародышейV2-скорость
роста кристаллов

V1>>V2-мелкодисперсный
осадокV1<<V2-крупнокристаллический
осадок

Лимитирующую стадию определяет скорость
осаждения и концентрации ионов

При медленном осаждении лимитирующей
стадией является кристаллизация ,
частица окружена однородным слоем
осаждаемый ионов в результате получается
кристалл правильной форм

При высокой концентрации ионов
лимитирующей стадией становится диффузия
, образуются кристаллы не правильной
формы с большой площадью поверхности

Следует отметить, что на скорость
процесса кристаллизации влияет
,
влияниеразлично на скорость образования
зародышей и на скорость роста кристаллов

В случае образования зародышей
V1=k·(экспоненциальный
закон

В случае роста кристаллов V2=k·

При высокой степени
образуются
мелкодисперсные осадки, при уменьшении,
образуются крупнокристаллические
осадки

Агрегация происходит в гетерогенной
системе, в значительной степени
определяется числом центров кристаллизации.

Чем больше центров кристаллизации , тем
в меньшей степени они укрупняются на
второй стадии , тем хуже структура и тем
выше дисперсность осадков.

К аналитическим свойствам осадка
относятся: растворимость, чистота,
фильтруемость.

Лучшими свойствами обладают
крупнокристаллические осадки.

Загрязнение осадков

В гарвиметрическом определении часто
возникают ошибки , вызванные переходом
осадка в раствор или веществ из раствора
в осадок-соосождение

Соосаждение происходит в процессе
образования осадка

Отрицательная роль : загрязнение осадка

Положительная роль :используется для
концентрирования микропримесей

Существует три типа соосаждения:

1)Адсорбция- соосаждение примесей на
поверхности уже сформированного осадка,
происходит в результате нескомпенсированности
зарядов внутри и на поверхности.

Характеризуется ярко выраженной
избирательность, преимущественно
адсорбируются те ионы, которые входят
в структуру осадка, противоионы-примеси

Адсорбция противоионов подчиняется
правилам Панета-Фаянса-Гана

А)при одинаковых концентрациях
адсорбируются многозарядные ионы

Б)при одинаковых зарядах адсорбируются
те, концентрация которых выше

В)при одинаковых концентрациях и
зарядах-те, которые образуют с ионами
решетки менее растворимое соединение

Г)в кислой среде соосаждение ионов
уменьшается в следствии конкурентной
адсорбции H3O+

Количество адсорбируемой примеси
зависит от величины поверхности осадка,
концентрации адсорбируемой примеси и
температуры ( с ↑ поверхности и ↑
концентрации- адсорбция ↑; с ↑ температуры
адсорбция ↓)

2)Окклюзия- загрязнение осадка в результате
захвата примеси внутрь растущего
кристалла, происходит в процессе
формирования осадка.

Различают 2-х видов: абсорбционная и
механическая

Механическа- случайный захват частиц
маточного раствора внутрь твердой фазы
вследствие нарушения механической
структуры

Характерна при выделении аморфных
осадков.

Окклюзированные примеси равномерно
распределены внутри, но не принимают
участие в построении решетки кристалла.

Адсорбционная-возникает при быстром
росте кристалла, когда ионы на поверхности
обратают кристаллизованным веществом.
Протекает вследствии адсорбции примесей
по микротрещинам кристаллической
структуры.

Окклюзия подчиняется тем же правилам,
что и адсорбция

Общие правила понижения окклюзии–замедление процесса выделения твердой
фазы-осаждение при малом пересыщении
, работают с разбавленными растворами
, осадитель добавляют по каплям, при
постоянном перемешивании.

3)изоморфное соосаждение характерно
для изоморфно кристаллизующегося
веществ, которые могут образовывать
смешанные кристаллы, примесь участвует
в построении кристаллической решетки,
наблюдается лишь в тех случаях, когда
вещества сходны по химическим свойствам
или ионы имеют одинаковые кч и радиус.

Совместное осаждение-выделение в твердую
фазу нескольких веществ, для которых в
услових осаждения достигнуты величины
их Kst

Последовательное осаждение- веделение
примеси на поверхности уже сформированного
осадка

Приемы и методы повышения чистоты
осадка

Зависят от типа соосаждения

1)адсорбционные примеси хорошо удаляются
промыванием осадка, более эффективно
многократное промывание малыми порциями

Выбор промывочной жидкости:

Не увеличивает растворимость осадка и
не ухудшает его фильтруемость, водой
промывают осадки с k~10-11/-12,
не подвергаемых пептизации, кристаллические
осадки с конст, растворимости 10-9/-11промывают разбавленным раствором
осадителя, аморфные осадки промывают
разбавленными растворами электролитов
коагуляторов, чтобы избежать пептизации

Промывние кристаллических осадков
проводят холодной промывочной жидкостью,
чтоб не увеличивать растворимость,
аморфные наоборот горячими

2)окклюзированные примеси , для избавления
от них:

Для кристаллических осадков-старение

Для аморфных-переосаждение

Погрешность гравиметрического
метода анализа

Общая погрешность анализа

Ϭ2=
+

-погрешность
пробоотбораm-число пробn-число параллельных
определений

-погрешность
измерений

Результат находится по формуле

P,%=·100%

Методическая ошибка, обусловлена
неколичественным выпадением осадка,
её устранить нельзя

Qоб=s-растворимость осадка
г/100мл воды,-объём
фильтрата,
масса гравиметрической формы

Случайные ошибки

Относительное стандартное отклонение

=

-дисперсия
массы гравиметрической формы

-масса
гравиметрической формы

Ϭa1-погрешность
взвешивания тары

Ϭa2-погрешность
взвешивания тары с навеской

==0,0003
г Ϭa1= Ϭa2=0,0002г

Суммарная ошибка

=

n-число проб

m-число измерений

-погрешность
прибора

-погрешность
измерения

9. Гравиметрическое
определение железа в руде: этапы
определения, возможные формулы осадителя,
осаждаемой и гравиметрической формулы,
механизм образования коллоидной частицы,
процессы, приводящие к образованию
осадка, возможные варианты загрязнения
осадка, приемы повышения чистоты осадка,
погрешности. Условия аналитического
выделения осадков железа.

Гравиметрическое определение железа(III)
основано на его осаждении в виде
гидроксида железа(III)Fe(OH)3.
Трехвалентное железо осаждают раствором
аммиака, осаждаемой формой являетсяFe(OH)3.
Реакция:Fe(NO3)3+3NH3·H2O=Fe(OH)3+3NH4NO3.
При прокаливании гидроксид железа(III)
превращается в оксид железа(III),
который является гравиметрической
формой:Fe(OH)3=(t°)Fe2O3+3H2O.

Этапы определения:1) взятие навески
и ее растворение; 2) приготовление
раствора осадителя; 3) осаждение; 4)
фильтрование и промывание осадка; 5)
высушивание и прокаливание; 6) взвешивание
осадка, расчет содержания железа.

Расчет ведут по формулам

ωFe2O3=
,
ωFe
=

Механизм образования коллоидной
частицы
:

Fe(NO3)3+3NH4OH(изб.)=Fe(OH)3↓+3NH4NO3

{[Fe(OH)3]m
· nOH
·(n-x)NH4+}-x
·xNH4+

агрегат плотный слой
диффузный слой Мицелла

Ядро

Коллоидная частица

Вещество в коллоидной системе имеет
большую развитую поверхность и
нескомпенсированный заряд на границе
разлела фаз. Существование
нескомпенсированного силового поля
ведет к адсорбции из раствора молекул
или ионов. Если коллоидная система
возникла в результате проведения
химической реакции осаждения, то частицы
адсорбируют в первую очередь те ионы,
которые могут достраивать кристаллическую
решетку. Адсорбированные ионы сообщают
частице «+» или «-« заряд. Слой
адсорбированных ионов на ядре – это
первичный адсорбционный слой. Заряд,
созданный таким слоем, достаточно высок
и обуславливает электростатическое
взаимодействие с иоами противоположного
знака. В результате образуется слой
противоионов, который выравнивает заряд
первичного слоя. Слой противоионов
имеет диффузный характер. Часть
противоионов, прочно связанных с
первичным слоем – это плотный слой,
остальные противоионы составляют
диффузный слой.

Образование осадкапроисходит
тогда, когда раствор становится
пересыщенным, т.е. [A+]m[B-]n>Ks(ПКИ>ПР). Образование осадков связано
с процессом укрупнения частиц, с
образованием кристаллической решетки
вещества. Этот процесс определяется
числом центров кристаллизации: чем
больше центров, тем в меньшей степени
они укрупняются и тем хуже структура и
выше дисперсность осадка.

Возможные варианты загрязнения:
1)Путем адсорбции ( для конкретного
примера хлорид-ионов на поверхности
осадка); 2)Окклюзия; 3)Изоморфное
соосаждение; 4) Совместное осаждение;
5) Последующее осаждение.

Приемы повышения чистоты осадка:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10-11-10-12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10-9-10-11и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH4+),
чтобы избежать пептизации(в опыте с
железом осадок промывали растворомNH4NO3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:

1) Общая погрешность анализа σ2=,
где σпр2– погрешность
пробоотбора, σизм2
погрешность измерения,m– число проб,n– число
параллельных определений.

2) Методическая ошибка OобOоб=
,
гдеs– растворимость
осадка, г/100 мл воды;Vф
– объем фильтрата и промывных вод,
мл;mгр– масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσгр – дисперсия
массы гравиметрической формы;mгр– масса гравиметрической формы; σa– дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σa1и тары с навескойσa2σa1a2=0,0002
г, σгр== 0,0003 г. 5) Относительное стандартное
отклонение с учетом стадий пробоотбора
и пробоподготовки=, гдеn– число проб;m– число параллельных измерений; σпр2– погрешность пробоотбора; σизм2– погрешность измерения.

Fe(OH)3– типичный пример осадка в аморфном
состоянии, легко дающий коллоидный
раствор.

Условия его осаждения следующие:

1)осаждение проводят из горячего раствора
анализируемого вещества горячим
раствором осадителя при перемешивании;

2)осаждение проводят из достаточно
концентрированного исследуемого
раствора концентрированным раствором
осадителя с последующим разбавлением(при
разбавлении устанавливается адсорбционное
равновесие, часть адсорбированных ионов
переходи в раствор, и осадок становится
более чистым); 3)осаждение проводят в
присутствии подходящего
электролита-коагулятора;

4)аморфные осадки почти не требуют
времени для созревания, их необходимо
фильтровать сразу после разбавления
раствора. Аморфные осадки нельзя
оставлять более, чем на несколько минут,
т.к. сильное уплотнение их затрудняет
последующее отмывание примесей, а также
при стоянии увеличивается количество
примесей, адсорбированных поверхностью
осадка.

10. Гравиметрическое определение никеля
в нихромовом сплаве: этапы определения,
возможные формулы осадителей, осаждаемой
и гравиметрической формулы, механизм
образования осадка, возможные варианты
загрязнения осадка, приемы повышения
чистоты осадка, погрешности. Условия
аналитического выделения осадков
никеля.

Гравиметрическое определение никеля
в нихромовом сплаве основано на его
осаждении в виде диметилглиоксимата
никеля Ni(HDMG)2.
Никель осаждают 1 %-ным спиртовым раствором
диметикглиоксимаH2DMG,
осаждаемой формой являетсяNi(HDMG)2.
Реакция:Ni2++2H2DMG=Ni(HDMG)2+2H+.
После высушивания осадка остается сухойNi(HDMG)2,
который является гравиметрической
формой.

Этапы определения:1) взятие навески
и ее растворение; 2) приготовление
раствора осадителя; 3) осаждение; 4)
фильтрование и промывание осадка; 5)
высушивание; 6) взвешивание осадка,
расчет содержания никеля.

Расчет ведут по формуле ωNi=

Механизм образования осадка:в
процессе образования осадка различают
3 параллельных процесса: 1) образование
зародышей кристалла (центров
кристаллизации); 2) рост кристаллов; 3)
объединение (агрегация) хаотично
ориентированных мелких кристаллов. В
начальный момент происходит насыщение
раствора, а затем его пересыщение. В
момент определенной пересыщенности
раствора, начинается выпадение
осадка.Центром кристалла может служить
твердая частица этого вещества или
любая другая твердая частица, которую
мы вносим в раствор, твердые частицы
могут изначально присутствовать в
растворе как примесь.

Если осаждение происходит из разбавленных
растворов, то появление осадка занимает
время-индукционный период.

В процессе добавления каждой новой
порции осадителя происходит мгновенное
пересыщение раствора, зародыши растут
быстро за счет окружающих их ионов, как
только зародыш достиг определенного
размера выпадает осадок.

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий (V1— скорость
образования зародышей,V2-скорость
роста кристаллов):V1>>V2-мелкодисперсный
осадок,V1<<V2-крупнокристаллический
осадок. Какая из стадий будет лимитировать
определяет скорость осаждения и
концентрации ионов. При медленном
осаждении лимитирующей стадией является
кристаллизация, частица окружена
однородным слоем осаждаемых ионов в
результате получается кристалл правильной
формы. При высокой концентрации ионов
лимитирующей стадией становится
диффузия, образуются кристаллы
неправильной формы с большой площадью
поверхности. Следует отметить, что на
скорость процесса кристаллизации влияет,
влияниеразлично на скорость образования
зародышей и на скорость роста кристаллов.
При высокой степениобразуются
мелкодисперсные осадки, при уменьшенииобразуются крупнокристаллические
осадки. Агрегация происходит в гетерогенной
системе, в значительной степени
определяется числом центров
кристаллизации.Чем больше центров
кристаллизации, тем в меньшей степени
они укрупняются на второй стадии, тем
хуже структура и тем выше дисперсность
осадков.

К аналитическим свойствам осадка
относятся: растворимость, чистота,
фильтруемость.Лучшими свойствами
обладают крупнокристаллические осадки.

Возможные варианты загрязнения: 1)
Путем адсорбции ( для конкретного примера
хлорид-ионов на поверхности осадка); 2)
Окклюзия; 3) Изоморфное соосаждение; 4)
Совместное осаждение; 5) Последующее
осаждение.

Приемы повышения чистоты осадка:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10-11-10-12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10-9-10-11и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH4+),
чтобы избежать пептизации (в опыте с
железом осадок промывали растворомNH4NO3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:1) Общая погрешность
анализа σ2=,
где σпр2– погрешность
пробоотбора, σизм2
погрешность измерения,m– число проб,n– число
параллельных определений.

2) Методическая ошибка OобOоб=
,
гдеs– растворимость
осадка, г/100 мл воды;Vф
– объем фильтрата и промывных вод,
мл;mгр– масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσгр – дисперсия
массы гравиметрической формы;mгр– масса гравиметрической формы; σa– дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σa1и тары с навескойσa2σa1a2=0,0002
г, σгр== 0,0003 г.

5) Относительное стандартное отклонение
с учетом стадий пробоотбора и
пробоподготовки
=, гдеn– число проб;m– число параллельных измерений; σпр2– погрешность пробоотбора; σизм2– погрешность измерения.

Ni(HDMG)2– кристаллический осадок.

Условия его осаждения следующие:

1) осаждение ведут из достаточно
разбавленного исследуемого раствора
разбавленным раствором осадителя
(концентрации исследуемого раствора и
раствора осадителя должны быть примерно
одинаковыми);

2) раствор осадителя прибавляют медленно,
по каплям, при постоянном перемешивании
стеклянной палочкой (это предотвращает
явление окклюзии);

3) осаждение ведут из подогретого
исследуемого раствора горячим раствором
осадителя (для предотвращения пептизации);

4) к раствору прибавляют вещества,
способствующие повышению растворимости
осадка (увеличивают Iраствора), а затем понижают его
растворимость путем прибавления избытка
осадителя;

5) осадок оставляют на «созревание».

