Что такое ошибка репрезентативности выборочной средней

В
статистике выделяют два основных метода
исследования — сплошной и выборочный.
При проведении выборочного исследования
обязательным является соблюдение
следующих требований: репрезентативность
выборочной совокупности и достаточное
число единиц наблюдений. При выборе
единиц наблюдения возможны ошибки
смещения
,
т.е. такие события, появление которых
не может быть точно предсказуемым. Эти
ошибки являются объектив­ными и
закономерными. При определении степени
точности выборочно­го исследования
оценивается величина ошибки, которая
может прои­зойти в процессе выборки
случайная
ошибка репрезентативности (
m)
является
фактической разностью между средними
или относительными величинами, полученными
при проведении выборочного исследования
и аналогичными величинами, которые были
бы получены при проведении исследования
на гене­ральной совокупности.

Оценка
достоверности результатов исследования
предусматривает определение:

1.
ошибки репрезентативности

2.
доверительных границ средних (или
относительных) величин в генеральной
совокупности

3.
достоверности разности средних (или
относительных) величин (по критерию t)

Расчет
ошибки репрезентативности

(mм)
средней арифмети­ческой величины
(М):

,
где σ
— среднее квадратическое отклонение; n
— численность выборки (>30).

Расчет
ошибки репрезентативности (mР)
относительной величины (Р):

,
где Р — соответствующая относительная
величина (рассчитанная, например, в %);

q
=100 — Ρ%
— величина, обратная Р; n
— численность выборки (n>30)

В
клинических и экспериментальных работах
довольно часто приходится использовать
малую
выборку,
когда
число наблюдений меньше или равно 30.
При малой выборке для расчета ошибок
репрезентатив­ности, как средних, так
и относительных величин,
число
наблюде­ний уменьшается на единицу,
т.е.

;
.

Величина
ошибки репрезентативности зависит от
объема выборки: чем больше число
наблюдений, тем меньше ошибка. Для оценки
достоверности выборочного показателя
принят следующий подход: показатель
(или средняя величина) должен в 3 раза
превышать свою ошибку, в этом случае он
считается достоверным.

83. Определение доверительных границ средних и относительных величин.

Знание
величины ошибки недостаточно для того,
чтобы быть уве­ренным в результатах
выборочного исследования, так как
конкрет­ная ошибка выборочного
исследования может быть значительно
больше (или меньше) величины средней
ошибки репрезентативности. Для
оп­ределения точности, с которой
исследователь желает получить ре­зультат,
в статистике используется такое понятие,
как вероят­ность безошибочного
прогноза, которая является характеристикой
надежности результатов выборочных
медико-биологических статистических
исследований. Обычно, при проведении
медико-биологических статистических
исследований используют вероятность
безошибочного прогноза 95% или 99%. В
наиболее ответственных случаях, когда
необходимо сделать особенно важные
выводы в теоретическом или практическом
отношении, используют вероятность
безошибочного прогноза 99,7%

Определенной
степени вероятности безошибочного
прогноза соот­ветствует определенная
величина предельной
ошибки случайной выборки (
Δ
— дельта)
,
которая определяется по формуле:

Δ=t
* m
, где t
— доверительный коэффициент, который
при большой выборке при вероятности
безо­шибочного прогноза 95% равен 2,6;
при вероятности безоши­бочного
прогноза 99% — 3,0; при вероятности
безошибочно­го прогноза 99,7% — 3,3, а при
малой выборке определяется по специальной
таблице значений t
Стьюдента.

Используя
предельную ошибку выборки (Δ),
можно определить до­верительные
границы
,
в которых с определенной вероятностью
безо­шибочного прогноза заключено
действительное значение статистичес­кой
величины,
характеризующей
всю генеральную совокупность (сред­ней
или относительной).

Для
определения доверительных границ
используются следующие формулы:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В
статистике выделяют два основных метода
исследования — сплошной и выборочный.
При проведении выборочного исследования
обязательным является соблюдение
следующих требований: репрезентативность
выборочной совокупности и достаточное
число единиц наблюдений. При выборе
единиц наблюдения возможны ошибки
смещения
,
т.е. такие события, появление которых
не может быть точно предсказуемым. Эти
ошибки являются объектив­ными и
закономерными. При определении степени
точности выборочно­го исследования
оценивается величина ошибки, которая
может прои­зойти в процессе выборки
случайная
ошибка репрезентативности (
m)
является
фактической разностью между средними
или относительными величинами, полученными
при проведении выборочного исследования
и аналогичными величинами, которые были
бы получены при проведении исследования
на гене­ральной совокупности.

Оценка
достоверности результатов исследования
предусматривает определение:

1.
ошибки репрезентативности

2.
доверительных границ средних (или
относительных) величин в генеральной
совокупности

3.
достоверности разности средних (или
относительных) величин (по критерию t)

Расчет
ошибки репрезентативности

(mм)
средней арифмети­ческой величины
(М):

,
где σ
— среднее квадратическое отклонение; n
— численность выборки (>30).

Расчет
ошибки репрезентативности (mР)
относительной величины (Р):

,
где Р — соответствующая относительная
величина (рассчитанная, например, в %);

q
=100 — Ρ%
— величина, обратная Р; n
— численность выборки (n>30)

В
клинических и экспериментальных работах
довольно часто приходится использовать
малую
выборку,
когда
число наблюдений меньше или равно 30.
При малой выборке для расчета ошибок
репрезентатив­ности, как средних, так
и относительных величин,
число
наблюде­ний уменьшается на единицу,
т.е.

;
.

