Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.
В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.
Что такое дефект?
Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.
Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем
Типы программных ошибок при тестировании программного обеспечения
Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.
Ошибки программного обеспечения подразделяются на три типа:
- Дефекты программного обеспечения по своей природе
- Дефекты программного обеспечения по их приоритету
- Дефекты программного обеспечения по их серьезности
Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.
#1. Дефекты программного обеспечения по своей природе
Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.
#1. Функциональные ошибки
Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.
Функциональные ошибки можно исправить, выполнив функциональное тестирование.
#2. Ошибки на уровне модуля
Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.
Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.
#3. Ошибки уровня интеграции
Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.
Ошибки интеграции можно исправить, выполнив интеграционное тестирование.
#4. Дефекты юзабилити
Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.
Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.
Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.
#5. Дефекты производительности
Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.
Ошибки юзабилити можно исправить, выполнив тестирование производительности.
#6. Дефекты безопасности
Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.
Ошибки безопасности можно исправить, выполнив тестирование безопасности.
#7. Дефекты совместимости
Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.
Ошибки совместимости можно исправить, выполнение тестирования совместимости.
#8. Синтаксические ошибки
Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.
#9. Логические ошибки
Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.
Общие симптомы логических ошибок включают:
- Неверные результаты или выходные данные
- Неожиданное поведение
- Сбой или зависание программного обеспечения
Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.
#2. Дефекты программного обеспечения по степени серьезности
Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.
#1. Критические дефекты
Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.
#2. Серьезные дефекты
Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.
#3. Незначительные дефекты
Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.
#4. Тривиальные дефекты
Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.
#3. Дефекты программного обеспечения по приоритету
#1. Дефекты с низким приоритетом
Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.
#2. Дефекты со средним приоритетом
Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.
#3. Дефекты с высоким приоритетом
Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.
Некоторые распространенные примеры дефектов с высоким приоритетом включают:
- Дефекты, из-за которых приложение не работает. сбой
- Дефекты, препятствующие выполнению задачи пользователем
- Дефекты, приводящие к потере или повреждению данных
- Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
- Дефекты, делающие возможным несанкционированный доступ к системе
- Дефекты, приводящие к потере функциональности
- Дефекты, приводящие к неправильным результатам или неточным данным
- Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика
#4. Срочные дефекты
Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.
#4. Дополнительные дефекты
#1. Отсутствующие дефекты
Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.
#2. Неправильные дефекты
Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.
#3. Дефекты регрессии
Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.
Часто задаваемые вопросы — Типы программных ошибок< /h2>
Почему так важна правильная классификация дефектов?
Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.
Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.
Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.
Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и исправить их до того, как они повлияют на конечных пользователей.
Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.
Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.
Как найти лежащие в основе ошибки программного обеспечения?
Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:
1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.
Заключение
В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.
Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa
Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.
Определение
Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.
Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:
- Появляется сообщение об ошибке, но приложение продолжает функционировать.
- ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
- Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.
Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.
История происхождения термина
Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:
- 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
- Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.
Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.
Как классифицируют
Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:
- Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
- Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
- Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.
Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.
Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.
Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.
Виды
Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).
Разработчики выделяют следующие типы ошибок по уровню сложности:
- «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
- «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
- «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
- «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.
Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.
Типы багов
Ошибки в программах бывают:
- логическими;
- синтаксическими;
- взаимодействия;
- компиляционные;
- ресурсные;
- арифметические;
- среды выполнения.
Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.
Ошибки синтаксиса
Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.
Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:
Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.
Логические
Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».
Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.
Выше – пример логической ошибки в программе. Тут:
- Происходит сравнение значения i с 15.
- На экран выводится сообщение, если I = 15.
- В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.
Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.
Время выполнения
Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.
Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.
Компиляционный тип
Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.
Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.
Ресурсные
Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.
Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.
Взаимодействие
Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.
Исключения и как избежать багов
Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.
Исключения бывают:
- Программными. Они генерируются приложением или ОС.
- Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.
Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.
P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.
From Wikipedia, the free encyclopedia
In computer programming, a logic error is a bug in a program that causes it to operate incorrectly, but not to terminate abnormally (or crash). A logic error produces unintended or undesired output or other behaviour, although it may not immediately be recognized as such.
Logic errors occur in both compiled and interpreted languages. Unlike a program with a syntax error, a program with a logic error is a valid program in the language, though it does not behave as intended. Often the only clue to the existence of logic errors is the production of wrong solutions, though static analysis may sometimes spot them.
Debugging logic errors[edit]
One of the ways to find this type of error is to put out the program’s variables to a file or on the screen in order to determine the error’s location in code. Although this will not work in all cases, for example when calling the wrong subroutine, it is the easiest way to find the problem if the program uses the incorrect results of a bad mathematical calculation.