11. Гравиметрическое определение меди:
этапы определения, возможные формулы
осадителей, осаждаемой и гравиметрической
формулы, механизм образования осадка,
возможные варианты загрязнения осадка,
приемы повышения чистоты осадка,
погрешности. Преимущества органических
осадителей. Условия выделения осадков.

При гравиметрическом определении меди
медь из раствора осаждают различными
осадителями: 1) раствор аммиака осаждает
из нагретого раствора осадок Cu(OH)2;
2) Тиокарбонат калияK2CS3осаждает из нагретого раствора осадокCuS, который сушат при
100-110;
3) В виде оксалата медь осаждается в
присутствиеCH3COOH;
4) При определении меди в виде
тетророданомеркуриатамедиCu[Hg(SCN)4]
медь осаждают из нагретого до кипения
раствора содержащего серную или азотную
кислоту, действиемK2[Hg(SCN)4].
Метод рекомендован для определения
меди в медных рудах; 5) Соль Рейнеке
(тетрароданодиаминохромат аммония)
NH4[Cr(NH3)2(SCN)4]
является избирательным реагентом для
определения меди в присутствие многих
посторонних ионов. Осаждение проводят
как в кислом, так и в аммиачном растворе
в виде [Cu(NH3)4][Cr(NH3)2(SCN)4]2
после предварительного восстановления
меди до одновалентного состояния
оловом(II). Для осаждения меди используются
также различные органические реагенты:
1) 8- оксихинолин осаждает медь в
уксуснокислом, аммиачном и щелочном
растворах при pH=5.33 — 14.55. Осадок, высушенный
при 105-110°С, соответствует составу
Cu(C9H6ON)2; 2) Медь осаждается
спиртовым раствором β-бензоиноксима в
слабощелочной среде в виде хлопьевидного
зеленого осадка составаCu(C6H5CHOCNOC6H5)2.
Осадок высушивают при 105-110;

3) Салицилальдиоксим осаждает Cu (II) в
виде внутрикомплексного соединения
Cu(C7H6O2N)2в
уксуснокислой среде, среде ацетатного
буфера или ацетата аммония; 4) При действии
купферона наCu(II)
образуется купферонат меди (II)
с формулой Cu(C6H5N(NO)O)2;
5) При действии глицина на медь образуется
кристаллический осадок глицината меди
(II)Cu(NH2CH2COO)2.

Рассмотрим гравиметрическое определение
меди на примере осаждения ее
глицином.Реакция:
CuO+2NH2CH2COOH=Cu(NH2CH2COO)2+H2OВданном случае глицинNH2CH2COOHявляется
осадителем, глицинат меди (II)Cu(NH2CH2COO)2– осаждаемой формой. При высушивании
получается гравиметрическая форма
сухогоCu(NH2CH2COO)2.

Этапы определения:1) взятие навески
и её растворение;2) приготовление раствора
осадителя;3) осаждение;4) фильтрование
и промывание;5) высушивание осадка;6)
взвешивание осадка, расчёт содержания
меди.

Механизм образования осадка:в
процессе образования осадка различают
3 параллельных процесса: 1) образование
зародышей кристалла (центров
кристаллизации); 2) рост кристаллов; 3)
объединение (агрегация) хаотично
ориентированных мелких кристаллов. В
начальный момент происходит насыщение
раствора, а затем его пересыщение. В
момент определенной пересыщенности
раствора, начинается выпадение осадка.
Центром кристалла может служить твердая
частица этого вещества или любая другая
твердая частица, которую мы вносим в
раствор, твердые частицы могут изначально
присутствовать в растворе как примесь.

Если осаждение происходит из разбавленных
растворов, то появление осадка занимает
время-индукционный период.

В процессе добавления каждой новой
порции осадителя происходит мгновенное
пересыщение раствора, зародыши растут
быстро за счет окружающих их ионов, как
только зародыш достиг определенного
размера выпадает осадок.

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий (V1— скорость
образования зародышей,V2-скорость
роста кристаллов):V1>>V2-мелкодисперсный
осадок,V1<<V2-крупнокристаллический
осадок. Какая из стадий будет лимитировать
определяет скорость осаждения и
концентрации ионов. При медленном
осаждении лимитирующей стадией является
кристаллизация, частица окружена
однородным слоем осаждаемых ионов в
результате получается кристалл правильной
формы. При высокой концентрации ионов
лимитирующей стадией становится
диффузия, образуются кристаллы
неправильной формы с большой площадью
поверхности. Следует отметить, что на
скорость процесса кристаллизации влияет,
влияниеразлично на скорость образования
зародышей и на скорость роста кристаллов.
При высокой степениобразуются
мелкодисперсные осадки, при уменьшенииобразуются крупнокристаллические
осадки. Агрегация происходит в гетерогенной
системе, в значительной степени
определяется числом центров
кристаллизации.Чем больше центров
кристаллизации, тем в меньшей степени
они укрупняются на второй стадии, тем
хуже структура и тем выше дисперсность
осадков.

К аналитическим свойствам осадка
относятся: растворимость, чистота,
фильтруемость.Лучшими свойствами
обладают крупнокристаллические осадки.

Возможные варианты загрязнения: 1)
Путем адсорбции ( для конкретного примера
хлорид-ионов на поверхности осадка); 2)
Окклюзия; 3) Изоморфное соосаждение; 4)
Совместное осаждение; 5) Последующее
осаждение.

Приемы повышения чистоты осадка:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10-11-10-12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10-9-10-11и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH4+),
чтобы избежать пептизации (в опыте с
железом осадок промывали растворомNH4NO3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:1) Общая погрешность
анализа σ2 =,
где σпр2– погрешность
пробоотбора, σизм2
погрешность измерения,m– число проб,n– число
параллельных определений

2) Методическая ошибка OобOоб=
,
гдеs– растворимость
осадка, г/100 мл воды;Vф
– объем фильтрата и промывных вод,
мл;mгр– масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσгр – дисперсия
массы гравиметрической формы;mгр– масса гравиметрической формы; σa– дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σa1и тары с навескойσa2σa1a2=0,0002
г, σгр== 0,0003 г.

5) Относительное стандартное отклонение
с учетом стадий пробоотбора и
пробоподготовки
=, гдеn– число проб;m– число параллельных измерений; σпр2– погрешность пробоотбора; σизм2– погрешность измерения.

Преимущества органических осадителей:

1. Пользуясь органическими осадителями,
можно осаждать и разделять различные
элементы из очень сложных смесей.
Например, при помощи диметилглиоксима
возможно количественное осаждение
катионов никеля в присутствии многих
других катионов.

2. Осадки, получающиеся с органическими
осадителями, хорошо отфильтровываются
и промываются (например, осадки комплексных
соединений катионов, содержащих в
качестве лигандов пиридин или другие
органические соединения). Это дает
возможность легко отмывать от осадков
примеси, содержащиеся в анализируемом
растворе.

3. Осадки, получающиеся при действии на
катионы или анионы органических
осадителей, отличаются большим
молекулярным весом. Вследствие этого
точность анализа повышается. Например,
определение магния, алюминия и других
катионов проводится с большой точностью
осаждением их в виде оксихинолятов,
обладающих большим молекулярным весом.

4. В составе осадков, являющихся
соединениями неорганических веществ
с органическими компонентами, обычно
содержится мало соосаждающихся пиримесей.

Cu(NH2CH2COO)2– кристаллический осадок, поэтому

условия его выделения следующие:

1) осаждение ведут из достаточно
разбавленного исследуемого раствора
разбавленным раствором осадителя
(концентрации исследуемого раствора и
раствора осадителя должны быть примерно
одинаковыми);

2) раствор осадителя прибавляют медленно,
по каплям, при постоянном перемешивании
стеклянной палочкой (это предотвращает
явление окклюзии);

3) осаждение ведут из подогретого
исследуемого раствора горячим раствором
осадителя (для предотвращения пептизации);

4) к раствору прибавляют вещества,
способствующие повышению растворимости
осадка (увеличивают Iраствора), а затем понижают его
растворимость путем прибавления избытка
осадителя;

5) осадок оставляют на «созревание».

12. Гравиметрическое определение
кремния в силикатных породах: этапы
определения, возможные формулы осадителя,
осаждаемой и гравиметрической формулы,
механизм образования коллоидной частицы,
процессы, приводящие к образованию
осадка, возможные варианты загрязнения
осадка, приемы повышения чистоты осадка,
погрешности. Классификация коллоидных
систем. Условия аналитического выделения
кремнекислоты.

При гравиметрическом определении
кремния растворимый силикат натрия
Na2SiO3,
полученный в результате сплавления не
разлагаемой кремниевой кислоты с содойNa2CO3,
обрабатывается сильной кислотойHCl.
Реакция:Na2SiO3+2HCl=H2SiO3↓+2NaCl.
Осадителем в данном случае являетсяHCl, осаждаемой формой –H2SiO3.
При высушивании и прокаливании получается
гравиметрическая формаSiO2.

Этапы определения:1) взятие навески
и ее растворение; 2) приготовление
раствора осадителя; 3) осаждение; 4)
фильтрование и промывание осадка; 5)
высушивание и прокаливание осадка;; 6)
взвешивание осадка, расчет содержания
кремния.

Механизм образования коллоидной
частицы:
Вещество в коллоидной системе
имеет большую развитую поверхность и
нескомпенсированный заряд на границе
разлела фаз. Существование
нескомпенсированного силового поля
ведет к адсорбции из раствора молекул
или ионов. Если коллоидная система
возникла в результате проведения
химической реакции осаждения, то частицы
адсорбируют в первую очередь те ионы,
которые могут достраивать кристаллическую
решетку. Адсорбированные ионы сообщают
частице “+» или “-“ заряд. Слой
адсорбированных ионов на ядре – это
первичный адсорбционный слой. Заряд,
созданный таким слоем, достаточно высок
и обуславливает электростатическое
взаимодействие с иоами противоположного
знака. В результате образуется слой
противоионов, который выравнивает заряд
первичного слоя. Слой противоионов
имеет диффузный характер. Часть
противоионов, прочно связанных с
первичным слоем – это плотный слой,
остальные противоионы составляют
диффузный слой.

Образование осадкапроисходит
тогда, когда раствор становится
пересыщенным, т.е. [A+]m[B-]n>Ks(ПКИ>ПР). Образование осадков связано
с процессом укрупнения частиц, с
образованием кристаллической решетки
вещества. Этот процесс определяется
числом центров кристаллизации: чем
больше центров, тем в меньшей степени
они укрупняются и тем хуже структура и
выше дисперсность осадка.

Возможные варианты загрязнения:1)
Путем адсорбции ( для конкретного примера
хлорид-ионов на поверхности осадка); 2)
Окклюзия; 3) Изоморфное соосаждение; 4)
Совместное осаждение; 5) Последующее
осаждение.

Приемы повышения чистоты осадка:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10-11-10-12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10-9-10-11и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH4+),
чтобы избежать пептизации (в опыте с
железом осадок промывали растворомNH4NO3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:

1) Общая погрешность анализа σ2 =,
где σпр2– погрешность
пробоотбора, σизм2
погрешность измерения,m– число проб,n– число
параллельных определений.

2) Методическая ошибка OобOоб=
,
гдеs– растворимость
осадка, г/100 мл воды;Vф
– объем фильтрата и промывных вод,
мл;mгр– масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσгр – дисперсия
массы гравиметрической формы;mгр– масса гравиметрической формы; σa– дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σa1и тары с навескойσa2σa1a2=0,0002
г, σгр== 0,0003 г.

5) Относительное стандартное отклонение
с учетом стадий пробоотбора и
пробоподготовки
=, гдеn– число проб;m– число параллельных измерений; σпр2– погрешность пробоотбора; σизм2– погрешность измерения.

Классификация коллоидных систем. В
зависимости от характера межмолекулярных
сил, которые действуют на границе раздела
фаз коллоидные растворы делят на
лиофильные и лиофобные. Вокруг лиофильной
частицы располагается прочная сольватная
оболочка. В этих оболочках молекулы
ориентированы определенным образом и
образуют более или менее правильные
структуры. Вокруг лиофобной частицы
раствора также имеются сольватные
оболочки, но они непрочные и не предохраняют
молекулы от слипания.

H2SiO3– аморфный осадок, поэтому

условия его осаждения следующие:

1)осаждение проводят из горячего раствора
анализируемого вещества горячим
раствором осадителя при перемешивании;

2)осаждение проводят из достаточно
концентрированного исследуемого
раствора концентрированным раствором
осадителя с последующим разбавлением(при
разбавлении устанавливается адсорбционное
равновесие, часть адсорбированных ионов
переходи в раствор, и осадок становится
более чистым); 3)осаждение проводят в
присутствии подходящего
электролита-коагулятора;

4)аморфные осадки почти не требуют
времени для созревания, их необходимо
фильтровать сразу после разбавления
раствора. Аморфные осадки нельзя
оставлять более, чем на несколько минут,
т.к. сильное уплотнение их затрудняет
последующее отмывание примесей, а также
при стоянии увеличивается количество
примесей, адсорбированных поверхностью
осадка.

Систематическая ошибка (bias) исследования — это фактор, который приводит к неверной оценке ассоциации между изучаемым воздействием и эффектом. Даже самое строгое планирование условий исследования не избавляет от влияния ошибок, связанных с принципом отбора пациентов, сбора, передачи и интерпретации информации. Вот почему в ходе оценки полученных результатов необходимо критически анализировать возможность того, что выявленные ассоциации связаны с влиянием систематической ошибки, и дать оценку вероятности такого объяснения. В отличие от вероятности случайности ассоциации, которая может получить количественную оценку, эффект влияния систематической ошибки трудно поддается оценке, а нередко может просто оказаться неучтенным. В этой связи ключевым моментом в планировании любого исследования является создание таких условий, в которых любое возможное влияние систематической ошибки было бы заранее принято во внимание и сведено к минимуму. Однако даже при соблюдении этих условий на этапе планирования, на заключительном этапе необходимо оценить: не могла ли систематическая ошибка все-таки закрасться в исследование, каков вероятный источник этой ошибки, в каком направлении она могла повлиять на полученные результаты?

Имеются многочисленные классификации систематических ошибок, однако принципиально можно выделить два вида, в рамках которых есть отдельные варианты.

Первый вид можно обозначить как ошибку отбора (selection bias), источник которой — принцип отбора субъектов для участия в исследовании.

Второй вид обозначается как обсервационная, или информационная, ошибка (observation or information bias), и данный вид систематической ошибки связан с оценкой информации, касающейся патогенного воздействия и его эффекта (Shadish W. R. [et al.], 2001; Rossi P. H. [et al.], 2004; Rothman K. J. [et al.], 2008; Straus S. E., 2011).