Величина
ошибки репрезентативности зависит от
объема выборки: чем больше число
наблюдений, тем меньше ошибка. Для оценки
достоверности выборочного показателя
принят следующий подход: показатель
(или средняя величина) должен в 3 раза
превышать свою ошибку, в этом случае он
считается достоверным.

83. Определение доверительных границ средних и относительных величин.

Знание
величины ошибки недостаточно для того,
чтобы быть уве­ренным в результатах
выборочного исследования, так как
конкрет­ная ошибка выборочного
исследования может быть значительно
больше (или меньше) величины средней
ошибки репрезентативности. Для
оп­ределения точности, с которой
исследователь желает получить ре­зультат,
в статистике используется такое понятие,
как вероят­ность безошибочного
прогноза, которая является характеристикой
надежности результатов выборочных
медико-биологических статистических
исследований. Обычно, при проведении
медико-биологических статистических
исследований используют вероятность
безошибочного прогноза 95% или 99%. В
наиболее ответственных случаях, когда
необходимо сделать особенно важные
выводы в теоретическом или практическом
отношении, используют вероятность
безошибочного прогноза 99,7%

Определенной
степени вероятности безошибочного
прогноза соот­ветствует определенная
величина предельной
ошибки случайной выборки (
Δ
— дельта)
,
которая определяется по формуле:

Δ=t
* m
, где t
— доверительный коэффициент, который
при большой выборке при вероятности
безо­шибочного прогноза 95% равен 2,6;
при вероятности безоши­бочного
прогноза 99% — 3,0; при вероятности
безошибочно­го прогноза 99,7% — 3,3, а при
малой выборке определяется по специальной
таблице значений t
Стьюдента.

Используя
предельную ошибку выборки (Δ),
можно определить до­верительные
границы
,
в которых с определенной вероятностью
безо­шибочного прогноза заключено
действительное значение статистичес­кой
величины,
характеризующей
всю генеральную совокупность (сред­ней
или относительной).

Для
определения доверительных границ
используются следующие формулы:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ

Государственное бюджетное профессиональное образовательное учреждение города Москвы

«ЮРИДИЧЕСКИЙ КОЛЛЕДЖ»

(ГБПОУ Юридический колледж)

ПЛАН-КОНСПЕКТ учебного занятия

по ОП.11 Статистика

учебной дисциплине/междисциплинарному курсу

для обучающихся 2 курса

специальность 40.02.01 Право и организация социального обеспечения

(набор 2016 г.)

(углубленная подготовка)

дата проведения занятия по расписанию

Тема 3.1. Выборочное наблюдение

Занятие 15.  ПЗ №8 Определение ошибки репрезентативности.

Определение объема выборочной совокупности

Цель занятия: отработать практические навыки по определению доверительных пределов и исчислению ошибок выборки 

Задачи занятия:

Обучающая: Обеспечить усвоение обучающимися материала о понятиях: ошибки репрезентативности, выборка, выборочная совокупность;

Воспитательная: воспитывать навыки самостоятельной работы, чувство ответственности за порученный участок работы, дисциплину  умственного труда, уверенность в своих силах, стремление к достижению результата;

Развивающая: создавать условия для развития самостоятельности мышления, способности высказывания собственной точки зрения, систематизировать необходимую информацию, анализировать, сравнивать и обобщать информацию, развивать монологическую речь.

Основная литература:

Глава 11. Выборочное наблюдение. (211-220) Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО 

Дополнительная литература:

 Савюк Л.К. Правовая статистика: Учебник. — М.: Юрист, 2016

Интернет-ресурсы:

  1. Информационно-издательский центр «Статистика России» http://www.statbook.ru 
  2. Электронный фонд правовой и технической документации http://docs.cntd.ru 
  3. Информационно правовой портал http://www.garant.ru/

Междисциплинарные связи: Право социальное обеспечение

Внутридисциплинарные связи: Тема 2.1. Сводка и группировка статистических данных

1. Актуализация знаний по ранее пройденному материалу учебного курса

(ответить на вопросы (тестовые задания) и провести самооценку усвоенного материала)

Таблица 1.

Вопрос

(тестовое задание)

Ответ

  1. Задача сводки…
  1. дать характеристику объекту исследования с помощью запроектированных систем статистических показателей, выявить и измерить такие путем его существенные черты и особенности;
  2. дать характеристику объекту исследования с помощью запроектированных систем статистических показателей;
  3. выявить и измерить такие путем его существенные черты и особенности;
  4. подсчет общих и групповых итогов, получение системы взаимосвязанных показателей.
  1. Перегруппировка ранее сгруппированных данных статистического наблюдения называется:
  1. типологической группировкой;
  2. структурной группировкой;
  3. вторичной группировкой;
  4. аналитической группировкой.
  1. Плотность распределения – это
  1. частота, рассчитанная на единицу ширины интервала;
  2. количество единиц в ширине интервала;
  3. все верно;
  4. нет верного ответа.
  1. К атрибутивным группировочным признакам относятся:
  1. пол человека;
  2. возраст человека;
  3. среднедушевой доход семьи;
  4. правильного ответа нет.
  1. «Объем производства товаров и услуг», по временному фактору относятся к …
  1. моментному виду;
  2. интервальному виду;
  3. минутному виду;
  4. интенсивному виду.

2. Изучаемые вопросы занятия

1. Определение ошибки репрезентативности.

2. Определение объема выборочной совокупности.

Вопрос 1.        Определение ошибки репрезентативности

В статистике выделяют два основных метода исследования – сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны Ошибки смещения, т. е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки – Случайная ошибка репрезентативности (M) – Является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности.