Examples[edit]
This example function in C to calculate the average of two numbers contains a logic error. It is missing parentheses in the calculation, so it compiles and runs but does not give the expected answer due to operator precedence (division is evaluated before addition).
float average(float a, float b) { return a + b / 2; // should be (a + b) / 2 }
See also[edit]
- Syntax error
- Off-by-one error
Опытные программисты знают, что ошибки в программе делятся на два основных типа. Первая разновидность — это баги, которые вылавливаются при компиляции. К ним относятся преимущественно проблемы с синтаксисом, явная несовместимости типов и т.д. Эту разновидность багов исправляют на этапе разработки, так как компилятор «вылетает по ошибке». Их просто невозможно не заметить.
Второй тип – системные или логические ошибки – намного сложнее выявить. Компилятор их не замечает. Программа полностью работоспособна. Но в некоторых случаях она начинает выдавать результаты, отличные от ожидаемых.
Выявить этот вид багов удается только на этапе тестирования. И хорошо, если ошибку удается исправить локальной «заплаткой». Нередко приходится менять практически весь алгоритм. А это – дополнительные затраты времени, сил, а в коммерческих проектах – финансовые, а иногда и репутационные потери.
Застраховаться полностью от логических ошибок невозможно. Но вполне реально изучить самые распространенные типы таких багов и проверять на них программу на самых ранних этапах.
Алгоритм – основа всех основ
Написание алгоритма – это самый первый этап разработки, когда идеи только обретают форму еще без привязки к языку программирования. Нередко начинающие программисты относятся к созданию алгоритма «спустя рукава» — делают только «общие наброски» или вообще приступают к кодингу сразу без предварительной проработки логики «на бумаге».
Такой подход возможен при решении учебных задач на 10-15 строк кода. Но при работе над серьезным программным продуктом пренебрежение алгоритмом – почти гарантированный путь к логическим ошибкам и катастрофическим результатам.
Как работать с алгоритмом:
- Начинайте с малого. Запишите алгоритм упрощенно, в виде «черных ящиков» (логических блоков без подробностей их работы). Это поможет оценить работоспособность идеи в целом.
- Двигайтесь сверху вниз. Сначала – общая идея «в целом», далее – детализация основных функций и так далее. Не бойтесь ставить «заглушки» и прорабатывать мелкие детали в последнюю очередь. Двигаться сверху вниз проще и с точки зрения логики, и психологически.
- Пишите команды «от имени компьютера». Помните, что вы имеете дело не с человеком, а с компьютером, который буквально выполняет команды и после каждого шага ждет ответа на вопрос «что делать». Например, логический блок «сохранение документа» будет понятен вам, но не компьютеру. Он вполне подойдет на этапе крупных блоков в качестве заглушки. Но далее придется проработать все действия пошагово с учетом выбранного языка программирования.
- Делите код на отдельные модули (блоки), которые можно будет запускать отдельно друг от друга. Это сильно облегчит как алгоритмизацию, так и процесс отладки.
- Читайте алгоритм «как будто компьютер». Проверяйте себя на каждом этапе. Главное правило – одинаковые данные всегда должны вести к одинаковым результатам.
Итак, алгоритм написан и проверен со всех сторон. Выбран язык программирования. Начинается процесс кодинга. Давайте разбираться, на что обращать особое внимание.
«Не туда положил»: о типах данных
Здесь проблемы возникают в двух случаях:
- При статической типизации в таких языках, как С++, Java или С# неверно определен тип переменной. Большинство подобных ошибок выявляет компилятор. Но здесь есть свои «лазейки» для багов. Например, в С# вполне возможно «положить» вещественное значение в целочисленную переменную. И оно просто округлится до целого. Т.е. вместо 1,3 у вас будет храниться значение 1. Само собой, все дальнейшие вычисления будут содержать ошибку.
- При динамической типизации (JavaScript, Python, PHP) неявное приведение типов – самое обычное дело. А потому здесь даже компилятор промолчит в случае ошибки. Например, вы планируете получить целочисленное значение, для чего отправляете результаты вычислений в переменную типа int. Но программа видит «знаки после запятой», и переменная без вашего участия меняет тип на float.
Самый известный пример подобной ошибки – деление двух целых чисел с остатком.
int a = 25;
int b = 8;
float c = a/b;
Console.Write(c);
Как вы думаете, какое число будет выведено на экран после выполнения последней строки? По идее, это должно быть 3,125. Но, например, в C# вы увидите целую цифру «3». Причем, тип переменной С будет float, как вы и заказывали.