Ошибка отбора. Отбор индивидуумов для участия в большинстве аналитических исследований проводится с учетом имевшего место патогенного воздействия (в когортных исследованиях) либо имеющегося эффекта этого воздействия, например развившегося заболевания (в исследованиях типа «случай — контроль»). Принципиально важно, чтобы на этапе отбора пациентов изучаемое воздействие и изучаемый эффект этого воздействия не учитывались одновременно и не могли одновременно влиять на принятие решения об отборе пациентов для участия в исследовании. Несоблюдение этого условия является источником ошибки отбора. Ошибка отбора возможна, если в исследовании «случай — контроль» отбор испытуемых каким-то образом связан с имевшим место патогенным воздействием, а в ко-гортных исследованиях — с установленным фактом развития заболевания. Ошибка отбора представляет наибольшую опасность для исследований «случай — контроль» и ретроспективных когортных исследований, так как к началу тех и других уже имеется информация о патогенном воздействии и развитии заболевания. Напротив, ошибка отбора маловероятна при осуществлении проспективных когортных исследований, когда на начальной стадии имеется лишь информация о воздействии, но отсутствуют сведения о его эффекте (Кельмансон И. А., 2002).

Ошибку отбора могут спровоцировать многочисленные обстоятельства, влияющие на подход к отбору пациентов для участия в исследовании:

  • различия в медицинском наблюдении за отдельными лицами;
  • частота обращений пациентов за медицинской и психологической помощью;
  • качество диагностики и т. п.

Кроме того, в исследованиях типа «случай — контроль» причиной ошибки отбора могут быть различия в высказывании согласия участвовать в исследовании лиц, относящихся к двум сопоставляемым группам. Например, семьи, характеризуемые низким социальным статусом, по ряду причин могут с большей вероятностью отказаться от участия в исследовании в качестве контрольных наблюдений, если целью такого исследования является изучение ассоциации между социальным неблагополучием и риском какого-либо заболевания.

Обсервационная (информационная) ошибка возникает в связи с систематическими различиями в способах получения информации об имевшемся предполагаемом патогенном воздействии или развитии заболевания в сопоставляемых группах. Если собранные данные являются неполными или неточными и в сопоставляемых группах эта неточность варьирует, не исключена возможность выявления ложной ассоциации. В зависимости от источника происхождения различают несколько вариантов обсервационных ошибок:

Ошибка воспроизведения (recall bias) возникает:

  • когда лица, страдающие анализируемым заболеванием, способны воспроизвести информацию о предполагаемом патогенном воздействии в предшествующий период иначе, нежели лица, не страдающие этим заболеванием. Такая ситуация особо вероятна в исследованиях «случай — контроль»;
  • когда лица, подвергшиеся изучаемому воздействию, способны предоставить информацию о потенциальных последствиях этого воздействия иным образом, чем те обследуемые, которые не испытали на себе патогенного воздействия (в проспективных когортных исследованиях).

Естественно, сказанное относится не только к самим обследуемым, но и к их окружению: родителям, другим родственникам, медицинскому персоналу. Ошибка воспроизведения может приводить как к недооценке, так и к переоценке выраженности предполагаемой ассоциации в зависимости от того, как наличие патологического состояния у обследуемых лиц влияет на получаемую информацию.

Ошибка интервьюера (interviewer bias) возникает в связи с систематическими различиями в методике сбора, регистрации и интерпретации интервьюерами информации, полученной у отдельных участников исследования независимо от дизайна исследований:

  • В исследованиях «случай — контроль» возникает особая опасность: осведомленность интервьюера о наличии или отсутствии заболевания у обследуемых может способствовать большей склонности к поиску и обнаружению предшествующих патогенных воздействий у лиц, страдающих заболеванием.
  • В ретроспективных когортных исследованиях существует та же опасность осведомленности интервьюера и опасность информационной ошибки в форме ошибки интервьюера.
  • В интервенционных исследованиях может наблюдаться ошибка интервьюера, если не используется плацебо-контроль и слепой метод .

Источником систематической информационной ошибки в когортных исследованиях может послужить фактор потери обследуемых (loss to follow-up) в ходе динамического наблюдения , особенно если процент таких потерь существенно различается в зависимости от отношения обследуемых к изучаемому воздействию и его эффекту.

Еще одним вариантом информационной ошибки является неверная классификация (misclassification), при которой неверно оценивается факт имевшегося патологического воздействия или его эффекта. Ошибки классификации неизбежно возникают в ходе любого исследования, однако их опасность становится наиболее значимой, если наличие изучаемого патологического состояния у пациента в определенном направлении влияет на качество распознавания предшествовавшего патогенного воздействия, или, напротив, факт патогенного воздействия в определенном направлении влияет на распознавание патологического состояния, связанного с этим воздействием , Такая ситуация именуется дифференцированной ошибкой, которая может существенно искажать результаты исследования.

Важнейшим принципом, которым следует руководствоваться для предотвращения систематической ошибки, является тщательное планирование исследования. В некоторых случаях можно усмотреть ошибку в ходе исследования и принять меры к ее минимизации или устранению, однако при наличии ошибки отбора ее устранение может представляться маловероятным. Вот почему стадия планирования исследования является в этом отношении критичной.

Можно отметить несколько ключевых позиций, учет которых позволяет избежать систематических ошибок. В их числе принцип формирования обследуемой выборки, требования к источникам информации, методики сбора и анализа данных. Имеются многочисленные факторы, которые предопределяют, в какой мере подходы к формированию выборки повлияют на снижения вероятности систематической ошибки , Например, использование госпитальных контрольных наблюдений в исследованиях «случай — контроль» позволяет улучшить сопоставимость обследуемых с точки зрения их желания принять участие в исследовании, нивелировать влияние факторов, предопределивших выбор медицинского учреждения, куда были госпитализированы пациенты и где они были обследованы. Указанные обстоятельства позволят снизить вероятность ошибки, связанной с отказом пациентов от участия в исследовании, избежать ошибки отбора и воспроизведения , Для когортных исследований и клинических испытаний, когда принципиальна возможность следить за судьбами обследуемых в течение заданного промежутка времени, основой отбора нередко является наличие точных сведений о месте жительства и занятости испытуемых. Кроме того, включение в исследование тех лиц, которые имеют повышенный риск развития изучаемого заболевания, позволяет ожидать большей заинтересованности в сотрудничестве с исследователем и более регулярных контактах.

Во многих аналитических исследованиях методика сбора информации может оказать принципиальное влияние на полученные результаты. С практической точки зрения минимизировать влияние систематической информационной ошибки удается, если обеспечены:

  • создание специального инструментария сбора информации в форме тестов, опросников, стандартных бланков и т. п.;
  • разработка такого протокола исследования, который позволит оптимально использовать выбранный инструментарий. Независимо от того, какова методика исследования, она должна последовательно реализовываться в процессе сбора информации в каждой из сопоставляемых групп (Кельмансон И. А., 2002).

Инструментарий. Наиболее существенным резервом снижения влияния систематической ошибки является использование максимально стандартизованных и объективных методик. Если предметом исследования являются показатели артериального давления, информацию обеспечивают данные анкетирования пациентов и данные нескольких измерений, проведенных квалифицированным медицинским персоналом с соблюдением техники измерения; очевидно, второй способ является более объективным и, следовательно, более предпочтительным. Если же источником информации является опрос обследуемых, следует стремиться к максимальной точности формулировок вопросов и однозначности их интерпретации анкетируемыми.

Протокол. Важнейшим подходом к минимизации потенциальной ошибки является стремление к сбору информации «вслепую». Персонал, который осуществляет сбор данных или обследование пациентов, не должен быть осведомлен о том, испытал ли пациент изучаемое воздействие, если проводится проспективное когортное или интервенционное исследование. Персонал не должен быть осведомлен о том, имеется ли у пациента изучаемое заболевание, предполагаемый эффект воздействия, если изучается возможное влияние предшествовавшего патогенного воздействия в ходе исследования «случай — контроль» . Более того, весьма желательно, чтобы сами обследуемые лица, по возможности, были минимально осведомлены о том, каков их собственный статус в исследовании, а также о том, какова суть гипотезы исследования. Очевидно, пределы неосведомленности во многом определяются этическими соображениями. Хотя эффективность исследования «вслепую» является доказанной с точки зрения снижения риска систематической информационной ошибки, полное соблюдение этого принципа не всегда представляется возможным.

Регламентация. Не менее важным подходом, позволяющим снизить потенциальный риск информационной ошибки, является обучение персонала стандартной и строгой методике сбора данных, использование четко регламентированного протокола исследования. Иногда берутся на вооружение специальные приемы, позволяющие заподозрить нарушения протокола, несоблюдение идентичности подхода к сбору информации в двух сопоставляемых группах. Так, возможно сопоставление частоты, с которой лица, относящиеся к двум группам, указывают на наличие у них фиктивных переменных (dummy variables), никак не связанных ни с предполагаемым патогенным воздействием, ни с изучаемым заболеванием или, напротив, имеющих с ними доказанную, четко определенную связь.

Пример
При исследовании возможной ассоциации между приемом матерью транквилизаторов во время беременности и риском нарушений сна у ребенка первого года жизни можно попросить обследуемых женщин дать ответ на вопрос: принимали ли они во время беременности, кроме транквилизаторов, иные лекарственные препараты, в частности такие лекарства, для которых доказано отсутствие связи с последующим риском нарушений сна у ребенка. Например, можно попросить ответить на вопрос о приеме ими слабительных препаратов. Если сопоставление частоты употребления лекарственных препаратов во время беременности женщинами, дети которых имели нарушения сна, и женщин, дети которых не имели нарушений сна, выявит более частое использование транквилизаторов у женщин из первой группы, но не выявит различий в использовании слабительных, можно думать о том, что ассоциация действительно является значимой. Напротив, наличие достоверных различий между двумя сопоставляемыми группами в частоте использования и транквилизаторов и слабительных позволит заподозрить, что они связаны с влиянием ошибки воспроизведения или ошибки интервьюера. С другой стороны, в опросник можно было бы включить сведения о курении матери во время беременности — доказанном факторе риска нарушений сна у ребенка первого года жизни (Kelmanson I. A., 2009). Если в ходе исследования одновременно с выявлением ассоциации между использованием матерью транквилизаторов во время беременности и риском нарушений сна у ребенка будет также воспроизведена и доказанная ассоциация между курением матери во время беременности и риском нарушений сна у ребенка, это может послужить дополнительным аргументом в пользу валидности исследования.

Дублирующие вопросы. В опросник включают несколько вопросов, сформулированных по-разному, но принципиально направленных на поиск одной и той же ассоциации. Различия в выявленных ассоциациях, оцениваемых на основе ответов на дублирующие друг друга вопросы, могут навести на мысль о существовании систематической ошибки. Учет времени, потраченного интервьюером на беседу с пациентом, позволяет определить, не тратит ли интервьюер систематически больше или меньше времени на получение информации у представителей той или иной группы, что также может явиться источником систематической ошибки.

Наконец, может быть полезным включение в опросник шкалы, позволяющей интервьюеру дать собственную субъективную оценку того, насколько конкретный пациент адекватно воспринимает задаваемые ему вопросы и дает на них ответы. В дальнейшем субъекты с неудовлетворительными оценками качества своих ответов могут быть исключены из исследования или проанализированы отдельно.

Источник информации оказывает существенное влияние и на вероятность систематической ошибки. Сведения об имевшемся патогенном воздействии и о наличии заболевания могут быть получены в результате непосредственного опроса обследуемых лиц, анализа медицинской документации, статистики рождаемости и смертности, а также в результате непосредственного измерения интересующих показателей. Наиболее надежным источником информации следует признать медицинскую документацию, оформленную до начала исследования, как наименее подверженную влиянию субъективных оценок, связанных с целями и задачами исследования, и максимально свободную от влияния информационной ошибки. В то же время такие архивные документы могут не содержать сведений о ряде признаков, непосредственно интересующих исследователя. Более того, степень информационных пробелов может существенно различаться в отдельных сопоставляемых группах наблюдений.

Пример
Анализ архивных документов, относящихся к детям из отдельных категорий риска (недоношенные, маловесные, имеющие врожденные пороки развития и т. п.), убеждает в более пристрастном отношении медицинских работников к активному выявлению отягощающих моментов акушерско-гинекологического анамнеза, чем в случае рождения ребенка без явных клинических признаков патологии (Кельмансон И. А., 2002). Данный пример иллюстрирует необходимость по мере возможности использовать и сопоставлять различные источники информации.

Исследования, основанные на анализе медицинской документации, могут предполагать использование стационарных историй болезни, патологоанатомических протоколов, а также амбулаторных данных. Сведения, полученные с помощью опросников и анкетирования обследуемых субъектов, могут дополняться и верифицироваться данными анализа медицинской документации. Следует понимать, что потребность в верификации данных о наличии патогенного воздействия или заболевания во многом зависит от самой природы изучаемого заболевания. Все анализируемые воздействия и вероятные исходы этих воздействий должны иметь четкие критерии для их констатации. В случаях распознавания отдельных заболеваний (патологических состояний) нередко говорят о существовании принятого «золотого стандарта», и качество исследования во многом определяется тем, использовался ли этот стандарт для верификации диагноза. Нередко в качестве «золотого стандарта» выступают критерии, разработанные экспертами ВОЗ или иными авторитетными экспертами на основе консенсуса.

Несмотря на усилия избежать систематической ошибки на стадии планирования исследования, всегда существует вероятность ее наличия. Вот почему на стадии анализа и обсуждения полученных результатов требуется дать критическую оценку:

  • Какая ошибка и в какой мере могла повлиять на полученные результаты?
  • В каком направлении — маскирования истинной ассоциации или ее гиперболизации — систематическая ошибка могла повлиять на полученные результаты?
  • Какова возможная степень этого искажения?

Такие оценки не имеют количественного выражения и не могут быть проверены с использованием какого-то статистического критерия: они основаны лишь на здравом смысле и понимании конкретной клинической ситуации, сопряженной с исследованием.

Следует также иметь в виду, что отдельные варианты исследований в разной мере подвержены влиянию систематических ошибок конкретных видов:

—    Исследования «случай — контроль». В максимальной степени возможна ошибка, связанная со следующими обстоятельствами:

  • сведения о статусе обследуемого в отношении наличия или отсутствия у него заболевания могут влиять на принятие решения в отношении имевшегося патогенного воздействия (ошибка воспроизведения);
  • сведения об имевшемся или отсутствовавшем патогенном воздействии могут повлиять на выявление распознаваемого заболевания (ошибка отбора) (Кельмансон И. А., 2002).

—    Когортные исследования, Особую тревогу вызывает ошибка, связанная с потерями обследуемых в ходе динамического наблюдения .

—    Интервенционные исследования. Вероятность обсервационной ошибки зависит во многом от характера сопоставляемых групп, использования плацебо и степени объективности оценки результатов.

В любом исследовании возможна ошибка классификации. При этом принципиально важно следующее:

  • дифференцированная ошибка может приводить как к занижению, так и к завышению реальной ассоциации;
  • недифференцированная ошибка приводит лишь к занижению ассоциации .