Оценка достоверности результатов исследования предусматривает определение:

1. ошибки репрезентативности

2. доверительных границ средних (или относительных) величин в генеральной совокупности

3. достоверности разности средних (или относительных) величин (по критерию t)

Расчет ошибки репрезентативности (mм) средней арифметической величины (М):

https://uchenie.net/wp-content/uploads/2012/08/image142.pnghttps://uchenie.net/wp-content/uploads/2012/08/image143.png, где σ – среднее квадратическое отклонение; n – численность выборки (>30).

Расчет ошибки репрезентативности (mР) относительной величины (Р):

https://uchenie.net/wp-content/uploads/2012/08/image144.png, где Р – соответствующая относительная величина (рассчитанная, например, в %);

Q =100 – Ρ% – величина, обратная Р; n – численность выборки (n>30)

В клинических и экспериментальных работах довольно часто приходится использовать Малую выборку, Когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величинЧисло наблюдений уменьшается на единицу, т. е.

https://uchenie.net/wp-content/uploads/2012/08/image145.pnghttps://uchenie.net/wp-content/uploads/2012/08/image146.png.

Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным.

Знание величины ошибки недостаточно для того, чтобы быть уверенным в результатах выборочного исследования, так как конкретная ошибка выборочного исследования может быть значительно больше (или меньше) величины средней ошибки репрезентативности. Для определения точности, с которой исследователь желает получить результат, в статистике используется такое понятие, как вероятность безошибочного прогноза, которая является характеристикой надежности результатов выборочных медико-биологических статистических исследований. Обычно, при проведении медико-биологических статистических исследований используют вероятность безошибочного прогноза 95% или 99%. В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы в теоретическом или практическом отношении, используют вероятность безошибочного прогноза 99,7%

Определенной степени вероятности безошибочного прогноза соответствует определенная величина Предельной ошибки случайной выборки (Δ – дельта), которая определяется по формуле:

Δ=t * m, где t – доверительный коэффициент, который при большой выборке при вероятности безошибочного прогноза 95% равен 2,6; при вероятности безошибочного прогноза 99% – 3,0; при вероятности безошибочного прогноза 99,7% – 3,3, а при малой выборке определяется по специальной таблице значений t Стьюдента.

Используя предельную ошибку выборки (Δ), можно определить Доверительные границы, в которых с определенной вероятностью безошибочного прогноза заключено действительное значение статистической величины, Характеризующей всю генеральную совокупность (средней или относительной).

Для определения доверительных границ используются следующие формулы:

  1. для средних величин:

 https://uchenie.net/wp-content/uploads/2012/08/image147.png,где Мген – доверительные границы средней величины в генеральной совокупности;

Мвыб – средняя величинаПолученная при проведении исследования на выборочной совокупности; t – доверительный коэффициент, значение которого определяется степенью вероятности безошибочного прогноза, с которой исследователь желает получить результат; mM – ошибка репрезентативности средней величины.

     2) для относительных величин:

https://uchenie.net/wp-content/uploads/2012/08/image148.png, где Рген – доверительные границы относительной величины в генеральной совокупности; Рвыб – относительная величина, полученная при проведении исследования на выборочной совокупности; t – доверительный коэффициент; mP – ошибка репрезентативности относительной величины.

Доверительные границы показывают, в каких пределах может колебаться размер выборочного показателя в зависимости от причин случайного характера.

При малом числе наблюдений (n<30), для вычисления доверительных границ значение коэффициента t находят по специальной таблице Стьюдента. Значения t расположены в таблице на пересечении с избранной вероятностью безошибочного прогноза и строкиУказывающей на имеющееся число степеней свободы (n)Которое равно n-1.

на определение ошибок репрезентативности (m) и доверительных границ средней величины генеральной совокупности (Мген) при числе наблюдений больше 30

Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у 36 обследованных водителей сельскохозяйственных машин через 1 ч работы составила 80 ударов в 1 минуту; σ = ± 6 ударов в минуту.

Задание: определить ошибку репрезентативности (mM) и доверительные границы средней величины генеральной совокупности (Мген).

Решение.

  1. Вычисление средней ошибки средней арифметической (ошибки репрезентативности) (m): m = σ / √n = 6 / √36 = ±1 удар в минуту
  2. Вычисление доверительных границ средней величины генеральной совокупности (Мген). Для этого необходимо:
  • а) задать степень вероятности безошибочного прогноза (Р = 95 %);
  • б) определить величину критерия t. При заданной степени вероятности (Р=95%) и числе наблюдений меньше 30 величина критерия t, определяемого по таблице, равна 2 (t = 2). Тогда Мген = Мвыб ± tm = 80 ± 2×1 = 80 ± 2 удара в минуту.

Вывод. Установлено с вероятностью безошибочного прогноза Р = 95%, что средняя частота пульса в генеральной совокупности, т.е. у всех водителей сельскохозяйственных машин, через 1 ч работы в аналогичных условиях будет находиться в пределах от 78 до 82 ударов в минуту, т.е. средняя частота пульса менее 78 и более 82 ударов в минуту возможна не более, чем у 5% случаев генеральной совокупности.

на определение ошибок репрезентативности (m) и доверительных границ относительного показателя генеральной совокупности (Рген)

Условие задачи: при медицинском осмотре 164 детей 3 летнего возраста, проживающих в одном из районов городе Н., в 18% случаев обнаружено нарушение осанки функционального характера.

Задание: определить ошибку репрезентативности (mp) и доверительные границы относительного показателя генеральной совокупности (Рген).

Решение.