Здесь проблема в другом: компилятор сначала проводит целочисленное деление, так как определяет переменные A и B как относящиеся к типу int. И полученный результат отправляет в переменную C (тип float). Целое значение (32 разряда) прекрасно помещается в 64-разрядный float, отведенный под хранение результата. Компилятор не видит ошибки. А у вас в программе появляются неточные вычисления, которые могут повлечь за собой большие проблемы.
Аналогичным образом компилятор округлит значение до целого и в Python 2. А уже в Python 3 алгоритм преобразования типов сработает иначе: сначала определится тип переменной, куда отправляется значение, а потом будет проводиться деление. После компиляции кода в Python 3 вы получите c=3,125.
Необходимо четко понимать, как работает преобразование типов в выбранном языке программирования. И в случае любых сомнений проверять результаты в отладчике.
Высвобождение ресурсов: до 100% загрузки процессора
Если вы работаете с языком, где реализована автоматическая сборка мусора, внимательно следите за тем, как происходит высвобождение ресурсов. В отдельных случаях эта полезная функция может начать работать во вред: отбирать для себя максимум памяти, загружать дополнительными задачами процессор, замедлять и даже «подвешивать» программу.
Например, в Java этот процесс работает так:
- Виртуальная машина проводит поиск ненужных объектов;
- Составляет из них очередь на удаление;
- По мере продвижения очереди очищает ячейки памяти.
В результате очередь может стать настолько большой, что компьютер перестанет с ней справляться. А до удаления всех ненужных объектов дело может даже не дойти.
Как итог, программа «загрязняет» память служебной информацией. Кроме того, формируется уязвимость: в этой «свалке данных» могут оказаться логины с паролями и другие личные данные.
Намного надежнее своевременно применять функции типа try-with-resources и try-finally. И все ресурсы очищать в том коде, где вы их получили.
И еще: не забывайте закрывать сессии и файлы сразу после того, как они перестают быть нужны. Это должно быть также естественно, как закрыть скобку в коде.
Конфликт потоков: кто первый успеет?
Если программа работает с несколькими потоками одновременно, необходимо исключить ситуацию конфликта потоков. Так бывает, когда процессы наперегонки пытаются работать с общими ресурсами, в итоге нарушают целостность данных и последовательность действий.
Например: первый поток в результате вычислений получает значение 1, отправляет его в переменную. В это время второй поток перехватывает доступ и обнуляет эту переменную. А первый – сохраняет значение. В результате вы планировали запомнить значение 1. А у вас сразу после вычислений сохраняется 0. И далее копятся ошибка за ошибкой.
Чтобы избежать этой проблемы не забывайте при работе с разными потоками ставить блокировки, чтобы они не обращались одновременно к одним и тем же ресурсам. Можно применять и другие методы синхронизации – события, семафоры, критические секции.
Переменные: склонность к глобализации
Эта ошибка популярна у новичков – стремление объявить сразу все переменные и сделать их глобальными. В результате таких действий вы:
- перегружаете ресурсы оборудования;
- получаете множество уязвимостей, которые сложно закрыть;
- усложняете в разы отладку и поиск багов.
На глобальном уровне определяют только необходимый минимум – те самые глобальные переменные, с которыми работают практически все модули. Все остальные объявляйте в тех модулях, где они работают. И не забывайте об идентификаторах ограничения доступа: public, private и protected.
Переполнение буфера в С/С++: «танцы на граблях»
В большинстве современных языках программирования высокого уровня вопрос буферизации решен на автоматическом уровне. Например, Java самостоятельно контролирует размер буфера и определяет границы массивов.
Но нередко для экономии ресурсов программисты используют C-библиотеки. В этом случае очень важно следить за буферизацией. Дело в том, что языки C/С++ очень уязвимы к переполнению буфера. Если он окажется меньше, чем нужно для работы, программа попытается использовать память за пределами выделенного участка. Результат – многочисленные, можно сказать, легендарные ошибки, когда в обрабатываемые данные попадает «неведомый мусор».
Хуже того, это очень известная уязвимость. С 1988 года хакеры пользуются этой «дырой», чтобы подменить адрес возврата в стеке на собственный. Так в программу попадает подставная функция, которая передает управление коду мошенников.
Изучите особенности работы с буфером и методы борьбы с его переполнением, чтобы не пополнить число «танцующих на граблях с 30-летней историей».
Отладка и поиск логических багов
И, напоследок, несколько советов, как выявить проблему, если вы подозреваете, что с программой что-то не так.