Laboratory Statistics and Quality Control

Amitava Dasgupta PhD, DABCC, Amer Wahed MD, in Clinical Chemistry, Immunology and Laboratory Quality Control, 2014

4.5 Random and Systematic Errors in Measurements

Random errors and systematic errors are important issues in the laboratory quality control process. Random errors are unavoidable and occur due to imprecision of an analytical method. On the other hand, systematic errors have certain characteristics and are often due to errors in measurement using a particular assay. Because random errors cannot be eliminated or controlled, the goal of quality control in a clinical laboratory is to avoid or minimize systematic errors. Usually recalibration of the assay is the first step taken by a clinical laboratory technologist to correct systematic error, but more serious problems such as instrument malfunction may also be responsible for systematic errors.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780124078215000048

Organizational Cell Biology

E.L. Elson, in Encyclopedia of Cell Biology, 2016

Errors

Systematic errors in FCS measurements are consistent from one measurement to another and can result from faults in the alignment of the optics, anomalies due to photobleaching and photophysical effects such as blinking, optical saturation, and triplet state decay, mischaracterization of the shape and size of the observation volume, detector artifacts, and other sources (Ries and Schwille, 2012). Random errors due to shot noise can be minimized by increasing the rate of fluorescence photon counts acquired. Eventually, however, there will be a point of diminishing returns when increasing excitation intensity causes unacceptable photobleaching of the flurophores. Even if shot noise were negligible and each fluorescence fluctuation could be measured with high accuracy, the accurate determination of the phenomenological rate coefficients would nevertheless require measuring many fluctuations due to the stochastic behavior of the mesoscopic molecular system being observed. Evaluation of the random noise for FCS measurements can be based on theoretical calculation of the variance of the correlation function (Koppel, 1974; Qian, 1990; Kask et al., 1997; Saffarian and Elson, 2003). Another approach is to use multiple measurements to estimate variance empirically (Wohland et al., 2001). An apparently good fit of a measured to a theoretical correlation function guarantees neither that the model correctly represents the experimental system nor that the derived parameters are accurate. It is important to test the model in as many ways as possible (e.g., Saffarian et al., 2004). It is also important to evaluate systematic and random errors of FCS measurements both to optimize experimental accuracy and to have a quantitative sense of the accuracy of the evaluated phenomenological parameters.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123944474200941

Decision Research: Behavioral

B.A. Mellers, in International Encyclopedia of the Social & Behavioral Sciences, 2001

2.2 Conjunctive Probabilities

Systematic errors in subjective probabilities of conjunctive events have also been identified by behavioral decision researchers (Tversky and Kahneman 1983). In another story, Tversky and Kahneman told participants about a woman named Linda who was described as 31 years old, single, outspoken, and very bright. She majored in philosophy and cared deeply about issues of discrimination and social justice. She also participated in anti-nuclear demonstrations. Then participants were asked to rank the likelihood of various statements, including ‘Linda is a bank teller’ and ‘Linda is a bank teller and a feminist.’ Participants report that the statement, ‘Linda is a bank teller and a feminist’ is more probable than ‘Linda is a bank teller.’ Tversky and Kahneman argued that these responses were violations of the conjunction rule, according to which the judged probability of the intersection of two events cannot exceed the judged probability of either single event. They claimed that people base their beliefs on the similarity of the target description to the category prototype, a strategy known as representativeness.

Gigerenzer and his collaborators have challenged this claim and have further explored the use of frequency representations to reduce, and even eliminate, conjunction effects. (Gigerenzer and Hoffrage 1995). They have had remarkable success at reducing base rate neglect and conjunction errors with frequency formats. This topic is yet another area of considerable controversy within the field.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B0080430767006264

Observational Epidemiology

Jennifer L. Kelsey, Ellen B. Gold, in International Encyclopedia of Public Health (Second Edition), 2017

Information Bias

This is systematic error in measuring the exposure or outcome such that data are more accurate or more complete in one group than in another. Interviewer (or other types of observer) bias, recall bias, and reporting bias are examples of information bias.

Interviewer (or other types of observer) bias is systematic error occurring when an interviewer (or other observer) does not collect information in a similar manner for each group being compared. For example, in a case-control study if an interviewer believes, whether subconsciously or not, that a certain drug increases the risk for a disease, the interviewer might probe more deeply into the medication history of cases than controls.

Recall bias is systematic error resulting from differences in the accuracy or completeness of recall of past events between groups. In a case-control study, mothers of infants whose children are born with a congenital malformation may think back and remember events during the pregnancy more thoroughly than mothers of apparently healthy infants.

Reporting bias is a systematic error resulting from the tendency of people in one group to be more or less likely to report information than others. In a case-control study, cases with certain diseases, for example, might be more likely to deny that they had used alcohol than controls.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128036785003106

Parsimony

G.J. Olsen, in Brenner’s Encyclopedia of Genetics (Second Edition), 2013

Minimizing Long Branch Attraction

The potential for systematic error does not imply that parsimony-based trees are necessarily wrong; indeed, they have proven to be very useful. The potential for long branch attraction to yield incorrect trees can sometimes be minimized by careful consideration of the data included in (or excluded from) an analysis.

When a branch in a tree is interrupted by a new branch point, it becomes two shorter branches. Thus, it is sometimes possible to subdivide the longest branches in a tree by adding additional taxa. This can be accomplished by increasing the density of sampling of taxa in the group of interest. This requires that the necessary taxa be available and be identified, which can be problematic. For example, coelacanths (lobe-finned fish) are represented by only a single extant species, so in an analysis of vertebrate relationships, it is not possible to improve the sampling of taxa in this important lineage.

Frequently, the longest branch in an analysis is that to the outgroup (in Figure 2, this is D in the left and middle panels, and E in the right panel). There are at least four factors that are important in the selection of outgroup taxa. First, they must be clearly outside of the group of interest; otherwise, the inferred direction of evolution will be incorrect in parts of the ingroup. Second, the outgroup taxa should be as close to the taxa of interest as possible; the more distant the outgroup, the greater the potential for long branch attraction (echinoderms are a better outgroup than plants for an analysis of vertebrates). Third, it is preferable to use two or more diverse representatives of major outgroup lineages, which subdivide the long branch to the group (so including both sea urchins and starfish in an echinoderm outgroup is preferable to either one alone). Finally, if there are several candidate lineages for the outgroup that are comparably good, it is preferable to use all of them, rather than just one. Again this has the effect of subdividing the long branch to the outgroup.

The choice of features (characters) included in an analysis also influences long branch attraction. As noted above, it is commonly the case that some characters change more frequently than others. It is as though branches are longer for frequently changing characters than for rarely changing characters, so long branch attraction is a greater problem for frequently changing characters. Thus, removing these characters from an analysis, or at least dramatically lowering the emphasis placed on them (their weight), helps to minimize the systematic error due to long branch attraction. The disadvantage of completely eliminating these characters is that they sometimes provide the only information available to resolve the details of relationships among closely related taxa in the analysis.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123749840011220

Behavioral Economics

S. Dhami, A. al-Nowaihi, in Encyclopedia of Human Behavior (Second Edition), 2012

Heuristics and Biases

The heuristics and biases research program commenced with seminal papers by Tversky and Kahneman in the early 1970s. Its basic premise is that individuals are not fully rational, but they are not irrational either. Tversky and Kahneman took the middle ground that individuals solve problems by relying on some fast (in terms of time) and frugal (in terms of information acquisition and processing) heuristics. Because such heuristics do not optimize in the classical sense, the performance of the heuristics is not necessarily optimal.

For instance, individuals often judge distance of an object by the heuristic of how clear it is, sharper objects are thought to be closer. This heuristic is fast and frugal. While this heuristic often works well, it might also result in biased and misleading perceptions. For instance, when conditions are hazy, distances might be overestimated. Conversely, when conditions are very clear, distances might be underestimated.

The heuristics and biases approach demonstrates a systematic departure of actual behavior from that prescribed by the laws of classical statistics. Rather, individuals employ a range of judgement heuristics. The point or interval estimates arising from these judgement heuristics are often in conflict with classical inferences. Even statistically sophisticated researchers or experienced decision makers often rely on these judgment heuristics.

An important heuristic is the representativeness heuristic. When individuals use this heuristic they tend to assume that the properties of a small sample that they are familiar with is characteristic of the large population from which the sample was drawn. For example, an eminent colleague told us that up to quite late in his childhood he believed that most people in the world were Jewish members of the British Communist Party, because that was the circle of family and friends he grew up in. This is sometimes referred to as the law of small numbers. At other times, individuals exhibit the reverse bias, conservatism, that is, they underestimate the likelihood of a sample from a given distribution. For example, people typically underestimate the likelihood of getting a consecutive run of 3 heads in 10 random tosses of a fair coin. These heuristics explain many puzzles such as the gambler’s fallacy (avoid betting on a number that has come up last time), hot hands and winning streaks (because a basketball player has scored the last few shots, he is even more likely to score this one).

The behavior of humans is inconsistent with Bayes’ rule, especially when they are presented with probabilistic information (as opposed to frequency format information). In particular, individuals engage in base rate neglect. For example, consider the following question. “There is a rare condition whose probability is one in a million. There is a test whose success rate is 99%. You tested positive. What is the probability that you have this condition?” The typical answer is 99%. The true answer based on classical statistics is 0.01% (the reader can check this by applying Bayes’ rule).

Anchoring is one of the most robust and important heuristics that people use. In situations where people do not know the answer to a question, they are unduly influenced by an initial suggestion or anchor. Interestingly, the anchor could be completely random and unrelated to the answer. For example, a roulette wheel is spun. The resulting number is, say, 50. The subjects are then asked “how many countries are members of the UN?” The answers would then frequently be found to cluster around 50. Furthermore, once individuals fix an anchor in their minds, they adjust too slowly, and insufficiently, toward the target.

There is also a range of other judgement heuristics that the space constraint does not permit us to discuss further. These include hindsight-bias, false consensus, attribute substitution, conjunction fallacy, availability heuristic, affect heuristic, and taking a necessary condition to be sufficient.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123750006001439

Neuroepidemiology

M.E. Jacob, M. Ganguli, in Handbook of Clinical Neurology, 2016

Bias

Bias is the result of systematic error in the design and conduct of the study, such that the observed results in the sample will be different from the true results. Bias occurs due to flaws in the method of selection of study participants or in the process of gathering information regarding exposure and disease. This systematic error is different from random error due to sampling variability, which results from the use of a sample to estimate parameters for the reference population. We will discuss two broad categories of bias: selection bias and information bias.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978012802973200001X

Pharmacogenetics

Thomas P. Ahern, in Advances in Pharmacology, 2018

3.3 Information Bias

Information bias refers to systematic errors that occur when study variables (exposure, disease, modifiers, and confounders) are measured imperfectly. Misclassification errors are said to be differential or nondifferential, according to whether error rates differ between groups. As an example, outcome misclassification (imperfect measurement of disease status) is nondifferential if the degree of imperfection is the same for both exposed and unexposed subjects. If the degree of imperfection is better or worse in one group, then the outcome misclassification is differential. Similar logic applies to the definition of differential vs nondifferential exposure misclassification, which is based on measurement error rates in diseased and nondiseased subjects. Pharmacoepidemiology studies, which often rely on prescription claims data, are frequently faced with exposure misclassification, particularly through poor adherence with prescribed regimens (Fischer et al., 2010).

Pharmacoepidemiology studies are susceptible to detection bias, a form of information bias in which exposed subjects have more frequent contact with the medical system than unexposed subjects, and may therefore be under better surveillance for health outcomes. This is a form of differential outcome misclassification, in which the sensitivity of disease detection is potentially higher among the exposed. When collecting data for an epidemiology study, the goal should be to keep misclassification errors to a minimum, and to keep error rates similar between case and noncases (or exposed and unexposed). The reason for the latter goal is that nondifferential misclassification has a tendency to bias association measurements toward the null. The impact of nondifferential misclassification is therefore more predictable, and it is less likely to generate false-positive findings (Jurek, Greenland, Maldonado, & Church, 2005). In contrast, differential misclassification can bias estimates of association in any direction (Rothman et al., 2008a).

The degree of misclassification in an epidemiology study can is evaluated through a validation study, in which exposure and/or disease measurements using the original instrument are compared with measurements using a gold standard. For example, in a study of gestational weight gain in relation to perinatal outcomes, the investigators were concerned about the accuracy of maternal prepregnancy body mass index reported on birth certificates (Bodnar et al., 2016). They conducted an internal validation study to compare body mass index data from birth certificates with body mass index data from medical records (the gold standard) for a subset of the participants (Bodnar et al., 2014). The results of validation studies not only inform the degree of misclassification but can also be used to correct information bias. Validation parameters (including sensitivity and specificity, and positive and negative predictive values) estimated from validation studies can be used for probabilistic bias analysis, in which corrected study data are simulated based on drawing validation parameters from a probability distribution and using the selected values to back-calculate the expected truth (Lash, Fox, & Fink, 2009). The distribution of association estimates from many simulated datasets is then used to characterize a new point estimate and a simulation interval, which portrays uncertainty due to sampling error and due to the selection of bias parameters used to correct the data. In the gestational weight gain study, the investigators saw that prepregnancy body mass index was poorly classified on birth certificates. They applied the predictive values calculated from their validation study to a probabilistic bias analysis, generating 100,000 copies of their study data with weight corrected for misclassification. The summary estimate and simulation interval from the bias analysis confirmed the main findings from their conventional analysis (Bodnar et al., 2016). Probabilistic bias analysis methods extend to modeling the impact of unmeasured confounders, residual confounding, and selection bias (Lash et al., 2009).

In pharmacogenetic studies, genotyping errors are a potential source of information bias. Performance of genotyping assays in population-based studies is evaluated with the Hardy–Weinberg equilibrium (HWE) test, which calculates a chi-squared test statistic based on comparison of observed genotype frequencies with those expected under conditions of random mating and lack of genetic admixture in the tested population. If the chi-squared test is deemed statistically significant based on a selected type I error rate, the genotypes are declared inconsistent with HWE. If the above assumptions for equilibrium are expected to be true in the study population, then departure from HWE may signal genotyping error. It is recommended, however, to look beyond the P-value for the HWE test and focus on the magnitude of the differences between observed and expected frequencies. A statistically significant chi-squared test in a large dataset may arise from fairly trivial differences in observed and expected frequencies, in which case the strict hypothesis testing paradigm would be misrepresent the actual likelihood of bias.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S1054358918300206

What Does It Mean to be Biased

Ulrike Hahn, Adam J.L. Harris, in Psychology of Learning and Motivation, 2014

4 Conclusions

Our “tour” of bias research has, in some ways, come full circle. Source considerations were mentioned as one possible explanation of the “inertia effect” within 1960s conservatism studies (Peterson & DuCharme, 1967), in that participants may “disbelieve” later evidence (see also, Slovic & Lichtenstein, 1971). Source reliability also provides a potential factor in conservatism more generally (see Corner, Harris, & Hahn, 2010).

It should be clear from the preceding evidence indicating the importance of normative models in studying bias that we think the 1960s studies within the bookbag and pokerchip tradition have much to recommend them. Last but not least, their quantitative nature allows simultaneous assessment both of how bad and how good human judgment is (cf. Funder, 1995; Krueger & Funder, 2004) and affords insight into bias in the all-important sense of systematic deviation from accuracy, alongside assessment of its costs.

The bookbag and pokerchip paradigm has been criticized both on grounds that it is confusing for participants and that it is typically quite artificial and unnatural (e.g., Manz, 1970; Slovic & Lichtenstein, 1971). However, the artificiality does, in fact, make it informative for the study of motivated reasoning. While phenomena such as undersampling and “inertia” (Pitz et al., 1967) are typically cited as evidence in favor of motivated cognition (see e.g., Baron, 2008; Nickerson, 1998), it seems in many ways hard to imagine testing beliefs in which participants could be less invested in in any genuine sense, than whether the experimenter-selected bag on this trial contains predominantly red or blue chips. If anything, we thus take the parallels to motivated reasoning phenomena observed in these studies to be evidence against motivational accounts. Or to put it differently, if attachments to hypotheses (and with that directional questions) are so readily formed, it, once again, becomes hard to see how motivated cognition could exert any systematic effects on the accuracy of our beliefs. It should also be stressed that it is entirely possible to conduct quantitative studies of belief revision with more naturalistic materials (see e.g., Harris & Hahn, 2009; Harris, Hsu, & Madsen, 2012). Such research, we think, will be necessary, because although some cognitive and social psychologists have recognized and stressed the need to examine global accuracy when studying bias, the majority of this research has not.