  1. Вычисление ошибки репрезентативности относительного показателя: m = √P x q / n = √18 x (100 — 18) / 164 = ± 3%
  2. Вычисление доверительных границ средней величины генеральной совокупности (Рген) производится следующим образом:
  • необходимо задать степень вероятности безошибочного прогноза (Р=95%);
  • при заданной степени вероятности и числе наблюдений больше 30, величина критерия t равна 2 (t = 2). Тогда Рген = Рвыб± tm = 18% ± 2 х 3 = 18% ± 6%.

Вывод. Установлено с вероятностью безошибочного прогноза Р=95%, что частота нарушения осанки функционального характера у детей 3 летнего возраста, проживающих в городе Н., будет находиться в пределах от 12 до 24% случаев.

на оценку достоверности разности средних величин

Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у водителей сельскохозяйственных машин через 1 ч после начала работы составила 80 ударов в минуту; m = ± 1 удар в мин. Средняя частота пульса у этой же группы водителей до начала работы равнялась 75 ударам в минуту; m = ± 1 удар в минуту.

Задание: оценить достоверность различий средних значений пульса у водителей сельскохозяйственных машин до и после 1 ч работы.

Решение.

https://extra.im/wp-content/uploads/2018/09/6.png

Вывод. Значение критерия t = 3,5 соответствует вероятности безошибочного прогноза Р > 99,7%, следовательно можно утверждать, что различия в средних значениях пульса у водителей сельскохозяйственных машин до и после 1 ч работы не случайно, а достоверно, существенно, т.е. обусловлено влиянием воздействия шума и низкочастотной вибрации.

на оценку достоверности разности относительных показателей

Условие задачи: при медицинском осмотре детей 3 летнего возраста в 18% (m = ± 3%) случаях обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 4-летнего возраста составила 24% (m = ± 2,64%).

Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп.

Решение.

https://extra.im/wp-content/uploads/2018/09/7.png

Вывод. Значение критерия t=1,5 соответствует вероятности безошибочного прогноза Р<95%. Следовательно, различие в частоте нарушений осанки среди детей, сравниваемых возрастных групп случайно, недостоверно, несущественно, т.е. не обусловлено влиянием возраста детей.

Источники информации по 1 вопросу

Автор и наименование

Страницы

(форма доступа для Интернет-ресурсов)

Основная литература

Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО

 стр. 211-220

Интернет ресурсы

  1. Информационно-издательский центр «Статистика России»

http://www.statbook.ru

  1. Электронный фонд правовой и технической документации

http://docs.cntd.ru 

  1. Информационно правовой портал

http://www.garant.ru/

Контрольное задание по Вопросу 1

  1. Записать в тетрадь конспект (1-2 стр.)

Вопрос 2. Определение объема выборочной совокупности

 Социологические исследования редко бывают сплошными, как, например, перепись населения. Обычно сплошное исследование проводится при небольшой генеральной совокупности.

Чаще всего исследования носят выборочный характер, при котором наиболее важным основанием является возможность распространения полученных результатов и выводов на всю генеральную совокупность. В таком случае сплошное исследование  нецелесообразно. Обеспечение этой нецелесообразности — вопрос о репрезентативности выборки, т.е. достаточной количественной и качественной представительности генеральной совокупности в выборке.

Условиями соблюдения репрезентативности выборки являются:

1) равная возможность каждого члена генеральной совокупности попасть в выборку;

2) отбор необходимо проводить независимо от изучаемого признака (иначе в выборку могут попасть, например, только спортсмены);

3) отбор по возможности должен производиться из однородных совокупностей;

4) величина выборки должна быть достаточно большой.

Далее возникает вопрос: как определить достаточный объем выборки? Для этого необходимо иметь характеристики генеральной совокупности по важнейшим (с точки зрения исследования) признакам. К ним, например, можно отнести сведения о количестве желающих заниматься физической культурой и спортом, о числе занимающихся и т.д. Но, как правило, такие характеристики (или многие из них) не известны. Пилотажные исследования как раз и направлены на их выявление.

Приведем пример определения объема выборочной совокупности. В ходе подготовки к проведению конкретно-социологического исследования на основании теоретических посылок были выделены характеристики и признаки, подлежащие изучению. Например, желание заниматься физической культурой, спортом, величина потребности, участие в видах деятельности и др.

На основании результатов изучения этих признаков в пробном исследовании (30 и более респондентов) определяется объем выборки.

Предположим, что в пробном исследовании опрошено 147 студентов 4-х курсов в четырех вузах Республики Беларусь.

Для желания заниматься физической культурой получены следующие распределения:

1.«Нет, не хочу» — 5 человек;

2.«Скорее не хочу, чем хочу» — 3 человека;

3.«Безразлично» — 11 человек;

4.«Скорее хочу, чем не хочу» — 34 человека;

5.«Да, хочу» — 72 человека.

Для расчета объема выборки используются формулы:

http://ebooks.grsu.by/gorodilin/5.GIF

t — 1,96 — распределение Стьюдента для вероятности 0,95 или 95% (т.е., если требуемая вероятность соответствия характеристик выборки и характеристик генеральной совокупности 95%, всегда = 1,96. Их соответствие на 95% — общепринятое требование в социологических исследованиях.

Для нашего распределения:

http://ebooks.grsu.by/gorodilin/3.GIF

При условии, что выборка в пробном исследовании представляла бы собой модель генеральной совокупности, величина выборочной совокупности для изучения желания заниматься физической культурой должна быть не меньше 147 человек. Тогда с вероятностью 95% можно утверждать, что генеральное среднее лежит в пределах 4,39+0,155.