- Пользуйтесь возможностями отладчика вашей IDE. Ставьте контрольные точки, отражайте на консоли ход выполнения и значения переменных, переходите в «пошаговый режим» выполнения в наиболее «подозрительных» участках кода. Так вы быстрее сможете локализовать проблему.
- Помните: компилятор может неправильно указывать строку с ошибкой. Если вам повезло, и компилятор помог вам выявить баг, не спешите радоваться. При «завершении с ошибкой» вы видите номер строки, в которой выполнение программы стало невозможным. Если проблема в простейшей опечатке (синтаксис), то строка с багом вам известна. В случае логических ошибок вероятнее всего, проблема появилась на более ранних этапах работы программы. А в указанной строке была попытка использовать ошибочные данные, что и привело к аварийному завершению.
- Старый добрый листинг программы тоже может помочь. Если вы запутались и не знаете, что делать, распечатайте код и попробуйте его «выполнить» как будто вы – и есть компьютер. Шаг за шагом двигайте по командам. Переходите от блока к блоку так, как это делает программа. На каждом этапе вычисляйте и фиксируйте значения переменных (калькулятором пользоваться можно). И сверяйте результаты с ожидаемыми. Все в порядке? Двигайтесь дальше. Что-то не так? Ура! Вы локализовали баг. Можно возвращаться за компьютер и разбираться подробнее в этом фрагменте кода в отладчике.
И самое главное: не бойтесь что-то менять, в том числе, на глобальном уровне. Лучше переписать «сырой» код на раннем этапе разработки практически полностью, чем из-за серьезной логической ошибки терять в скорости и качестве работы программы, пытаясь использовать кучу «заплаток». От ошибок не застрахован никто. Потраченного времени жаль, но это – ваш личный практический опыт. А программа должна работать быстро, надежно и, самое главное, правильно.
Отладка, или debugging, — это поиск (локализация), анализ и устранение ошибок в программном обеспечении, которые были найдены во время тестирования.
Виды ошибок
Ошибки компиляции
Это простые ошибки, которые в компилируемых языках программирования выявляет компилятор (программа, которая преобразует текст на языке программирования в набор машинных кодов). Если компилятор показывает несколько ошибок, отладку кода начинают с исправления самой первой, так как она может быть причиной других.
В интерпретируемых языках (например Python) текст программы команда за командой переводится в машинный код и сразу исполняется. К моменту обнаружения ошибки часть программы уже может исполниться.
Ошибки компоновки
Ошибки связаны с разрешением внешних ссылок. Выявляет компоновщик (редактор связей) при объединении модулей программы. Простой пример — ситуация, когда требуется обращение к подпрограмме другого модуля, но при компоновке она не найдена. Ошибки также просто найти и устранить.
Ошибки выполнения (RUNTIME Error)
Ошибки, которые обнаруживают операционная система, аппаратные средства или пользователи при выполнении программы. Они считаются непредсказуемыми и проявляются после успешной компиляции и компоновки. Можно выделить четыре вида проявления таких ошибок:
- сообщение об ошибке, которую зафиксировали схемы контроля машинных команд. Это может быть переполнение разрядной сетки (когда старшие разряды результата операции не помещаются в выделенной области памяти), «деление на ноль», нарушение адресации и другие;
- сообщение об ошибке, которую зафиксировала операционная система. Она же, как правило, и документирует ошибку. Это нарушение защиты памяти, отсутствие файла с заданным именем, попытка записи на устройство, защищенное от записи;
- прекращение работы компьютера или зависание. Это и простые ошибки, которые не требуют перезагрузки компьютера, и более сложные, когда нужно выключать ПК;
- получение результатов, которые отличаются от ожидаемых. Программа работает стабильно, но выдает некорректный результат, который пользователь воспринимает за истину.
Ошибки выполнения можно разделить на три большие группы.
Ошибки определения данных или неверное определение исходных данных. Они могут появиться во время выполнения операций ввода-вывода.
К ним относятся:
- ошибки преобразования;
- ошибки данных;
- ошибки перезаписи.
Как правило, использование специальных технических средств для отладки (API-логгеров, логов операционной системы, профилировщиков и пр.) и программирование с защитой от ошибок помогает обнаружить и решить лишь часть из них.
Логические ошибки. Они могут возникать из ошибок, которые были допущены при выборе методов, разработке алгоритмов, определении структуры данных, кодировании модуля.