The main thing to take away from our critical survey of research on bias is that with respect to the question of human rationality, an interesting notion of bias is established only once it has been shown that there is systematic deviation, that is deviation on average across a broad range of instances, and that deviation comes at an accuracy cost, in that there exist actual procedures that could do better. Common-sense intuition, time and again, provides an unreliable guide to when that might be.

Consequently, the rather surprising conclusion from a century of research purporting to show humans as poor at judgment and decision-making, prone to motivational distortions, and inherently irrational is that it is far from clear to what extent human cognition exhibits systematic bias that comes with a genuine accuracy cost.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128002834000022

Uncertainty in Measurement: Procedures for Determining Uncertainty With Application to Clinical Laboratory Calculations

Robert B. Frenkel, Ian Farrance, in Advances in Clinical Chemistry, 2018

5 The Question of Bias

“Bias” and “systematic error” are synonymous terms and indicate a metrological condition where an error exists and fails to be “averaged out” by repetition of measurements using the same instrumentation and procedure. The International Vocabulary of Metrology—Basic and general concepts and associated terms (VIM) [22] defines bias as “estimate of a systematic measurement error” and systematic measurement error as “component of measurement error that in replicate measurements remains constant or varies in a predictable manner.” Measurement bias in clinical chemistry is usually assessed by participation in an external quality assurance program (EQA), or proficiency testing program, by comparison of the test method with a reference method, or by the use of commutable reference standards. The problem of uncorrected bias in clinical chemistry and analytical measurement procedures has been a frequent subject of discussion [23−39]. Bias may occur for various reasons, including: an imperfect definition of biological measurands (for example in immunoassay), the use of inconsistent commercial calibrators or the lack of appropriate traceability to a primary reference standard. Because of the complexity of biomolecules, “matrix effects” in which the test sample may contain cross-reactants or interfering substances, the use of reference methods rather than physical standards and the large variety of manufacturers and platforms for measurand assays, all make the elimination of bias more difficult than in other areas of metrology.

When bias is present, the ideal procedure would be to subtract it at the outset before any uncertainty analysis, but, of course, to include the uncertainty in the bias itself. However, subtracting any bias is usually impractical for a clinical or medical laboratory. The question then arises as to how to calculate and report an uncertainty that incorporates a bias b. The GUM ([1], section F2.4.5) acknowledges the practice of reporting an expanded uncertainty as U + |b|, where U is the expanded uncertainty assuming b = 0. Combining the bias and some multiplier (usually called the z-multiplier) of the uncertainty as a linear sum (occasionally as a root-sum-square) to form a so-called total error is a much-discussed and contentious procedure [23−39]. With zero bias, the value of the z-multiplier is the familiar 1.96 that gives a two-sided 95% coverage probability for the expanded uncertainty U. Beyond ± 1.96 the total probability in the two equal-area “tails” of the Gaussian density distribution is of course 5%. With significant bias |b|, we may calculate a z-multiplier such that the total probability in the now unequal-area tails is still 5%. The expanded uncertainty is now U = |b| + z × standard uncertainty. The appropriate z-multiplier values have been calculated by Stöckl and Thienpont [27] and by Synek [38] for Gaussian density distributions and symmetrical coverage with respect to the uncorrected-for-bias measured value. (Synek [38] refers to the z-multiplier as Q.) Westgard [35,37] has introduced a figure-of-merit, the Sigma-Metric, for the proficiency testing of a test laboratory against a reference laboratory. The Sigma-Metric is calculated in terms of the “allowable total error,” ATE, the bias and the CV of the test laboratory as SM = (ATE% − bias%)/CV%. The uncertainty of the reference laboratory result is not usually taken into account in any of the above-mentioned procedures, nor, with the exception of Synek [38], the uncertainty in the bias itself.

However, although bias and uncertainty have the same dimensions, bias should be regarded as a metrological presence that is fundamentally different from uncertainty. This point of view is considered by, for example, Farrance et al. [36] and by Kallner [32].

A procedure based on the law of conditional probabilities can be formulated, reconciling those two points of view and taking into account the uncertainty in the bias and the uncertainty in the reference method. This procedure yields the following result [39], for Gaussian probability density functions. If the estimated values of a bias-free measurand are distributed as a Gaussian variable with mean x0 and standard uncertainty ux, then when there is bias b0 with standard uncertainty ub, those estimated values will be distributed as a Gaussian variable with mean x0 + b0 and standard uncertainty ux2+ub2. This approach can be used equally well with non-Gaussian probability density functions. Combining bias and uncertainty in a linear manner to obtain a “total error,” as described earlier, may no longer be necessary. In proficiency testing when the result of a test laboratory is compared with the result of a reference laboratory, this approach leads naturally to a graph-based and visually instructive figure-of-merit that takes into account the uncertainty of the reference laboratory and of the bias, and that is based on the amount of overlap of the test laboratory distribution with that of the reference laboratory [39].

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S0065242318300039

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалом, прогрессивная технология — все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.

В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

1. Погрешности метода, или теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества -вообще.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекаюших процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и т.д.

2. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений.. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины — теории точности измерительных устройств.

3.   Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и т.д.

4. Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.

Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и

удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.

Способы обнаружения систематических погрешностей. Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например, Х1, Х2 и т.д.). Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,

Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого /-го наблюдения будем обозначать через 8., то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину 0, называемую систематической погрешностью неисправленного среднего арифметического. Действительно,

Если систематические погрешности постоянны, т.е. 0/ = 0, /=1,2, …, п, то неисправленные отклонения могут быть непосредственно использованы для оценки рассеивания ряда наблюдений. В противном случае необходимо предварительно исправить отдельные результаты измерений, введя в них так называемые поправки, равные систематическим погрешностям по величине и обратные им по знаку:

q = -Oi.

Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самого измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.

Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.

Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений. После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью.

Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения

где Р — измеряемое давление.

Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся погрешности:

•   определения поправок;

•   зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

•   связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы, и поправки на них не вводятся.

Систематические
погрешности не изменяются при увеличении
числа измерений, поскольку согласно
определению остаются постоянными или
изменяются по определенному закону в
процессе измерения. Систематические
погрешности могут быть выявлены на
основе теоретических оценок результатов,
путем сопоставления результатов,
полученных разными методами, на разных
приборах. Имеются возможности определить
систематические погрешности путем
тщательного исследования средства или
метода измерений путем построения
зависимости результатов от какого-либо
изменяющегося параметра, например
времени, климатических условий,
электромагнитных полей, напряжения
питания и т.д. В ряде случаев необходимо
выполнить большой объем исследовательской
работы для того, чтобы выявить условия,
создающие систематические погрешности
и, соответственно, представить либо
график, либо таблицу поправок, либо
определить аналитическую зависимость
систематической погрешности от
какого-либо параметра.

На
результат измерения влияют несколько
факторов, каждый из которых вызывает
свою систематическую погрешность. В
этом случае выявление аналитического
вида погрешности значительно усложняется,
приходится проводить трудоемкие
тщательные исследования, которые иногда
оканчиваются неудачей. Тем не менее,
необнаруженная систематическая
погрешность опаснее случайной, т.к.
последняя может быть минимизирована
соответствующей методикой измерения,
а систематическая невыявленная
погрешность исказит результат
непредсказуемо.

Особую
категорию систематических погрешностей
составляют измеренные с недостаточной
точностью фундаментальные и физические
константы, используемые в процессе
измерения. То же самое относится к
неточностям в стандартных справочных
данных, или к недостаточно точной
аттестации стандартных образцов.
Появление более точных справочных
данных требует пересчета результатов
всех измерений с их использованием, или
переградуировки шкал приборов. Например,
получение более точных данных о давлении
насыщающих паров индивидуальных веществ
может привести к необходимости
переградуировки термометров, манометров,
приборов для измерения концентраций и
т. д.

Уточнения
постоянной
Авогадро приводят к переградуировке
шкал всех приборов в физико-химических
измерениях. Новые исследования свойств
воды могут изменить результаты измерения
огромного числа приборов, т. к. на этих
постоянных строится температурная
шкала, шкала плотности, шкала вязкости.

Рассмотрим
группы систематических погрешностей,
отличающихся одна от другой причиной
возникновения. В основном различают
следующие группы:

  1. Инструментальные
    погрешности, связанные с несовершенством
    конструкции прибора, неправильностью
    технологии его изготовления.

  2. Погрешности
    внешних влияний. Особенно часто в
    измерительной практике приходится
    сталкиваться с влиянием климатических
    условий — температуры, давления,
    влажности. Кроме того, весьма
    распространенным источником такого
    рода погрешностей является влияние
    внешних электромагнитных полей и
    изменения в напряжении сети питания
    измерительных приборов.

  3. Погрешности
    метода измерения. Этот вид погрешности
    может быть связан как с неточностью
    знания свойства объекта измерения, так
    и с одинаковым влиянием разных факторов
    на датчик измерительного прибора. Сюда
    же можно отнести погрешности
    пробоподготовки в определении состава
    веществ и материалов.

  4. Субъективные
    погрешности, связанные либо с недостаточным
    вниманием, либо с невысокой квалификацией
    персонала, обслуживающего прибор.
    Особенно большое значение этот вид
    погрешности имеет при пользовании
    приборами с визуальным отсчетом. Большая
    часть промахов также может быть связана
    с субъективными погрешностями.

Инструментальная
погрешность

Инструментальная
погрешность — это составляющая погрешности,
зависящая от погрешности (класса
точности) средства измерения. Такие
погрешности могут быть выявлены либо
теоретически на основании механического,
электрического, теплового, оптического
расчета конструкции прибора, либо
опытным путем на основе контроля его
показаний по образцовым мерам, по
стандартным образцам, а также
компарированием показаний прибора с
аналогичными измерениями на других
приборах.

Инструментальные
погрешности, присущие конструкции
прибора, могут быть легко выявлены из
рассмотрения кинематической, электрической
или оптической схемы. Например, взвешивание
на весах с коромыслом обязательно
содержит погрешность, связанную с
неравенством длин коромысла от точек
подвеса чашек до средней точки опоры
коромысла. В электрических измерениях
на переменном токе обязательно будут
погрешности от сдвига фаз, который
появляется в любой электрической цепи.
В оптических приборах наиболее частыми
источниками систематической погрешности
являются аберрации оптических систем
и явления параллакса. Общим источником
погрешностей в большинстве приборов
является трение и связанные с ним наличие
люфтов, мертвого хода, свободного хода,
проскальзывания.

Способы
устранения или учета инструментальных
погрешностей достаточно хорошо известны
для каждого типа прибора. В метрологии
процедуры аттестации или испытаний
часто включают в себя исследования
инструментальных погрешностей. В ряде
случаев инструментальную погрешность
можно учесть и устранить за счет методики
измерений. Например, неравноплечесть
весов можно установить, поменяв местами
объект и гири. Аналогичные приемы
существуют практически во всех видах
измерения.

Инструментальные
погрешности, часто связанные с
несовершенством технологии изготовления
измерительного прибора. Особенно это
касается серийных приборов, выпускаемых
большими партиями. При сборке может
иметь место отличие в сигналах с датчиков,
отличие в установке шкал. Подвижные
части приборов могут собираться с разным
натягом, механические детали могут
иметь разные значения допусков и посадок
даже в пределах установленной нормы. В
оптических приборах огромное значение
имеет качество сборки или юстировка
оптической измерительной системы.
Современные оптические приборы могут
иметь десятки и сотни сборочных единиц,
а допуски при сборке составляют дол и
длины волны оптического излучения (λ =
0,4 — 0,7 мкм).

Методы
выявления таких погрешностей чаще всего
состоят в индивидуальной градуировке
измерительного прибора по образцовым
мерам или по образцовым приборам. В
современных приборах коррекция показаний
может быть выполнена не только
переградуировкой шкалы, но и коррекцией
электрического сигнала или компьютерной
обработкой результата. Естественно,
что во всех случаях коррекции должно
предшествовать исследование показаний
прибора.

Инструментальные
погрешности, связанные с износом или
старением средства измерения, имеют
определенные характерные особенности.
Процесс износа, как правило, проявляется
в погрешностях измерения постепенно.
Изменяются зазоры в сопрягаемых деталях,
соприкасающиеся поверхности покрываются
коррозией, изменяются упругости пружин
и т. д. Изменяется масса гирь, уменьшаются
размеры образцовых мер, изменяются
электрические и физико-химические
свойства узлов и деталей приборов, и
все это приводит к изменению показаний
приборов. Старение приборов — это, как
правило, следствие изменений структуры
материалов, из которых сделан прибор.
Изменяются не только механические
характеристики, но и электрические,
оптические, физико-химические. Стареют
металлы и сплавы, изменяя исходную
намагниченность, стареет оптика,
приобретая дополнительное светорассеяние
или центры окраски, стареют датчики
состава веществ. Последнее хорошо
известно тем, кто профессионально
работал с химреактивами, которые могут
сорбировать воду, реагировать с окружающей
средой и с примесями. Использование
химических веществ в измерительной
технике всегда необходимо с учетом
срока годности реактива.

Устранение
погрешностей приборов от старения или
износа, как правило, проводится по
результатам поверки, когда устанавливается
погрешность по истечении какого-либо
длительного времени хранения или
эксплуатации. В ряде случаев достаточно
почистить прибор, но иногда требуется
ремонт или перекалибровка шкалы.
Например, при появлении систематических
погрешностей во взвешивании на весах
удается вернуть им работоспособность
обычным техническим обслуживанием —
регулировкой и смазкой. При более
серьезном старении приходится
переполировывать трущиеся детали или
заменять сопрягаемые детали.

Особенно
важно выявить систематическую погрешность
у приборов, предназначенных для поверки
средств измерений — у образцовых приборов.
Как правило, на образцовых приборах
выполняется меньший объем работы, чем
на рабочих приборах, и по этой причине
систематический временной «уход»
показаний может не так наглядно
проявляться. Вместе с тем невыявленная
в образцовых приборах погрешность
передается другим приборам, которые по
данному образцовому прибору поверяются.

С
целью уменьшения влияния процессов
старения на измерительную технику в
ряде случаев прибегают к искусственному
старению наиболее ответственных узлов.
У оптических приборов — рефрактометров,
интерферометров, гониометров — старение
проявляется часто в том, что несущие
конструкции «ведет», т. е. они изменяют
форму, особенно в тех местах, где есть
сварка или обработка металла резанием.
Для того чтобы свести к минимуму влияние
такого старения, готовые узлы выдерживаются
какое-то время в жестких климатических
условиях или в специальных камерах, где
процесс старения можно ускорить, изменив
температуру, давление или влажность.

Отдельное
место в инструментальных погрешностях
занимает неправильная установка и
исходная регулировка средства измерения.
Многие приборы имеют встроенные указатели
уровня. Это значит, что перед измерением
нужно отгоризонтировать прибор. Причем,
такие требования предъявляются не
только к средствам измерений высокой
точности, но и к рутинным приборам
массового использования. Например,
неправильно установленные весы будут
систематически «обвешивать» покупателя,
на гониометре невозможно работать без
тщательного горизонтирования отсчетного
устройства. В приборах для измерения
магнитного поля весьма существенным
может оказаться ориентация его
относительно силовых линий поля Земли.
Озонометры нужно очень тщательно
ориентировать по Солнцу. Многие приборы
требуют установки по уровню или по
отвесу. Если двухплечие весы не установлены
горизонтально, нарушаются соотношения
длин между коромыслами. Если маятниковые
механизмы или грузопоршневые манометры
установлены не по отвесу, то показания
таких приборов будут сильно отличаться
от истинных.