Поскольку модель выборки в пробном исследовании во вузам не представляет собой модели генеральной совокупности (опрос был в четырех вузах из 30), то увеличиваем полученное n (30/4) в 7,5 раза. Тогда необходимый объем выборки — 1102 респондента.

Качественная представительность полученной выборки оценивается сравнением существенных характеристик (либо связанных с существенными) генеральной совокупности и выборки. Для студенчества, например, такими характеристиками являются: соотношение по полу, охват учебными занятиями по физическому воспитанию, соотношение форм занятий и др.

Когда информация о признаках элементов генеральной совокупности отсутствует, исключается возможность определения объема выборочной совокупности при помощи формул. В этом случае можно опереться на многолетний опыт социологов — практиков, свидетельствующий о том, что для пробных опросов достаточна выборка объемом 100-250 человек. При массовых опросах, если величина генеральной совокупности 5000 человек, достаточный объем выборочной совокупности — не менее 500 человек, если же величина генеральной совокупности 5000 человек и более, то — 10% ее состава (но не более 2000-2500 человек). Это характеризует достаточно достоверные результаты исследования.

ПРИМЕР 1

При проверке импортирования груза на таможне методом случайной выборки было обработано 200 изделий. В результате был установлен средний вес изделия 30г., при СКО=4г с вероятностью 0,997. Определите пределы в которых находится средний вес изделий генеральной совокупности.

Решение.

В данном примере – случайный повторный отбор.

n=200

https://www.goodstudents.ru/images/stories/vyborka/image002.gif=30г

https://www.goodstudents.ru/images/stories/vyborka/image004.gif=4г — СКО

p=0,997, тогда t=3

Формула средней ошибки для случайного повторного отбора:

https://www.goodstudents.ru/images/stories/vyborka/image006.gif

https://www.goodstudents.ru/images/stories/vyborka/image008.gif=0,84 г

https://www.goodstudents.ru/images/stories/vyborka/image010.gifг

Определяем величину средней ошибки.

https://www.goodstudents.ru/images/stories/vyborka/image012.gif

Ответ: пределы в которых находится средний вес изделий:https://www.goodstudents.ru/images/stories/vyborka/image014.gif г

ПРИМЕР 2

 В городе проживает 250тыс. семей. Для определения среднего числа детей в семье была организована 2%-я бесповторная выборка семей. По ее результатам было получено следующее распространение семей по числу детей:

 P=0,954. Найти пределы в которых будет находится среднее число детей в генеральной совокупности.

Число детей в семье, xi

0

1

2

3

4

5

Кол-во детей в семье

1000

2000

1200

400

200

200

Решение

2%-я выборка означает: n=250000*0,02= 5000 семей было исследовано.

Т.к. выборка бесповторная, используем следующую формулу для определения средней величины ошибки:

https://www.goodstudents.ru/images/stories/vyborka/image016.gif

Найдем среднее число детей в выборочной совокупности:

https://www.goodstudents.ru/images/stories/vyborka/image018.gif ребенка

Определим дисперсию

https://www.goodstudents.ru/images/stories/vyborka/image020.gif

https://www.goodstudents.ru/images/stories/vyborka/image022.gif ребенка – средняя величина ошибки

Т.к = 0,954, то t = 2

https://www.goodstudents.ru/images/stories/vyborka/image024.gifребенка

https://www.goodstudents.ru/images/stories/vyborka/image026.gifребенка

Вывод: из-за слишком малой величины ошибки, среднее число детей в генеральной совокупности можно принять за 1,5 ребенка.

Источники информации по 2 вопросу

Автор и наименование

Страницы

(форма доступа для Интернет-ресурсов)

Основная литература

Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 3-е издание, стер. – М.: КНОРУС, 2019. – 232 с. – СПО

 стр. 211-220

Интернет ресурсы

  1. Информационно-издательский центр «Статистика России»

http://www.statbook.ru

  1. Электронный фонд правовой и технической документации

http://docs.cntd.ru 

  1. Информационно правовой портал

http://www.garant.ru/

Контрольное задание по Вопросу 2

  1. Записать в тетрадь конспект (1-2 стр.)

3. Подведение итогов учебного занятия

(ответить на вопросы (тестовые задания) и провести самооценку усвоенного материала)

Таблица 2.

Наименование изученного вопроса учебного занятия

Контрольное задание по изученному вопросу

Ответ

Определение ошибки репрезентативности.

ЗАДАНИЕ 1

  Условие задачи: при медицинском осмотре 126 детей 6 летнего возраста, проживающих в одном из районов городе А., в 12% случаев обнаружено нарушение осанки функционального характера.

Задание: определить ошибку репрезентативности (mp) и доверительные границы относительного показателя генеральной совокупности (Рген).

Определение ошибки репрезентативности.

ЗАДАНИЕ 2.  

Условие задачи: при медицинском осмотре детей 6 летнего возраста в 15% (m = ± 3%) случаях обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 7-летнего возраста составила 24% (m = ± 2,64%).

Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп.