В эту группу входят:
- ошибки некорректного использования переменных. Сюда относятся неправильный выбор типов данных, использование индексов, выходящих за пределы определения массивов, использование переменных до присвоения переменной начального значения, нарушения соответствия типов данных;
- ошибки вычислений. Это некорректная работа с переменными, неправильное преобразование типов данных в процессе вычислений;
- ошибки взаимодействия модулей или межмодульного интерфейса. Это нарушение типов и последовательности при передаче параметров, области действия локальных и глобальных переменных, несоблюдение единства единиц измерения формальных и фактических параметров;
- неправильная реализация логики при программировании.
Ошибки накопления погрешностей. Могут возникать при неправильном округлении, игнорировании ограничений разрядной сетки, использовании приближенных методов вычислений и т.д.
Методы отладки программного обеспечения
Метод ручного тестирования
Отладка программы заключается в тестировании вручную с помощью тестового набора, при работе с которым была допущена ошибка. Несмотря на эффективность, метод не получится использовать для больших программ или программ со сложными вычислениями. Ручное тестирование применяется как составная часть других методов отладки.
Метод индукции
В основе отладки системы — тщательный анализ проявлений ошибки. Это могут быть сообщения об ошибке или неверные результаты вычислений. Например, если во время выполнения программы завис компьютер, то, чтобы найти фрагмент проявления ошибки, нужно проанализировать последние действия пользователя. На этапе отладки программы строятся гипотезы, каждая из них проверяется. Если гипотеза подтвердилась, информация об ошибке детализируется, если нет — выдвигаются новые.
Вот как выглядит процесс:
Важно, чтобы выдвинутая гипотеза объясняла все проявления ошибки. Если объясняется только их часть, то либо гипотеза неверна, либо ошибок несколько.
Метод дедукции
Сначала специалисты предлагают множество причин, по которым могла возникнуть ошибка. Затем анализируют их, исключают противоречащие имеющимся данным. Если все причины были исключены, проводят дополнительное тестирование. В обратном случае наиболее вероятную причину пытаются доказать.
Метод обратного прослеживания
Эффективен для небольших программ. Начинается с точки вывода неправильного результата. Для точки выдвигается гипотеза о значениях основных переменных, которые могли привести к ошибке. Далее на основании этой гипотезы строятся предположения о значениях переменных в предыдущей точке. Процесс продолжается до момента, пока не найдут ошибку.
Как выполняется отладка в современных IDE
Ранние отладчики, например gdb, представляли собой отдельные программы с интерфейсами командной строки. Более поздние, например первые версии Turbo Debugger, были автономными, но имели собственный графический интерфейс для облегчения работы. Сейчас большинство IDE имеют встроенный отладчик. Он использует такой же интерфейс, как и редактор кода, поэтому можно выполнять отладку в той же среде, которая используется для написания кода.
Отладчик позволяет разработчику контролировать выполнение и проверять (или изменять) состояние программ. Например, можно использовать отладчик для построчного выполнения программы, проверяя по ходу значения переменных. Сравнение фактических и ожидаемых значений переменных или наблюдение за ходом выполнения кода может помочь в отслеживании логических (семантических) ошибок.
Пошаговое выполнение — это набор связанных функций отладчика, позволяющих поэтапно выполнять код.
Шаг с заходом (step into)
Команда выполняет очередную инструкцию, а потом приостанавливает процесс, чтобы с помощью отладчика было можно проверить состояние программы. Если в выполняемом операторе есть вызов функции, step into заставляет программу переходить в начало вызываемой функции, где она приостанавливается.
Шаг с обходом (step over)
Команда также выполняет очередную инструкцию. Однако когда step into будет входить в вызовы функций и выполнять их строка за строкой, step over выполнит всю функцию, не останавливаясь, и вернет управление после ее выполнения. Команда step over позволяет пропустить функции, если разработчик уверен, что они уже исправлены, или не заинтересован в их отладке в данный момент.
Шаг с выходом (step out)
В отличие от step into и step over, step out выполняет не следующую строку кода, а весь оставшийся код функции, исполняемой в настоящее время. После возврата из функции он возвращает управление разработчику. Эта команда полезна, когда специалист случайно вошел в функцию, которую не нужно отлаживать.
Как правило, при пошаговом выполнении можно идти только вперед. Поэтому легко перешагнуть место, которое нужно проверить. Если это произошло, необходимо перезапустить отладку.
У некоторых отладчиков (таких как GDB 7.0, Visual Studio Enterprise Edition 15.5 и более поздних версий) есть возможность вернуться на шаг назад. Это полезно, если пропущена цель либо нужно повторно проверить выполненную инструкцию.