Погрешности,
возникающие вследствие внешних влияний

Под
категорией
погрешностей,
возникающих вследствие внешних влияний,
обычно понимают изменение показаний
приборов под воздействием температуры,
влажности и давления. Тем не менее, это
лишь часть причин, приводящих к появлению
систематических погрешностей. Сюда же
следует отнести влияние вибраций,
постоянных и переменных ускорений,
влияние электромагнитного поля и
различных излучений: рентгеновского,
ультрафиолетового, ионизирующих
излучений, гамма-излучения. По мере
развития техники и науки появилась
возможность и необходимость проводить
измерения в нестандартных условиях,
например в Космосе или внутри подводной
лодки. Специфичность условий измерения
может доходить до высших категорий,
если ставить задачу измерения погодных
условий на Марсе или на Венере. Такие
же особенности могут иметь место в
реальных жизненно важных для нас
ситуациях. Если речь идет о контроле
параметров ядерного реактора, то условия,
в которых работает измерительный прибор,
могут значительно отличаться от
стандартных.

Влияние
температуры
— наиболее распространенный источник
погрешности при измерениях. Поскольку
от температуры зависит длина тел,
сопротивление проводников, объем
определенного количества газа, давление
насыщенного пара индивидуальных веществ,
то сигналы со всех видов датчиков, где
используются упомянутые физические
явления, будут изменяться с изменением
температуры. Существенно, что сигнал
сдатчика не только зависит от абсолютного
значения температуры, но от градиента
температуры в том месте, где расположен
датчик. Еще одна из причин появления
«температурной» систематической
погрешности — это изменение температуры
в процессе измерения. Указанные причины
существенны при косвенных измерениях,
т. е. в тех случаях, когда нет
необходимости измерять температуру
как физическую величину. Тем не менее
в собственно температурных измерениях
необходимо тщательно исследовать
показания приборов в различных
температурных интервалах. Например,
результаты измерения теплоемкости,
теплопроводности, теплотворной
способности топлива могут сильно
искажаться от различного рода температурных
воздействий.

Учитывая
большое влияние температуры на физические
свойства материалов и, соответственно,
на показания приборов, особое внимание
следует обращать на температурные
условия в тех комнатах, лабораториях и
зданиях, где проводятся градуировочнные
или поверочные работы. Здесь необходимо
тщательно следить за отсутствием
тепловых потоков, градиентов температуры,
однородностью температуры окружающей
среды и измерительного прибора. Для
того чтобы избежать влияния этих факторов
на измерения, приборы длительное время
выдерживают в термостатированном
помещении, прежде чем начинать какие-либо
работы. Для особо точных измерений
иногда используют дистанционные
манипуляторы, чтобы исключить тепловые
помехи, создаваемые операторами.

Для
большинства приборов при испытаниях
на право серийного выпуска программа
испытаний обязательно содержит
исследование показаний прибора (одного
или нескольких образцов) в зависимости
от температуры.

Влияние
магнитных или электрических полей
сказывается не только на средствах
измерения электромагнитных величин. В
зависимости от принципа действия прибора
наведенная ЭДС или токи Фуко могут
исказить показания любого датчика,
выходным сигналом которого служит
напряжение, ток, сопротивление или
электрическая емкость. Таких приборов
существует великое множество, особенно
в тех случаях, когда приборы имеют
цифровой выход. Аналогово-цифровые
преобразователи иногда начинают
регистрировать сигналы радиочастотных
или еще каких-либо электрических полей.
Очень часто электромагнитные помехи
попадают в прибор по сети питания.
Выяснить причины появления таких ложных
сигналов, научиться вводить поправки
в измерения при наличии электромагнитных
помех — это одна из важных проблем
метрологии и измерительной техники.

Особенно
важен рассматриваемый фактор появления
систематических погрешностей в больших
городах, где хорошо поставлена связь,
телевидение, радиовещание и т.п. Уровень
электромагнитного излучения бывает
настолько высоким, что, например, вблизи
мощного телецентра может загореться
низковольтная лампочка, если ее соединить
с проволочным контуром без источника
питания. Тот же эффект можно наблюдать
в зоне действия радиолокаторов вблизи
какого-либо аэропорта. О том, что этот
фактор может существенно влиять на
показания измерительных приборов,
свидетельствует тот факт, что буквально
за последние несколько лет появились
возможности уверенной радиотелефонной
связи, а также уверенного приема
спутникового телевидения. Это означает,
что уровень сигнала в окружающем нас
пространстве достаточно высок и легко
регистрируется соответствующей техникой.
Этот же сигнал будет накладываться на
сигналы, поступающие с датчиков
измерительных приборов.

Еще
один интересный случай появления
систематических погрешностей при
измерениях связан с измерительными
приборами на кораблях. Много лет назад
опытными мореплавателями было установлено,
что если корабль идет долгое время
курсом «норд» или «зюйд» некоторые
приборы начинают показывать неверные
результаты, т. е. приобретают какую-то
систематическую погрешность. Причина
этого была выяснена довольно точно:
корабль намагничивается от магнитного
поля Земли и при дальнейшем изменении
курса сохраняет остаточную намагниченность.
В наше время это хорошо исследованный
эффект. Во время мировой войны суда
специально размагничивали, чтобы
избежать срабатывания магнитных мин.
Сейчас в ряде стран, в том числе и у нас,
созданы корабли науки, которые либо
делаются из немагнитных материалов,
либо персонал тщательно следит за
намагниченностью корпуса. Такие суда
осуществляют дальнюю и космическую
связь, занимаются экологическими
измерениями, исследуют озоновый слой
Земли, исследуют прохождения радиоволн
и выполняют еще целый ряд необходимых
функций.

Влияние
второго климатического фактора — давления
— распространяется на несколько более
узкий круг измерений, чем температура,
но существует целый ряд очень важных
видов измерения, где данные об атмосферном
или внешнем давлении практически
определяют уровень точности измерений.
Так же, как в предыдущем случае, имеет
смысл отдельно рассматривать собственно
показания датчиков в других видах
измерения. Многие типы манометров по
сути своей являются дифференциальными,
т. е. измеряют разность давлений между
двумя различными точками какой-либо
системы. В этом случае любая погрешность
определения абсолютной величины давления
в той точке, относительно которой
измеряется давление, аддитивно
накладывается на результат измерения.

Влияние
давления на сигналы датчиков очень
существенны в рефрактометрии — измерении
показателя преломления — воздуха и
газов. Это относится собственно к
измерениям рефракции, а также к измерениям
с использованием соответствующих
датчиков, например при измерении
концентрации газов и газовых смесей.
От изменения давления меняется не только
показатель преломления газа, но и другие
характеристики, такие как диэлектрическая
постоянная. Соответственно, может
измениться сигнал с любого емкостного
датчика.

В
измерении массы информация о давлении
весьма существенна в связи с тем, что
при точных измерениях массы основной
вклад в систематическую погрешность
дает архимедова сила, выталкивающая
гирю. Силы Архимеда зависят от плотности
среды (плотности воздуха) и, следовательно,
непосредственно зависят от давления,
поскольку число молекул газа в единице
объема

(3.6)

где
n0
— постоянная, называемая числом Лошмита;
р — давление; Т — температура; a p0
и T0
— нормальные значения давления и
температуры.

(3.7)

В
метрологических справочниках всегда
можно найти данные о поправках, которые
необходимо ввести при взвешивании для
учета
силы
Архимеда. Нетрудно показать, что
выталкивающая сила, действующая на
гирю, выражается формулой

(3.8)

где
ρ — плотность воздуха; ρT
— плотность материала взвешиваемого
тела; mT
— масса тела. Масса взвешиваемого тела
будет равна:

(3.9)

где
ρГ
— плотность материала гири. Если плотность
воздуха считать много меньшей плотности
материалов тела и гири, то массу
взвешиваемого тела можно выразить через
действительную массу гири плюс некоторая
поправка на силу Архимеда

(3.10)

Из
приведенныхформул следует, что при
взвешивании гирями из материала большой
плотности систематическая погрешность
от силы Архимеда меньше, чем при
взвешивании гирями из легкого материала.
В табл. 3.1 представлены поправки на силы
Архимеда, которые необходимо учитывать
при взвешивании для тела массой 100 г.

Таблица
3.1

Поправки
на силы Архимеда, которые нужно делать
при
взвешивании гирями для тела массой 100
г.

Плотность
материала
взвешиваемого тела, г/см3

0,5

1

1,5

2

4

6

8

Поправка
на силу
Архимеда (mr*ε),
мг

230

100

70

50

15

6

0,7

Отдельно
следует рассматривать систематические
погрешности при измерении давления в
условиях вакуума. Здесь наиболее
существенным источником погрешностей
является селективность процесса
откачивания воздуха насосами с различными
принципами действия. Этот вопрос очень
сложен с точки зрения анализа физической
сущности процесса вакуумирования.
Насосы ротационные, сорбционные,
магниторазрядные, турбо-молекулярные
создают совершенно разный состав
остаточных газов. В итоге в каждом
отдельном случае при оценке погрешностей
измерения
вакуума
нужно анализировать совместные искажения,
вносимые в состав остаточного газа
насосом, и искажения, вносимые тем или
иным датчиком давления. В ряде случаев
для прояснения картины недостаточна
даже дополнительная калибровка, т. к.
создать достаточно точно ту среду по
составу, в которой будет работать датчик,
очень трудно.

Проблема
создания вакуума и измерения давления
остаточного вакуума является одной из
ключевых проблем современной техники
и науки. Уверенно можно утверждать, что
уровень вакуумной техники определяет
уровень многих технологий, например
технологии изготовления микросхем и
микросборок.

То
же самое относится к наукоемким видам
измерения —
масс-спектометрии
или ЯМР спектометрии. Все метрологические
категории этих видов измерения напрямую
зависят от того, насколько «чистый»
вакуум удается создать и с какой точностью
удается этот вакуум измерить.

Третий
климатический фактор, вносящий
систематические погрешности во многие
измерения, — это влажность, т. е. содержание
молекул воды в том или ином месте
расположения измерительного прибора.
При оценке такой погрешности можно
рассматривать гигрометрию как вид
измерения, т. е. возможные систематические
погрешности в измерении влагосодержания
(абсолютная влажность) и Благосостояния
(относительная влажность). Можно также
оценивать погрешность как следствие
влияния влаги на показания других типов
приборов. Например, наличие влаги
изменяет проводимость или емкость
электрических элементов датчиков. Влага
ухудшает изоляционные свойства
материалов, вызывая токи утечки. Влага
изменяет структуру многих химических
соединений, трансформируясь из свободной
влаги в кристаллизационную и обратно.

С
учетом этого становится очевидным
всеобъемлющий характер учета влажности
при оценке систематических погрешностей.

На
эти трудности накладываются еще
неоднозначности в выражении измеряемых
в гигрометрии величин и единиц. По одной
из версий исходным моментом в гигрометрии
является упругость насыщенного водяного
пара при фиксированной температуре. В
этом случае любое уточнение термодинамических
свойств воды должно привести к пересчету
всех результатов измерений. По другой
версии исходным моментом в
гигрометрии
должно являться число молекул воды в
единице объема. Эти измерения наиболее
точно выполняются радиочастотными
методами, возможности которых и определяют
погрешности гигрометрии.

Вся
проблема влияния влажности на
систематические погрешности в измерениях
обозначена во многих странах и
международных организациях как одна
из наиболее существенных. По этой причине
влияние влажности на показания любого
прибора являются обязательным элементом
любых испытаний и исследований на
предмет выявления систематической
погрешности.

Погрешности
метода измерения или теоретические
погрешности

Любое
измерение имеет предел точности. Какой
бы мы не создали измерительный инструмент,
всегда будут существовать рамки возможной
точности, превзойти которые созданием
совершенных измерительных устройств
невозможно. Всегда при измерениях идут
на допущения, отклонения от идеальных
ситуаций, от функциональных зависимостей,
ограничивая трудоемкость процесса на
основании принципа достаточности
точности измерения для решения
практической задачи. Такие допущения
приходится делать во всех видах измерений.

В
механических измерениях на практике
постоянно присутствующей систематической
погрешностью является сила Архимеда,
по разному действующая на взвешиваемый
предмет и на гири. Учет
силы
Архимеда делается только при взвешивании
на высшем уровне точности при аттестации
мер высшего разряда. Во всех практических
измерениях массы такие поправки не
делаются, ограничивая тем самым точность
определения массы.

В
электрических измерениях постоянным
источником систематической погрешности
являются собственные сопротивления
приборов, собственная распределенная
емкость и индуктивность проводников.
При использовании законов для цепей
постоянного и переменного тока как
правило собственные электрические
параметры не учитываются. Не учитываются
в большинстве случаев и возможные
термоЭДС в цепи или образования
гальванических пар. Можно свести эти
погрешности к минимуму тщательным
исследованием цепей, но в реальных
случаях стремятся работать в таких
ситуациях, когда влияние перечисленных
причин ничтожно в сравнении с необходимой
и достаточной точностью измерений.

Измерения
физико-химических величин в каждой
конкретной задаче имеет определенные
систематические погрешности, специфические
для данного вида измерения. Прежде всего
это порог чувствительности датчика
концентрации какого-либо вещества.
Детектирование отдельных атомов, т. е.
отсутствие порога чувствительности,
имеет место только для весьма специфических
методов и для очень узкого класса
веществ. Второй фактор — вещество,
например вода, может входить как в виде
собственно молекул воды, так и в виде
кристаллизационной воды. Особенно
сложно выявить фактор многообразия
различных форм существования измеряемого
компонента в случае элементного анализа.
Так, водород может встречаться в газе
или в воздухе в виде молекул водорода
Н^, может входить в состав паров воды, в
состав углеводородов и т. д. Если при
измерениях используется метод с
предварительной атомизацией пробы, то
информацию о содержании водорода в
составе какого-либо соединения можно
получить только с использованием
дополнительных усилий, например с
использованием хроматографической
колонки, которая разделит компоненты
пробы по массам.

В
температурных измерениях всегда
существуют погрешности, связанные с
температурными
градиентами, т. е. с неоднородностью
температурного поля. Практически
невозможно реализовать такую ситуацию,
когда все части термометра будут
находиться в одинаковых температурных
условиях, а это приведет к тому, что в
жидкостных термометрах не весь объем
жидкости примет измеряемую температуру,
а термопарный термометр кроме полезного
сигнала зарегистрирует все влияния
температурных градиентов на ЭДС
термопары.

В
оптических измерениях, особенно в
измерении характеристик светового
потока — фотометрии, постоянный источник
систематических погрешностей — это
рассеянный свет в измерительных приборах.
Поскольку не существует идеально
отражающих и идеально поглощающих
поверхностей, в любой ситуации внутри
каждого прибора существует некий
постоянный фон паразитной подсветки.
В прецизионных оптических прибоpax
принимаются специальные меры борьбы с
рассеянным светом: устанавливаются
светофильтры, предварительные
монохроматизаторы излучения,
изготавливаются специфические
дифракционные решетки (голографические).Тем
не менее на каком-то уровне рассеянный
свет присутствует в оптических измерениях
всегда.

В
приборах для измерения показателей
преломления —
рефрактометрах
— систематическая погрешность обычно
связана с влиянием показателя преломления
воздуха. Чтобы исключить эту погрешность,
рефрактометры высокой точности иногда
вакуумируют, т. е. откачивают из объема
прибора воздух. Эта процедура делает
прибор громоздким и дорогим, поэтому
по такому пути идут только при крайней
необходимости. Чаще просто вносят
поправки на преломление воздуха,
используя таблицы показателя преломления
при различных температурах и давлениях.