Определение объема выборочной совокупности

ЗАДАНИЕ 3. В городе проживает 300 тыс. семей. Для определения среднего числа детей в семье была организована 2%-я бесповторная выборка семей. По ее результатам было получено следующее распространение семей по числу детей:

 P=0,954. Найти пределы в которых будет находится среднее число детей в генеральной совокупности

Определение объема выборочной совокупности

Сформулируйте понятие генеральной совокупности

Определение объема выборочной совокупности

Перечислите способы отбора единиц для выборочного наблюдения

  1. Домашнее задание на следующее занятие
  1. Выучить основные понятия. Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО (стр. 211-220)
  2. Выполнить задание 11.1. в тетради (стр. 224) учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО

Преподаватель                                                                 Ю.В. Древаль

СОГЛАСОВАНО

Протокол заседания ЦК дисциплин профессионального цикла специальности «Право и организация

социального обеспечения»

ГБПОУ Юридический колледж

от ____________ 2017 г. № ___

Лекция 2. Ошибка репрезентативности и доверительный интервал для
генерального параметра
Выборочные характеристики, представляющие собой числа (точки на
шкале) называют точечными оценками (существуют также и интервальные
оценки). Оценки должны удовлетворять следующим требованиям: быть
состоятельными, эффективными, несмещенными. Только при удовлетворении
этих требований оценки хорошо представляют соответствующие параметры.
В математической статистике введено понятие статистической ошибки
или ошибки репрезентативности; она связана с точностью, с которой
выборочная оценка представляет, репрезентирует свой параметр.
Когда ошибка оценивания генерального параметра стремится к нулю при
возрастании объема выборки, т.е. значение оценки стремится к значению
параметра, то такая оценка называется состоятельной. Оценка называется
эффективной,
если
она
имеет
наименьшую
дисперсию
выборочного
распределения по сравнению с другими аналогичными оценками.
К примеру,
из трех показателей, описывающих положение центра
нормального распределения (средняя, медиана, мода), наиболее эффективной
является средняя арифметическая, наименее эффективной — мода.
Оценка
ожидание)
называется
ее
несмещенной,
выборочного
если
распределения
среднее
совпадает
(математическое
со
значением
генерального параметра. Выборочная средняя является несмещенной оценкой
генеральной средней, а тогда как выборочная дисперсия представляет собой
смещенную оценку.
Например, чтобы получить несмещенную оценку, надо при вычислении
выборочной дисперсии использовать формулу, где в знаменателе (N — 1):
D=S2=
1
2
( Xi  X )

N 1
Для понимания смысла этих требований нужно рассмотреть понятие
выборочного распределения оценок какого-либо параметра.
Рассмотрим
условный
пример
для
такого
понятия,
как
арифметическое среднее: пусть ГС представляет собой 5 результатов
выполнения некоторого психологического теста: 8 16 20 24 32:
=
8  16  20  24  32
= 20
5
Таким образом, 20 — это значение генерального параметра.
Заменим изучение генеральной совокупности изучением выборок объемом
n = 4. Рассмотрим все возможные варианты таких выборок:
1) 8
16 20 24
 = 17
2) 16 20 24 32
 = 23
3) 8
16 24 32
 = 20
4) 8
16 20 32
 = 19
Из нашего примера видно, что из 5 оценок средних лишь одна совпала
с параметром. Заранее мы не можем знать, как составить (отобрать) выборку,
чтобы оценка параметра по ней была близка к параметру.
Однако очевидно, что чем больше объем выборки, тем меньше вероятность
того, что  , определяемое по выборке, будет значительно отличаться от
генерального среднего (крайние случаи n=N-1 и n=2 ,т.е. N>>n) .
Когда
генеральная совокупность велика и, соответственно, число
возможных выборок велико, то совокупность выборочных оценок средних для
каждой
из
этих
концентрирующееся
выборок
вокруг
«концентрация» (дисперсия)
Дисперсия
образует
генерального
тем
выше,
нормальное
среднего,
чем
больше
распределение,
причем
эта
объемы выборок.
распределения средних имеет особое название, она именуется
ошибкой репрезентативности.
Выше речь шла о распределении выборочных средних.
Это же
рассуждение можно повторить для оценок дисперсии, моды, коэффициентов
корреляции и т.д.
В теории математической статистики доказано, что нормального
распределения при достаточном объеме выборки (на практике n  30),
стандартное отклонение среднего арифметического равно:
Sx =
S
N
; где
S — стандартное отклонение
N — объем выборки.
Эту величину называют также статистической ошибкой или ошибкой
репрезентативности, т.е. это средняя ошибка, которая допускается, когда 
рассматривается как генеральный параметр.
Для других параметров ошиб ки репрезентативности таковы:
Ошибка репрезентативности дисперсии:
Ss2=S2/ 2N
Ошибка репрезентативности стандартного отклонения
Ss=S/ 2N
Ошибка репрезентативности показателя асимметрии:
Sa= 6 / N
Ошибка репрезентативности показателя эксцесса:
Se= 24 / N
Теперь перейдем к понятию доверительного интервала, которое применяется
для любого параметра. Мы рассмотрим его для генеральной средней. По
известным выборочным характеристикам можно построить интервал, в котором
с той или иной степенью вероятности находится генеральное среднее. Понятие
доверительного интервала связано с понятием доверительной вероятности.
Согласно этому принципу, маловероятные события считаются практически
невозможными,
а
события,
вероятность
которых
близка
к
единице,
принимаются за почти достоверные. Обычно в психологии в качестве
доверительных используют вероятности р = 0,95 и р = 0,99. Это означает, что
при оценивании генерального параметра по известной выборочной оценке риск
ошибиться в первом случае — один раз на 20 испытаний, во втором случае 1 раз
на 100 испытаний.
С доверительной вероятностью связано понятие уровня значимости
 = 1- р
Геометрически — это площадь под нормальной кривой выборочного
распределения, выходящая за пределы той его части, которая соответствует
Р%, поскольку в сумме они соответствуют всей площади под кривой. Иначе
говоря,