В
магнитных измерениях источником
систематической погрешности служит,
как уже указывалось, магнитное поле
Земли, а также электромагнитные поля,
создаваемые теле- и радиопередатчиками,
системами связи, линиями электропередач.
В зависимости от расстояния между
измерительным прибором и источником
помех такого рода влияние может быть
очень сильным. Методы борьбы с такими
погрешностями достаточно хорошо освоены:
это либо защита измерительных приборов
экранами, либо измерение уровня помех
другими, более чувствительными и более
точными специальными приборами.

К
систематическим погрешностям метода
измерения относятся не только перечисленные
погрешности, которые можно назвать
инструментальными, поскольку они есть
следствие влияния каких-либо причин на
измерительный прибор, но и систематические
погрешности метода или процедуры
приготовления объекта к измерениям.
Особенно наглядно это видно в измерениях
состава веществ и материалов. Например,
существует распространенный метод
определения влажности зерна путем
взвешивания определенного его количества
до и после сушки. При этом полагается,
во-первых, что испаряется вся влага и,
во-вторых, что ничего, кроме воды, не
испаряется. Понятно, что и то и другое
справедливо только с какими-то допущениями.
Другой пример — измерение содержания
двуокиси серы в дымовых газах. Если в
пробозаборном тракте есть следы влаги,
а сам зонд находится при комнатной
температуре, то сернистый газ по пути
транспортировки от трубы до измерительного
прибора прореагирует с парами воды с
образованием серной кислоты. Естественно,
что прибор покажет неверное, заниженное
значение концентрации двуокиси серы.

Еще
один источник систематической погрешности,
связанный с несовершенством методов
измерения, имеет место в тех случаях,
когда приходится пользоваться при
измерениях какими-либо таблицами или
справочными данными. Любые данные в
справочниках получены с определенной
погрешностью, которая переносится на
объект измерения автоматически. Такого
же рода погрешности появляются при
использовании стандартных образцов.
Погрешности в аттестации стандартного
образца непосредственно ограничиваютточность
измерения в любом методе, когда
используются при калибровке и градуировке
стандартные образцы.

После
перечисления многочисленных причин
появления систематических погрешностей,
заключенных в методе измерения, может
показаться, что точно вообще ничего
измерить невозможно. На самом деле в
большинстве случаев обеспечивается
достаточный запас точности, или проводятся
специальные исследования по выявлению
причин систематических погрешностей.
После этого вносятся поправки либо в
показания шкал приборов, либо в методику
измерений.

Субъективные
систематические погрешности

На
результаты измерений непосредственное
влияние оказывает квалификация персонала
и индивидуальные особенности человека,
работающего на приборе. Для полной
реализации возможностей измерительного
прибора или метода предела для
совершенствования не существует. В
главе, посвященной эталонам, изложена
история совершенствования эталона
длины. На таком уровне обычных инженерных
знаний недостаточно, по этой причине
процесс измерения ставят рядом с
искусством. Понятно, что получить
информацию о результатах измерений
состава атмосферы на Венере, расшифровать
ее и оценить погрешность может только
очень квалифицированный человек. С
другой стороны, некоторые измерения,
например температуры тела человека,
может выполнить любой, даже неграмотный
человек.

На
субъективные погрешности измерений
влияют самые разнообразные особенности
человека. Известно, что время реакции
на звук, на свет, на запах, на тепло у
каждого человека разное. Хорошо известно,
что дискретные кадры в кино или в
телевизоре, следующие 25 раз в секунду,
воспринимаются наблюдателем как
непрерывная картина. Из этого следует,
что между откликом прибора и реакцией
человека временной интервал в 1/25 секунды
не может быть зарегистрирован.

Еще
одним наглядным примером влияния
оператора на результат измерения служат
измерения цвета. Человеческий глаз
имеет два аппарата зрения — дневной и
сумеречный. Дневной аппарат представляет
собой комбинацию из красных, зеленых и
синих рецепторов. У большой части людей
наблюдаются отклонения от средних
статистических характеристик — хорошо
известный дефект, называемый в обиходе
дальтонизмом. У человека может ненормально
функционировать либо какой-нибудь
рецептор, либо какой-нибудь аппарат
зрения. Принято проверять на правильность
цветовосприятия только водителей
транспорта. Обычный персонал, занимающийся
измерениями, никто на цветовосприятие
не проверяет. Это может привести к
неверным измерениям координат цвета
или температуры пирометром, т. е. в тех
случаях, когда используются визуальные
методы оценки яркости или цвета. Известно
также, что у человека цветовосприятие
может измениться с возрастом. Это связано
с тем, что стекловидное тело глаза с
возрастом желтеет, в результате чего
цвет одним и тем же человеком воспринимается
с годами по-разному. Некоторые художники,
восстанавливавшие свои собственные
картины через десятки лет, изображали
все в синих тонах.

Субъективное
восприятие человеком результата
измерения в большой степени определяется
также опытом работы. Например, при
измерении состава сплавов визуальным
стилометром опыт работы является
определяющим в получении достоверного
и точного результата. Опытный оператор
по появлению спектральных линий в поле
зрения прибора может определить не
только тип сплава, но и количественное
содержание в нем многих элементов.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

Систематическая погрешность (или, на физическом жаргоне, систематика) характеризует неточность измерительного инструмента или метода обработки данных. Если точнее, то она показывает наше ограниченное знание этой неточности: ведь если инструмент «врет», но мы хорошо знаем, насколько именно, то мы сможем скорректировать его показания и устранить инструментальную неопределенность результата. Слово «систематическая» означает, что вы можете повторять какое-то измерение на этой установке миллионы раз, но если у нее «сбит прицел», то вы систематически будете получать значение, отличающееся от истинного.

Конечно, систематические погрешности хочется взять под контроль. Поскольку это чисто инструментальный эффект, ответственность за это целиком лежит на экспериментаторах, собиравших, настраивавших и работающих на этой установке. Они прилагают все усилия для того, чтобы, во-первых, корректно определить эти погрешности, а во-вторых, их минимизировать. Собственно, они этим начинают заниматься с самых первых дней работы установки, даже когда еще собственно научная программа исследований и не началась.

Возможные источники систематических погрешностей

Современный коллайдерный эксперимент очень сложен. В нём есть место огромному количеству источников систематических погрешностей на самых разных стадиях получения экспериментального результата. Вот некоторые из них.

Погрешности могут возникать на уровне «железа», при получении сырых данных:

  • дефектные или неработающие отдельные регистрирующие компоненты или считывающие элементы. В детекторе миллионы отдельных компонентов, и даже если 1% из них оказался дефектным, это может ухудшить «зоркость» детектора и четкость регистрации сигналов. Надо подчеркнуть, что, даже если при запуске детектор работает на все 100%, постоянное детектирование частиц (это же жесткая радиация!) с течением времени выводит из строя отдельные компоненты, так что следить за поведением детектора абсолютно необходимо;
  • наличие «слепых зон» детектора; например, если частица вылетает близко к оси пучков, то она улетит в трубу и детектор ее просто не заметит.

Погрешности могут возникать на этапе распознавания сырых данных и их превращение в физическое событие:

  • погрешность при измерении энергии частиц в калориметре;
  • погрешность при измерении траектории частиц в трековых детекторах, из-за которой неточно измеряется точка вылета и импульс частицы;
  • неправильная идентификация типа частицы (например, система неудачно распознала след от π-мезона и приняла его за K-мезон). Более тонкий вариант: неправильное объединение адронов в одну адронную струю и неправильная оценка ее энергии;
  • неправильный подсчет числа частиц (две частицы случайно вылетели так близко друг к другу, что детектор «увидел» только один след и посчитал их за одну).

Наконец, новые систематические погрешности добавляются на этапе позднего анализа события:

  • неточность в измерении светимости пучков, которая влияет на пересчет числа событий в сечение процесса;
  • наличие посторонних процессов рождения частиц, которые отличаются с физической точки зрения, но, к сожалению, выглядят для детектора одинаковыми. Такие процессы порождают неустранимый фон, который часто мешает разглядеть искомый эффект;
  • необходимость моделировать процессы (в особенности, адронизацию, превращение кварков в адроны), опираясь частично на теорию, частично на прошлые эксперименты. Несовершенство того и другого привносит неточности и в новый экспериментальный результат. По этой причине теоретическую погрешность тоже часто относят к систематике.

В отдельных случаях встречаются источники систематических погрешностей, которые умудряются попасть сразу во все категории, они совмещают в себе и свойства детекторного «железа», и методы обработки и интерпретации данных. Например, если вы хотите сравнить друг с другом количество рожденных частиц и античастиц какого-то сорта (например, мюонов и антимюонов), то вам не стоит забывать, что ваш детектор состоит из вещества, а не из антивещества! Этот «перекос» в сторону вещества может привести к тому, что детектор будет видеть мюонов меньше, чем антимюонов, подробности см. в заметке Немножко про CP-нарушение, или Как жаль, что у нас нет детекторов из антивещества!.

Всю эту прорву источников потенциальных проблем надо распознать и оценить их влияние на выполняемый анализ. Здесь никаких абсолютно универсальных алгоритмов нет; исследователь должен сам понять, на какие погрешности надо обращать внимание и как грамотно их оценить. Конечно, тут на помощь приходят разные калибровочные измерения, выполненные в первые год-два работы детектора, и программы моделирования, которые позволяют виртуально протестировать поведение детектора в тех или иных условиях. Но главным в этом искусстве всё же является физическое чутье экспериментатора, его квалификация и накопленный опыт.

Почему важна грамотная оценка систематики

Беспечная оценка систематических погрешностей может привести к двум крайностям, причем обе очень нежелательны.

Заниженная погрешность — то есть неоправданная уверенность экспериментатора в том, что погрешности в его детекторе маленькие, хотя они на самом деле намного больше, — исключительно опасна, поскольку она может привести к совершенно неправильным научным выводам. Например, экспериментатор может на их основании решить, что измерения отличаются от теоретических предсказаний на уровне статистической значимости 10 стандартных отклонений (сенсация!), хотя истинная причина расхождения может просто состоять в том, что он проглядел источник ошибок, в 10 раз увеличивающий неопределенность измерения, и никакого расхождения на самом деле нет.

В борьбе с этой опасностью есть соблазн впасть в другую крайность: «А вдруг там есть еще какие-то погрешности? Может, я что-то не учел? Давай-ка я на всякий случай увеличу погрешности измерения в 10 раз для пущей безопасности.» Такая крайность плоха тем, что она обессмысливает измерение. Неоправданно завышая погрешность, вы рискуете получить результат, который будет, конечно, правильным, но очень неопределенным, ничем не лучше тех результатов, которые уже были получены до вас на гораздо более скромных установках. Такой подход, фактически, перечеркивает всю работу по разработке технологий, по изготовлению компонентов, по сборке детектора, все затраты на его работу и на анализ результатов.

Грамотный и ответственный анализ систематики должен удерживать оптимальный баланс (максимальная достоверность при максимальной научной ценности), не допуская таких крайностей. Это очень тонкая и сложная работа, и первые страницы в большинстве современных экспериментальных статей по физике частиц посвящены тщательному обсуждению систематических (а также статистических) погрешностей.

Мы не будем обсуждать подробности того, как обсчитывать систематические погрешности. Подчеркнем только, что это серьезная наука с множеством тонкостей и подводных камней. В качестве примера умеренно простого обсуждения некоторых вопросов см. статью Systematic Errors: facts and fictions.


Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Видео: Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Содержание

  • Как рассчитать систематическую ошибку?
  • Постоянство и соразмерность
  • Систематическая ошибка в химии
  • Систематическая ошибка в физический
  • Примеры eсистематическая ошибка
  • Ссылки

В систематическая ошибка Это одна из составляющих ошибок эксперимента или наблюдений (ошибок измерения), которая влияет на точность результатов. Это также известно как детерминированная ошибка, поскольку в большинстве случаев ее можно обнаружить и устранить, не повторяя эксперименты.

Важной характеристикой систематической ошибки является постоянство ее относительной величины; то есть он не зависит от размера выборки или толщины данных. Например, предполагая, что его относительное значение составляет 0,2%, если измерения повторяются в тех же условиях, ошибка всегда будет оставаться 0,2%, пока не будет исправлена.

Как правило, систематическая ошибка возникает из-за неправильного обращения с приборами или из-за технической неисправности аналитика или ученого. Его легко обнаружить, если сравнить экспериментальные значения со стандартным или сертифицированным значением.

Примеры экспериментальной ошибки этого типа возникают, когда аналитические весы, термометры и спектрофотометры не откалиброваны; или в случаях, когда не выполняется хорошее чтение правил, верньеров, градуированных цилиндров или бюреток.

Как рассчитать систематическую ошибку?

Систематическая ошибка влияет на точность, в результате чего экспериментальные значения могут быть выше или ниже фактических результатов. Под реальным результатом или значением понимается результат, который был исчерпывающе проверен многими аналитиками и лабораториями и зарекомендовал себя в качестве эталона сравнения.

Таким образом, сравнивая экспериментальное значение с реальным, получается разница. Чем больше эта разница, тем больше абсолютное значение систематической ошибки.

Например, предположим, что в аквариуме насчитывается 105 рыб, но известно заранее или из других источников, что истинное число составляет 108. Таким образом, систематическая ошибка составляет 3 (108-105). Мы сталкиваемся с систематической ошибкой, если, повторяя подсчет рыб, мы снова и снова получаем 105 рыб.

Однако более важным, чем вычисление абсолютного значения этой ошибки, является определение ее относительного значения:

Относительная погрешность = (108-105) ÷ 108

= 0,0277

Если выражать в процентах, то получается 2,77%. То есть ошибка подсчета имеет вес 2,77% от истинного количества рыбы. Если в аквариуме теперь есть 1000 рыб, и он будет считать их с той же систематической ошибкой, то будет на 28 рыб меньше, чем ожидалось, а не на 3, как это происходит с меньшим аквариумом.

Постоянство и соразмерность

Систематическая ошибка обычно постоянная, аддитивная и пропорциональная. В приведенном выше примере ошибка 2,77% останется постоянной до тех пор, пока измерения будут повторяться в одних и тех же условиях, независимо от размера аквариума (уже соприкасающегося с аквариумом).

Также обратите внимание на пропорциональность систематической ошибки: чем больше размер выборки или толщина данных (или объем аквариума и количество рыб в нем), тем больше систематическая ошибка. Если в аквариуме теперь 3500 рыб, ошибка будет 97 рыб (3500 x 0,0277); абсолютная погрешность увеличивается, но ее относительное значение неизменно, постоянно.

Если число удвоить, на этот раз с 7000 рыб, то ошибка будет 194 рыбы. Таким образом, систематическая ошибка постоянна и пропорциональна.

Это не означает, что необходимо повторить подсчет рыбы: достаточно знать, что определенное количество соответствует 97,23% от общего количества рыбы (100–2,77%). Отсюда истинное количество рыбы можно рассчитать, умножив на коэффициент 100 / 97,23.

Например, если было подсчитано 5200 рыб, то фактическое количество было бы 5 348 рыб (5200 x 100 / 97,23).

Систематическая ошибка в химии

В химии систематические ошибки обычно возникают из-за неправильного взвешивания из-за некалиброванных весов или из-за неправильного считывания объемов стеклянных материалов. Хотя они могут показаться не такими, как это, они влияют на точность результатов, потому что чем их больше, тем больше их негативных эффектов.

Например, если весы плохо откалиброваны, и при определенном анализе необходимо провести несколько взвешиваний, то окончательный результат будет все дальше и дальше от ожидаемого; это будет более неточно. То же самое происходит, если анализ постоянно измеряет объемы бюреткой, показания которой неверны.

Помимо весов и стеклянных материалов, химики также могут ошибаться в обращении с термометрами и pH-метрами, в скорости перемешивания, во времени, необходимом для протекания реакции, в калибровке весов. спектрофотометры, если предполагается высокая чистота образца или реагента и т. д.

Другие систематические ошибки в химии могут быть связаны с изменением порядка добавления реагентов, нагревом реакционной смеси до температуры выше, чем рекомендованная методом, или неправильной перекристаллизацией продукта синтеза.

Систематическая ошибка в физический

В физических лабораториях систематические ошибки носят еще более технический характер: любое оборудование или инструмент без надлежащей калибровки, неправильное поданное напряжение, неправильное расположение зеркал или деталей в эксперименте, добавление слишком большого момента к объекту, который должен упасть. из-за эффекта гравитации, среди других экспериментов.

Обратите внимание на то, что есть систематические ошибки, которые происходят из инструментального несовершенства, а другие, скорее, операционного типа, являются результатом ошибки со стороны аналитика, ученого или отдельного человека, который выполняет какое-либо действие.

Примеры eсистематическая ошибка

Ниже будут упомянуты другие примеры систематических ошибок, которые не обязательно должны происходить в лаборатории или в научной сфере:

— Поместите булочки в нижнюю часть духовки, поджаривая их больше, чем хотелось бы.

-Плохая осанка при сидении

-Закройте горшок для мокко только из-за недостатка прочности

-Не очищайте пароварки кофемашин сразу после текстурирования или нагрева молока.

-Используйте чашки разных размеров, когда вы следуете или хотите повторить определенный рецепт

-Хотите дозировать солнечную радиацию в тенистые дни

— Выполняйте подтягивания на перекладине, подняв плечи к ушам.

-Играйте несколько песен на гитаре без предварительной настройки струн

-Жарить оладьи с недостаточным количеством масла в казане

-Проведите последующее объемное титрование без повторной стандартизации раствора титранта

Ссылки

  1. Дэй Р. и Андервуд А. (1986). Количественная аналитическая химия. (Пятое изд.). ПИРСОН Прентис Холл.
  2. Хельменстин, Энн Мари, доктор философии (11 февраля 2020 г.). Случайная ошибка vs. Систематическая ошибка. Получено с: thinkco.com
  3. Bodner Research Web. (н.д.). Ошибки. Получено с: chemed.chem.purdue.edu
  4. Elsevier B.V. (2020). Систематическая ошибка. ScienceDirect. Получено с: sciencedirect.com
  5. Сепульведа, Э. (2016). Систематические ошибки. Получено из Physics Online: fisicaenlinea.com
  6. Мария Ирма Гарсиа Ордас. (н.д.). Проблемы с ошибкой измерения. Автономный университет штата Идальго. Получено с: uaeh.edu.mx
  7. Википедия. (2020). Ошибка наблюдения. Получено с: en.wikipedia.org
  8. Джон Спейси. (2018, 18 июля). 7 видов систематической ошибки. Получено с: simplicable.com

Систематическая ошибка (смещение) возникает в эпидемио­логических исследованиях в тех случаях, когда они дают результаты, систематически отличающиеся от фактических величин. Существует мнение, что при небольшой системати­ческой ошибке результаты исследования отличаются высокой степенью точности. При этом точность не зависит от объема выборки.
Систематическая ошибка представляет собой особую помеху, поскольку в таких исследованиях в отличие от лабораторных экспериментов эпидемиологи обычно не имеют возможности проконтролировать участников. К тому же часто весьма затруднительно составить такие выборки, которые были бы репрезентативными для исходных популяций. Некоторые переменные, представляющие интерес для эпидемиологов, особенно трудно поддаются количественной оценке, например тип личности, характер потребления алкоголя и имевшее место в прошлом резкое изменение средовых условий. Такого рода трудности могут привести к систематической ошибке.
Возможные источники систематических ошибок в эпидемио­логии многочисленны и разнообразны. Идентифицировано более 30 типов смещения, основными из которых являются:
• смещение (в результате) отбора;
• смещение (в результате) измерения.
Смешивающие факторы, которые затрудняют оценки эффек­та, не являются в строгом смысле одним из типов смещения, поскольку не связаны с систематической ошибкой в структуре исследования. Смешивание возникает потому, что неслучай­ное распределение факторов риска в исходной популяции . существует также и в изучаемой группе.
Смещение в результате отбора
Смещение отбора возникает в тех случаях, когда существует систематическое различие между характеристиками лиц, ото-бранных для исследования, и характеристиками не включен­ных в него. Очевидным источником смещения этого типа является самоотбор участников исследования, имеющий место, когда они либо чувствуют себя нездоровыми, либо ощущают особое беспокойство по поводу воздействия того или иного фактора риска. Например, хорошо известно, что люди, дающие согласие на участие в исследовании, в котором оцениваются последствия курения, отличаются по привычкам потребления табака от тех, кто участвовать отказывается; последние, как правило, являются заядлыми курильщиками. Смещение отбора может также возникнуть при выполнении исследований, посвященных оценке состояния здоровья детей, поскольку в этих случаях требуется согласие родителей. В когортном исследовании на новорожденных (УюЮга и соавт., 1987) процент детей, которых удалось наблюдать в течение 12 мес, различался в зависимости от уровня дохода их родителей. Если для лиц, включенных в исследование’ или участвующих в нем на всем его протяжении, характерны такие ассоциативные связи, которые отличаются от наблю­даемых у тех, кто в исследовании не участвует, возникает смещение оценки ассоциации между воздействием и его эффектом.
Существенное смещение отбора наблюдается в тех случаях, когда изучаемые болезнь или фактор сами по себе делают невозможным включение в исследование определенных лиц. Например, среди рабочих предприятия, подверженных воз­действию формальдегида, те, кто больше всего страдает от раздражения глаз, проявляют большую готовность оставить работу по собственному желанию или после медицинской консультации. На предприятии останутся рабочие, которые страдают меньше, и исследование пораженности работников производства, предусматривающее оценку ассоциации между воздействием формальдегида и раздражением глаз, даст обманчивые результаты.
Для исследований, касающихся производственной эпидемио­логии, характерен вытекающий из определения весьма суще­ственный тип смещения в результате отбора, называемый “эффектом здоровых рабочих» (глава 9), а именно рабочие для выполнения своих обязанностей должны быть достаточноздоровыми; лиц с тяжелыми заболеваниями или со сниженной трудоспособностью на работу обычно не принимают. Поэтому, если предусмотрены обследования в учреждении здравоохра­нения, а лица, не явившиеся для следующего осмотра, из-под наблюдения выбывают, может произойти смещение результа­тов, поскольку больные могут лечиться дома или в больнице. Структура всех эпидемиологических исследований должна учитывать этот тип смещения отбора.
Смещение в результате измерения
Смещение в результате измерения возникает в случае неточ­ности отдельных измерений или классификаций болезней либо воздействий (т.е. при неправильной количественной оценке измеряемых параметров). Источники смещения в результате измерения многочисленны, а значения порождаемых ими эффектов различаются в широких пределах. Например, ни­когда не бывают абсолютно точными измерения биохимиче­ских или физиологических показателей, и в разных лабора­ториях при исследовании одного и того же образца получают различные результаты. Если пробы, взятые от лиц, подвер­гающихся воздействию какого-либо фактора риска, и от контрольных лиц, исследуются случайным методом в разных лабораториях, использующих общие процедуры недостаточно проверенного качества, ошибки будут случайными и потен­циально менее серьезными для эпидемиологического анализа, чем в ситуациях, когда все пробы, полученные от лиц, подверженных воздействию, анализируют в одной лаборато­рии, а те, что взяты в контрольной группе, — в другой. Если при исследовании одной и той же пробы лаборатории систематически получают различающиеся результаты, эпиде­миологическая оценка оказывается смещённой.
Одним из видов смешения в результате измерения, имеющим особо важное значение при проведении ретроспективных ■ исследований типа случай — контроль, является смещение по причине неточности ретроспективных данных. Оно возникает в тех случаях, когда имеются расхождения в информации о прошлых событиях, поступающей от больных и лиц конт­рольной группы. Так, больные могут с большей вероятностью указать на воздействие фактора риска в прошлом, если имхорошо известно, что он ассоциируется с изучаемой болезнью (например, отсутствие физической нагрузки и болезни серд­ца). В результате такого смещения оценка степени воздей­ствия может оказаться либо завышенной (например, лица с сердечной патологией более склонны сообщать об отсутствии в прошлом физической нагрузки), либо заниженной (если больные более склонны, чем контрольные лица, отрицать воздействие в прошлом фактора риска).
Если в сопоставляемых группах смещение в результате измерения возникает в равной мере (недифференцированное смещение), оценка объективной связи между экспозицией и эффектом почти всегда бывает заниженной. Такого рода смещением можно объяснить некоторые расхождения в ре­зультатах различных эпидемиологических исследований.
Смешивающие факторы
В исследовании, посвященном оценке ассоциации между воздействием причинного фактора (или фактора риска) и возникновением болезни, смешивающий эффект может иметь место в том случае, если данное население, помимо изуча­емого воздействия, подвергается какой-либо дополнительной экспозиции, которую ассоциируют как с данной болезнью, так и с изучаемым воздействием. Если этот дополнительный фактор, сам по себе являющийся детерминантой или фактором риска для здоровья, неравномерно распределен в подвергаю­щихся воздействию подгруппах, возникает проблема. Смеши­вание имеет место в тех случаях, когда эффекты обоих воздействий (факторов риска) не отделены друг от друга и в результате возникает ошибочный перевес в пользу этиоло­гической роли одной из переменных. Например, в исследо­вании ассоциации между курением табака и раком легких возраст будет смешивающим фактором, если средние вели­чины возраста для групп некурящих и курящих в изучаемой популяции сильно различаются, поскольку заболеваемость раком легких с возрастом увеличивается.
Смешивание может иметь весьма серьезные последствия и даже изменить первоначальное направление ассоциации. Какая-либо переменная, которую рассматривают как протективную, послеустранения смешивания может быть расценена как дающая вредный эффект. Проблемы, чаще всего возникающие по поводу смешивания, заключаются в том, что оно может создавать видимость-причинно-следственной связи, которая в действительности отсутствует. Переменная дает смешивающий эффект в том случае, если она является самостоятельной детерминантой возникновения болезни (т.е. фактором риска) на фоне изучаемой экспозиции. Так, при анализе связи между воздействием радона и раком легких курение не будет смешивающим фактором, если характер потребления табака в подвергающейся воздействию радона и контрольной группах одинаков.
Смешивающими факторами в эпидемиологических иссле­дованиях часто являются возраст и социальный статус. Ассоциация между высоким кровяным давлением и ише­мической болезнью сердца может фактически отражать одновременные изменения в обеих переменных, возника­ющие по мере увеличения возраста; необходимо учесть потенциальный смешивающий эффект возраста, и тогда становится очевидным, что высокое кровяное давление действительно повышает риск развития ишемической бо­лезни сердца.
Другой пример смешивающего эффекта проиллюстрирован на рис. 3.10. Смешиванием можно объяснить наблюдаемую связь между потреблением кофе и риском развития ишемической болезни сердца, поскольку известно, что потребление кофе ассоциируется с курением сигарет: люди, которые пьют кофе, курят чаще по сравнению с теми, кто не потребляет этот напиток. Установлено, что курение сигарет является одной из причин ишемической болезни сердца, поэтому возможно, что связь между потреблением кофе и ишемической болезнью сердца просто отражает известную причинную связь курения с развитием этой болезни. Б данной ситуации фактор курения вмешивается в кажущуюся связь между потреблением кофе и ишемической болезнью сердца.
Устранение смешивающего эффекта
Существует несколько методов устранения смешивания, ко­торые могут быть либо предусмотрены структурой исследова-ния, либо применены в ходе анализа его результатов. Методы устранения смешивания, относящиеся к структуре эпидемио­логического исследования, включают:
• рандомизацию;
• рестрикцию;
• подбор.
На стадии анализа смешивание может быть устранено с помощью:
• стратификации;
• статистического моделирования.
Рандомизация, которая применима только при эксперименталь­ных исследованиях, является идеальным методом, обеспечива­ющим равномерное распределение потенциальньос смешивающих переменных по сопоставляемым труппам. Чтобы избежать случайного неравномерного распределения таких переменных, объем выборки должен быть достаточно большим. Рандомизация исключает ассоциацию между потенциально смешивающими переменными и изучаемым видом воздействия.

Рис. 3.10. Смешивающий эффект: потребление кофе, курение сигарет и. развитие ишемической болезни сердца

Метод рестрикции применяется для того, чтобы ограничить исследование лицами, имеющими определенные характери­стики. Например, в исследование, посвященное влиянию потребления кофе на развитие ишемической болезни сердца, могут быть включены только некурящие, что поможет устранить любой потенциальный смешивающий эффект ку­рения сигарет.
При использовании метода подбора для устранения смешивания участники исследования выбираются таким образом, чтобы было обеспечено равномерное распределение потенциальных смеши­вающих переменных в двух сопоставляемых группах. Так, в исследовании типа случай — контроль, предпринимаемом для оценки связи между физической нагрузкой и ишемической болезнью сердца, к каждому больному с сердечной патологией может быть подобран один контроль того же возраста и пола, чтобы избежать смешивающего эффекта этих переменных. Метод подбора нашел широкое применение в исследованиях типа случай — контроль, но при этом могут возникнуть про­блемы, если критерии подбора слишком строги или их слишком много; в таких случаях говорят об избыточном подборе.
Метод подбора требует больших денежных затрат и много времени, но он представляет особую ценность, если сущест­вует вероятность несоответствия между больными и контроль­ными лицами, например, когда больные старше контролей.
В крупных исследованиях устранение смешивающего эффекта обычно лучше производить на стадии анализа, а не планиро­вания. В этом случае его можно избежать благодаря страти­фикации, предусматривающей количественную оценку степени ассоциаций по четко определенным и однородным категориям (слоям) смешивающей переменной. Если смешивающим факто­ром является возраст, оценку ассоциации можно производить, например, по возрастным группам с диапазоном в 10 лет; если таким фактором является пол или этническая принадлежность, ассоциация может быть оценена отдельно по группам лиц мужского и женского пола или по разным этническим группам. Существуют методы суммарной оценки общей ассоциации путем выведения взвешенной средней величины оценок, рассчитанных по каждому отдельному слою.Хотя стратификация является концептуально простым и относительно легко выполнимым методом, она часто ограни­чена масштабом исследования и не дает возможности устранить большое число действующих одновременно факторов, что во многих случаях бывает необходимым. В такой ситуации оценка выраженности ассоциаций для устранения ряда смешивающих переменных одновременно потребует статистического моделиро- вйния (многомерного); для этих целей существуют разнообразные статистические методы (Dixon & Massey, 1969).

Понравилась статья? Поделить с друзьями:
  • Что такое синтаксические ошибки в pascal
  • Что такое систематическая ошибка геодезия
  • Что такое синтаксические и пунктуационные ошибки
  • Что такое синтаксическая ошибка файла и как ее исправить
  • Что такое синтаксическая ошибка программы паскаль