означает площадь двух хвостов под кривой нормального
распределения. При при р = 0,95 и  = 0, 05 на каждый «хвост» приходится
по 2,5 % площади.
Вероятность того, что  будет находиться в пределах
доверительного интервала x — t SX     + t SX,
описывается
особой функцией, которая сведена в таблице (обычно это таблица 1 в
приложении учебников по математической статистике)
для р= 0,95
t=1,96
для р=0,99
t = 2,58
для p=0, 999 t =3,29
График нормальной кривой
Выбор того или иного уровня доверительной вероятности зависит от
исследователя, от его оценки ответственности за ошибочность выводов
относительно генерального параметра .
Пример: При измерении объема памяти у 100 испытуемых
получено среднее значение числа запоминаемых сигналов
было
= 9 и
стандартное отклонение S = 3. 27. Построить доверительный
интервал для генеральной средней .
Вычисления проводятся по формуле:
x — t SX     + t SX
9 — 1,96
3271
.
327
.
   92+1,96
100
100
или 9+ 0.196  3,27    9 + 1..96  3,27 или 8. 36    9.64.
Таким образом, с вероятностью р = 0.95 генеральный параметр 
находится в интервале 8.36 — 9.64.
95%

Как мы уже знаем, репрезентативность — свойство выборочной совокупности представлять характеристику генеральной. Если совпадения нет, говорят об ошибке репрезентативности — мере отклонения статистической структуры выборки от структуры соответствующей генеральной совокупности. Предположим, что средний ежемесячный семейный доход пенсионеров в генеральной совокупности составляет 2 тыс. руб., а в выборочной — 6 тыс. руб. Это означает, что социолог опрашивал только зажиточную часть пенсионеров, а в его исследование вкралась ошибка репрезентативности. Иными словами, ошибкой репрезентативности называется расхождение между двумя совокупностями — генеральной, на которую направлен теоретический интерес социолога и представление о свойствах которой он хочет получить в конечном итоге, и выборочной, на которую направлен практический интерес социолога, которая выступает одновременно как объект обследования и средство получения информации о генеральной совокупности.

Наряду с термином «ошибка репрезентативности» в отечественной литературе можно встретить другой — «ошибка выборки». Иногда они употребляются как синонимы, а иногда «ошибка выборки» используется вместо «ошибки репрезентативности» как количественно более точное понятие.

Ошибка выборки — отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.

На практике ошибка выборки определяется путем сравнения известных характеристик генеральной совокупности с выборочными средними. В социологии при обследованиях взрослого населения чаще всего используют данные переписей населения, текущего статистического учета, результаты предшествующих опросов. В качестве контрольных параметров обычно применяются социально-демографические признаки. Сравнение средних генеральной и выборочной совокупностей, на основе этого определение ошибки выборки и ее уменьшение называется контролированием репрезентативности. Поскольку сравнение своих и чужих данных можно сделать по завершении исследования, такой способ контроля называется апостериорным, т.е. осуществляемым после опыта.

В опросах Института Дж. Гэллапа репрезентативность контролируется по имеющимся в национальных переписях данным о распределении населения по полу, возрасту, образованию, доходу, профессии, расовой принадлежности, месту проживания, величине населенного пункта. Всероссийский центр изучения общественного мнения (ВЦИОМ) использует для подобных целей такие показатели, как пол, возраст, образование, тип поселения, семейное положение, сфера занятости, должностной статус респондента, которые заимствуются в Государственном комитете по статистике РФ. В том и другом случае генеральная совокупность известна. Ошибку выборки невозможно установить, если неизвестны значения переменной в выборочной и генеральной совокупностях.

Специалисты ВЦИОМ обеспечивают при анализе данных тщательный ремонт выборки, чтобы минимизировать отклонения, возникшие на этапе полевых работ. Особенно сильные смещения наблюдаются по параметрам пола и возраста. Объясняется это тем, что женщины и люди с высшим образованием больше времени проводят дома и легче идут на контакт с интервьюером, т.е. являются легко достижимой группой по сравнению с мужчинами и людьми «необразованными»35.

Ошибка выборки обусловливается двумя факторами: методом формирования выборки и размером выборки.

Ошибки выборки подразделяются на два типа — случайные и систематические. Случайная ошибка — это вероятность того, что выборочная средняя выйдет (или не выйдет) за пределы заданного интервала. К случайным ошибкам относят статистические погрешности, присущие самому выборочному методу. Они уменьшаются при возрастании объема выборочной совокупности.

Второй тип ошибок выборки — систематические ошибки. Если социолог решил узнать мнение всех жителей города о проводимой местными органами власти социальной политике, а опросил только тех, у кого есть телефон, то возникает предумышленное смещение выборки в пользу зажиточных слоев, т.е. систематическая ошибка.

Таким образом, систематические ошибки — результат деятельности самого исследователя. Они наиболее опасны, поскольку приводят к довольно значительным смещениям результатов исследования. Систематические ошибки считаются страшнее случайных еще и потому, что они не поддаются контролю и измерению.

Они возникают, когда, например:

  1. выборка не соответствует задачам исследования (социолог решил изучить только работающих пенсионеров, а опросил всех подряд);
  2. налицо незнание характера генеральной совокупности (социолог думал, что 70% всех пенсионеров не работает, а оказалось, что не работает только 10%);
  3. отбираются только «выигрышные» элементы генеральной совокупности (например, только обеспеченные пенсионеры).

Внимание! В отличие от случайных ошибок систематические ошибки при возрастании объема выборки не уменьшаются.

Обобщив все случаи, когда происходят систематические ошибки, методисты составили их реестр. Они полагают, что источником неконтролируемых перекосов в распределении выборочных наблюдений могут быть следующие факторы:

  • нарушены методические и методологические правила проведения социологического исследования;
  • выбраны неадекватные способы формирования выборочной совокупности, методы сбора и расчета данных;
  • произошла замена требуемых единиц наблюдения другими, более доступными;
  • отмечен неполный охват выборочной совокупности (недополучение анкет, неполное их заполнение, труднодоступность единиц наблюдения).

Намеренные ошибки социолог допускает редко. Чаще ошибки возникают из-за того, что социологу плохо известна структура генеральной совокупности: распределение людей по возрасту, профессии, доходам и т.д.

Систематические ошибки легче предупредить (по сравнению со случайными), но их очень трудно устранить. Предупреждать систематические ошибки, точно предвидя их источники, лучше всего заранее — в самом начале исследования.

Вот некоторые способы избежать ошибок выборки:

  • каждая единица генеральной совокупности должна иметь равную вероятность попасть в выборку;
  • отбор желательно производить из однородных совокупностей;
  • надо знать характеристики генеральной совокупности;
  • при составлении выборочной совокупности надо учитывать случайные и систематические ошибки.

Если выборочная совокупность (или просто выборка) составлена правильно, то социолог получает надежные результаты, харастеризующие всю генеральную совокупность. Если она составлена неправильно, то ошибка, возникшая на этапе составления выборки, на каждом следующем этапе проведения социологического исследования приумножается и достигает в конечном счете такой величины, которая перевешивает ценность проведенного исследования. Говорят, что от такого исследования больше вреда, нежели пользы.

Подобные ошибки могут произойти только с выборочной совокупностыо. Чтобы избежать или уменьшить вероятность ошибки, самый простой способ — увеличивать размеры выборки (в идеале до объема генеральной: когда обе совокупности совпадут, ошибка выборки вообще исчезнет). Экономически такой метод невозможен. Остается другой путь — совершенствовать математические методы составления выборки. Они то и применяются на практике. Таков первый канал проникновения в социологию математики. Второй канал — математическая обработка данных.

Особенно важной проблема ошибок становится в маркетинговых исследованиях, где используются не очень большие выборки. Обычно они составляют несколько сотен, реже — тысячу респондентов. Здесь исходным пунктом расчета выборки выступает вопрос об определении размеров выборочной совокупности. Численность выборочной совокупности зависит от двух факторов:

  1. стоимости сбора информации,
  2. стремления к определенной степени статистической достоверности результатов, которую надеется получить исследователь.

Конечно, даже не искушенные в статистике и социологии люди интуитивно понимают, что чем больше размеры выборки, т.е. чем ближе они к размерам генеральной совокупности в целом, тем более надежны и достоверны полученные данные. Однако выше мы уже говорили о практической невозможности сплошных опросов в тех случаях, когда они проводятся на объектах, численность которых превышает десятки, сотни тысяч и даже миллионы. Понятно, что стоимость сбора информации (включающая оплату тиражирования инструментария, труда анкетеров, полевых менеджеров и операторов по компьютерному вводу) зависит от той суммы, которую готов выделить заказчик, и слабо зависит от исследователей. Что же касается второго фактора, то мы остановимся на нем чуть подробнее.

Итак, чем больше величина выборки, тем меньше возможная ошибка. Хотя необходимо отметить, что при желании увеличить точность вдвое вам придется увеличить выборку не в два, а в четыре раза. Например, чтобы сделать в два раза более точной оценку данных, полученных путем опроса 400 человек, вам потребуется опросить не 800, а 1600 человек. Впрочем, вряд ли маркетинговое исследование испытывает нужду в стопроцентной точности. Если пивовару необходимо узнать, какая часть потребителей пива предпочитает именно его марку, а не сорт его конкурента, — 60% или 40%, то на его планы никак не повлияет разница между 57%, 60 или 63%.

Ошибка выборки может зависеть не только от ее величины, но и от степени различий между отдельными единицами внутри генеральной совокупности, которую мы исследуем. Например, если нам нужно узнать, какое количество пива потребляется, то мы обнаружим, что внутри нашей генеральной совокупности нормы потребления у различных людей существенно различаются (гетерогенная генеральная совокупность). В другом случае мы будем изучать потребление хлеба и установим, что у разных людей оно различается гораздо менее существенно {гомогенная генеральная совокупность). Чем больше различия (или гетерогенность) внутри генеральной совокупности, тем больше величина возможной ошибки выборки. Указанная закономерность лишь подтверждает то, что нам подсказывает простой здравый смысл. Таким образом, как справедливо утверждает В. Ядов, «численность (объем) выборки зависит от уровня однородности или разнородности изучаемых объектов. Чем более они однородны, тем меньшая численность может обеспечить статистически достоверные выводы».

Определение объема выборки зависит также от уровня доверительного интервала допустимой статистической ошибки. Здесь имеются в виду так называемые случайные ошибки, которые связаны с природой любых статистических погрешностей. В.И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5%-ной ошибки:
Это означает,что если вы, опросив, предположим, 400 человек в районном городе, где численность взрослого платежеспособного населения составляет 100 тыс. человек, выявили, что 33% опрошенных покупателей предпочитают продукцию местного мясокомбината, то с 95%-ной вероятностью можете утверждать, что постоянными покупателями этой продукции являются 33+5% (т.е. от 28 до 38%) жителей этого города.

Можно также воспользоваться расчетами института Гэллапа для оценки соотношения размеров выборки и ошибки выборки.

Возможно, вам также будет интересно:

  • Что такое ошибка рендеринга страницы
  • Что такое ошибка резервной системы
  • Что такое ошибка реестра виндовс
  • Что такое ошибка реестра windows
  • Что такое ошибка расширенной памяти

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии